Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Res ; 93(10): 1492-506, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213348

RESUMO

Synapsins (Syns) are an evolutionarily conserved family of synaptic vesicle-associated proteins related to fine tuning of synaptic transmission. Studies with mammals have partially clarified the different roles of Syns; however, the presence of different genes and isoforms and the development of compensatory mechanisms hinder accurate data interpretation. Here, we use a simple in vitro monosynaptic Helix neuron connection, reproducing an in vivo physiological connection as a reliable experimental model to investigate the effects of Syn knockdown. Cells overexpressing an antisense construct against Helix Syn showed a time-dependent decrease of Syn immunostaining, confirming protein loss. At the morphological level, Syn-silenced cells showed a reduction in neurite linear outgrowth and branching and in the size and number of synaptic varicosities. Functionally, Syn-silenced cells presented a reduced ability to form synaptic connections; however, functional chemical synapses showed similar basal excitatory postsynaptic potentials and similar short-term plasticity paradigms. In addition, Syn-silenced cells presented faster neurotransmitter release and decreased postsynaptic response toward the end of long tetanic presynaptic stimulations, probably related to an impairment of the synaptic vesicle trafficking resulting from a different vesicle handling, with an increased readily releasable pool and a compromised reserve pool.


Assuntos
Neuritos/fisiologia , Neurogênese/genética , Neurônios/citologia , Neurotransmissores/metabolismo , Sinapses/fisiologia , Sinapsinas/metabolismo , Potenciais de Ação/genética , Animais , Células Cultivadas , Gânglios dos Invertebrados/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Caracois Helix , Microinjeções , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Serotonina/farmacologia , Sinapsinas/genética , Transdução Genética
2.
J Neurosci Res ; 93(12): 1849-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26332770

RESUMO

Changes in executive function are at the root of most cognitive problems associated with Parkinson's disease. Because dopaminergic treatment does not necessarily alleviate deficits in executive function, it has been hypothesized that dysfunction of neurotransmitters/systems other than dopamine (DA) may be associated with this decrease in cognitive function. We have reported decreases in motor function and dopaminergic/glutamatergic biomarkers in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinson's mouse model. Assessment of executive function and dopaminergic/glutamatergic biomarkers within the limbic circuit has not previously been explored in our model. Our results show progressive behavioral decline in a cued response task (a rodent model for frontal cortex cognitive function) with increasing weekly doses of MPTP. Although within the dorsolateral (DL) striatum mice that had been given MPTP showed a 63% and 83% loss of tyrosine hydroxylase and dopamine transporter expression, respectively, there were no changes in the nucleus accumbens or medial prefrontal cortex (mPFC). Furthermore, dopamine-1 receptor and vesicular glutamate transporter (VGLUT)-1 expression increased in the mPFC following DA loss. There were significant MPTP-induced decreases and increases in VGLUT-1 and VGLUT-2 expression, respectively, within the DL striatum. We propose that the behavioral decline following MPTP treatment may be associated with a change not only in cortical-cortical (VGLUT-1) glutamate function but also in striatal DA and glutamate (VGLUT-1/VGLUT-2) input.


Assuntos
Encéfalo/metabolismo , Transtornos Cognitivos/etiologia , Função Executiva/fisiologia , Ácido Glutâmico/metabolismo , Intoxicação por MPTP/complicações , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Função Executiva/efeitos dos fármacos , Transtornos Neurológicos da Marcha/etiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Intoxicação por MPTP/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Testes Neuropsicológicos , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
3.
J Comp Neurol ; 525(13): 2876-2889, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28543879

RESUMO

Stretch-sensitive Ia afferent monosynaptic connections with motoneurons form the stretch reflex circuit. After nerve transection, Ia afferent synapses and stretch reflexes are permanently lost, even after regeneration and reinnervation of muscle by motor and sensory afferents is completed in the periphery. This loss greatly affects full recovery of motor function. However, after nerve crush, reflex muscle forces during stretch do recover after muscle reinnervation and reportedly exceed 140% baseline values. This difference might be explained by structural preservation after crush of Ia afferent synapses on regenerating motoneurons and decreased presynaptic inhibitory control. We tested these possibilities in rats after crushing the tibial nerve (TN), and using Vesicular GLUtamate Transporter 1 (VGLUT1) and the 65 kDa isoform of glutamic acid-decarboxylase (GAD65) as markers of, respectively, Ia afferent synapses and presynaptic inhibition (P-boutons) on retrogradely labeled motoneurons. We analyzed motoneurons during regeneration (21 days post crush) and after they reinnervate muscle (3 months). The results demonstrate a significant loss of VGLUT1 terminals on dendrites and cell bodies at both 21 days and 3 months post-crush. However, in both cellular compartments, the reductions were small compared to those observed after TN full transection. In addition, we found a significant decrease in the number of GAD65 P-boutons per VGLUT1 terminal and their coverage of VGLUT1 boutons. The results support the hypothesis that better preservation of Ia afferent synapses and a change in presynaptic inhibition could contribute to maintain or even increase the stretch reflex after nerve crush and by difference to nerve transection.


Assuntos
Regulação da Expressão Gênica/fisiologia , Neurônios Motores/fisiologia , Traumatismos dos Nervos Periféricos/patologia , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Análise de Variância , Animais , Contagem de Células , Toxina da Cólera/metabolismo , Modelos Animais de Doenças , Feminino , Glutamato Descarboxilase/metabolismo , Compressão Nervosa/métodos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/etiologia , Ratos , Ratos Wistar , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa