Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(6): 1915-1923, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30538129

RESUMO

Huntington's disease (HD) is a neurodegenerative, age-onset disorder caused by a CAG DNA expansion in exon 1 of the HTT gene, resulting in a polyglutamine expansion in the huntingtin protein. Nuclear accumulation of mutant huntingtin is a hallmark of HD, resulting in elevated mutant huntingtin levels in cell nuclei. Huntingtin is normally retained at the endoplasmic reticulum via its N17 amphipathic α-helix domain but is released by oxidation of Met-8 during reactive oxygen species (ROS) stress. Huntingtin enters the nucleus via an importin ß1- and 2-dependent proline-tyrosine nuclear localization signal (PY-NLS), which has a unique intervening sequence in huntingtin. Here, we have identified the high-mobility group box 1 (HMGB1) protein as an interactor of the intervening sequence within the PY-NLS. Nuclear levels of HMGB1 positively correlated with varying levels of nuclear huntingtin in both HD and normal human fibroblasts. We also found that HMGB1 interacts with the huntingtin N17 region and that this interaction is enhanced by the presence of ROS and phosphorylation of critical serine residues in the N17 region. We conclude that HMGB1 is a huntingtin N17/PY-NLS ROS-dependent interactor, and this protein bridging is essential for relaying ROS sensing by huntingtin to its nuclear entry during ROS stress. ROS may therefore be a critical age-onset stress that triggers nuclear accumulation of mutant huntington in Huntington's disease.


Assuntos
Transporte Ativo do Núcleo Celular , Proteína HMGB1/fisiologia , Proteína Huntingtina/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Sítios de Ligação , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Proteína Huntingtina/efeitos dos fármacos , Proteína Huntingtina/fisiologia , Sinais de Localização Nuclear , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica
2.
mBio ; 15(8): e0099624, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38980036

RESUMO

Regulator of G-protein signaling (RGS) proteins exhibit GTPase-accelerating protein activities to govern G-protein function. In the rice blast fungus Magnaporthe oryzae, there is a family of at least eight RGS and RGS-like proteins (MoRgs1 to MoRgs8), each exhibiting distinct or shared functions in the growth, appressorium formation, and pathogenicity. MoRgs3 recently emerged as one of the crucial regulators that senses intracellular oxidation during appressorium formation. To explore this unique regulatory mechanism of MoRgs3, we identified the nucleoside diphosphate kinase MoNdk1 that interacts with MoRgs3. MoNdk1 phosphorylates MoRgs3 under induced intracellular reactive oxygen species levels, and MoRgs3 phosphorylation is required for appressorium formation and pathogenicity. In addition, we showed that MoRgs3 phosphorylation determines its interaction with MoCrn1, a coronin-like actin-binding protein homolog, which regulates MoRgs3 internalization. Finally, we provided evidence demonstrating that MoRgs3 functions in MoMagA-mediated cAMP signaling to regulate normal appressorium induction. By revealing a novel signal perception mechanism, our studies highlighted the complexity of regulation during the appressorium function and pathogenicity of the blast fungus. IMPORTANCE: We report that MoRgs3 becomes phosphorylated in an oxidative intracellular environment during the appressorium formation stage. We found that this phosphorylation is carried out by MoNdk1, a nucleoside diphosphate kinase. In addition, this phosphorylation leads to a higher binding affinity between MoRgs3 and MoCrn1, a coronin-like actin-binding protein that was implicated in the endocytic transport of several other RGS proteins of Magnaporthe oryzae. We further found that the internalization of MoRgs3 is indispensable for its GTPase-activating protein function toward the Gα subunit MoMagA. Importantly, we characterized how such cellular regulatory events coincide with cAMP signaling-regulated appressorium formation and pathogenicity in the blast fungus. Our studies uncovered a novel intracellular reactive oxygen species signal-transducing mechanism in a model pathogenic fungus with important basic and applied implications.


Assuntos
AMP Cíclico , Proteínas Fúngicas , Doenças das Plantas , Espécies Reativas de Oxigênio , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Fosforilação , Doenças das Plantas/microbiologia , Oryza/microbiologia , Proteínas RGS/metabolismo , Proteínas RGS/genética , Regulação Fúngica da Expressão Gênica , Núcleosídeo-Difosfato Quinase/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Virulência
3.
Fungal Biol ; 127(7-8): 1198-1208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495309

RESUMO

In addition to their role in the breakdown of H2O2, some peroxiredoxins (Prxs) have chaperone and H2O2 sensing functions. Acting as an H2O2 sensor, Prx Gpx3 transfers the oxidant signal to the transcription factor Yap1, involved in the antioxidant response in Saccharomyces cerevisiae. We have shown that Aspergillus nidulans Yap1 ortholog NapA is necessary for the antioxidant response, the utilization of arabinose, fructose and ethanol, and for proper development. To address the Prx roles in these processes, we generated and characterized mutants lacking peroxiredoxins PrxA, PrxB, PrxC, or TpxC. Our results show that the elimination of peroxiredoxins PrxC or TpxC does not produce any distinguishable phenotype. In contrast, the elimination of atypical 2-cysteine peroxiredoxins PrxA and PrxB produce different mutant phenotypes. ΔprxA, ΔnapA and ΔprxA ΔnapA mutants are equally sensitive to H2O2 and menadione, while PrxB is dispensable for this. However, the sensitivity of ΔprxA and ΔprxA ΔnapA mutants is increased by the lack of PrxB. Moreover, PrxB is required for arabinose and ethanol utilization and fruiting body cell wall pigmentation. PrxA expression is partially independent of NapA, and the replacement of peroxidatic cysteine 61 by serine (C61S) is enough to cause oxidative stress sensitivity and prevent NapA nuclear accumulation in response to H2O2, indicating its critical role in H2O2 sensing. Our results show that despite their high similarity, PrxA and PrxB play differential roles in Aspergillus nidulans antioxidant response, carbon utilization and development.


Assuntos
Antioxidantes , Aspergillus nidulans , Antioxidantes/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Peróxido de Hidrogênio/metabolismo , Cisteína/metabolismo , Arabinose , Estresse Oxidativo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Etanol , Carbono , Oxirredução
4.
Fungal Biol ; 124(5): 253-262, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389287

RESUMO

The regulation of gene expression in response to increased levels of reactive oxygen species (ROS) is a ubiquitous response in aerobic organisms. However, different organisms use different strategies to perceive and respond to high ROS levels. Yeast Yap1 is a paradigmatic example of a specific mechanism used by eukaryotic cells to link ROS sensing and gene regulation. The activation of this transcription factor by H2O2 is mediated by peroxiredoxins, which are widespread enzymes that use cysteine thiols to sense ROS, as well as to catalyze the reduction of peroxides to water. In filamentous fungi, Yap1 homologs and peroxiredoxins also are major regulators of the antioxidant response. However, Yap1 homologs are involved in a wider array of processes by regulating genes involved in nutrient assimilation, secondary metabolism, virulence and development. Such novel functions illustrate the divergent roles of ROS and other oxidizing compounds as important regulatory signaling molecules.


Assuntos
Antioxidantes , Fungos , Fatores de Transcrição , Leveduras , Fungos/genética , Fungos/metabolismo , Oxirredução , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio , Homologia de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Leveduras/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa