Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Adv ; 11: 100347, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36718477

RESUMO

Wastewater surveillance of SARS-CoV-2 has proven instrumental in mitigating the spread of COVID-19 by providing an economical and equitable approach to disease surveillance. Here, we analyze the correlation of SARS-CoV-2 RNA in influents of seven wastewater plants (WWTPs) across the state of South Carolina with corresponding daily case counts to determine whether underlying characteristics of WWTPs and sewershed populations predict stronger correlations. The populations served by these WWTPs have varying social vulnerability and represent 24% of the South Carolina population. The study spanned 15 months from April 19, 2020, to July 1, 2021, which includes the administration of the first COVID-19 vaccines. SARS-CoV-2 RNA concentrations were measured by either reverse transcription quantitative PCR (RT-qPCR) or droplet digital PCR (RT-ddPCR). Although populations served and average flow rate varied across WWTPs, the strongest correlation was identified for six of the seven WWTPs when daily case counts were lagged two days after the measured SARS-CoV-2 RNA concentration in wastewater. The weakest correlation was found for WWTP 6, which had the lowest ratio of population served to average flow rate, indicating that the SARS-CoV-2 signal was too dilute for a robust correlation. Smoothing daily case counts by a 7-day moving average improved correlation strength between case counts and SARS-CoV-2 RNA concentration in wastewater while dampening the effect of lag-time optimization. Correlation strength between cases and SARS-CoV-2 RNA was compared for cases determined at the ZIP-code and sewershed levels. The strength of correlations using ZIP-code-level versus sewershed-level cases were not statistically different across WWTPs. Results indicate that wastewater surveillance, even without normalization to fecal indicators, is a strong predictor of clinical cases by at least two days, especially when SARS-CoV-2 RNA is measured using RT-ddPCR. Furthermore, the ratio of population served to flow rate may be a useful metric to assess whether a WWTP is suitable for a surveillance program.

2.
Metab Eng Commun ; 15: e00207, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36188638

RESUMO

Engineering bioenergy crops to accumulate coproducts in planta can increase the value of lignocellulosic biomass and enable a sustainable bioeconomy. In this study, we engineered sorghum with a bacterial gene encoding a chorismate pyruvate-lyase (ubiC) to reroute the plastidial pool of chorismate from the shikimate pathway into the valuable compound 4-hydroxybenzoic acid (4-HBA). A gene encoding a feedback-resistant version of 3-deoxy-d-arabino-heptulonate-7-phosphate synthase (aroG) was also introduced in an attempt to increase the carbon flux through the shikimate pathway. At the full maturity and senesced stage, two independent lines that co-express ubiC and aroG produced 1.5 and 1.7 dw% of 4-HBA in biomass, which represents 36- and 40-fold increases compared to the titer measured in wildtype. The two transgenic lines showed no obvious phenotypes, growth defects, nor alteration of cell wall polysaccharide content when cultivated under controlled conditions. In the field, when harvested before grain maturity, transgenic lines contained 0.8 and 1.2 dw% of 4-HBA, which represent economically relevant titers based on recent technoeconomic analysis. Only a slight reduction (11-15%) in biomass yield was observed in transgenics grown under natural environment. This work provides the first metabolic engineering steps toward 4-HBA overproduction in the bioenergy crop sorghum to improve the economics of biorefineries by accumulating a value-added coproduct that can be recovered from biomass and provide an additional revenue stream.

3.
JHEP Rep ; 4(3): 100439, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243279

RESUMO

Many risk factors and complications impact the success of liver transplantation, such as ischaemia-reperfusion injury, acute rejection, and primary graft dysfunction. Molecular biomarkers have the potential to accurately diagnose, predict, and monitor injury progression or organ failure. There is a critical opportunity for reliable and non-invasive biomarkers to reduce the organ shortage by enabling i) the assessment of donor organ quality, ii) the monitoring of short- and long-term graft function, and iii) the prediction of acute and chronic disease development. To date, no established molecular biomarkers have been used to guide clinical decision-making in transplantation. In this review, we outline the recent advances in cell-free nucleic acid biomarkers for monitoring graft injury in liver transplant recipients. Prior work in this area can be divided into two categories: biomarker discovery and validation studies. Circulating nucleic acids (CNAs) can be found in the extracellular environment pertaining to different biological fluids such as bile, blood, urine, and perfusate. CNAs that are packaged into extracellular vesicles may facilitate intercellular and interorgan communication. Thus, decoding their biological function, cellular origins and molecular composition is imperative for diagnosing causes of graft injury, guiding immunosuppression and improving overall patient survival. Herein, we discuss the most promising molecular biomarkers, their state of development, and the critical aspects of study design in biomarker research for early detection of post-transplant liver injury. Future advances in biomarker studies are expected to personalise post-transplant therapy, leading to improved patient care and outcomes.

4.
Pract Lab Med ; 25: e00210, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33778144

RESUMO

BCR-ABL1 molecular detection using quantitative PCR (qPCR) methods is the golden standard of chronic myeloid leukemia (CML) monitoring. However, due to variable sensitivity of qPCR assays across laboratories, alternative methods are tested. Digital PCR (dPCR) has been suggested as a robust and reproducible option. Here we present a comparison of droplet dPCR with routinely used reverse-transcription qPCR (RT-qPCR) and automated GeneXpert systems. Detection limit of dPCR was above 3 BCR-ABL1 copies, although due to background amplification the resulting sensitivity was 0.01% BCR-ABL1 (MR4.0). Nevertheless, in comparison with GeneXpert, dPCR categorized more than 50% of the patients into different MR groups, showing a potential for improved BCR-ABL1 detection.

5.
JHEP Rep ; 3(6): 100354, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704004

RESUMO

BACKGROUND & AIMS: Immune-mediated induction of cytidine deaminase APOBEC3B (A3B) expression leads to HBV covalently closed circular DNA (cccDNA) decay. Here, we aimed to decipher the signalling pathway(s) and regulatory mechanism(s) involved in A3B induction and related HBV control. METHODS: Differentiated HepaRG cells (dHepaRG) knocked-down for NF-κB signalling components, transfected with siRNA or micro RNAs (miRNA), and primary human hepatocytes ± HBV or HBVΔX or HBV-RFP, were treated with lymphotoxin beta receptor (LTßR)-agonist (BS1). The biological outcomes were analysed by reverse transcriptase-qPCR, immunoblotting, luciferase activity, chromatin immune precipitation, electrophoretic mobility-shift assay, targeted-bisulfite-, miRNA-, RNA-, genome-sequencing, and mass-spectrometry. RESULTS: We found that canonical and non-canonical NF-κB signalling pathways are mandatory for A3B induction and anti-HBV effects. The degree of immune-mediated A3B production is independent of A3B promoter demethylation but is controlled post-transcriptionally by the miRNA 138-5p expression (hsa-miR-138-5p), promoting A3B mRNA decay. Hsa-miR-138-5p over-expression reduced A3B levels and its antiviral effects. Of note, established infection inhibited BS1-induced A3B expression through epigenetic modulation of A3B promoter. Twelve days of treatment with a LTßR-specific agonist BS1 is sufficient to reduce the cccDNA pool by 80% without inducing significant damages to a subset of cancer-related host genes. Interestingly, the A3B-mediated effect on HBV is independent of the transcriptional activity of cccDNA as well as on rcDNA synthesis. CONCLUSIONS: Altogether, A3B represents the only described enzyme to target both transcriptionally active and inactive cccDNA. Thus, inhibiting hsa-miR-138-5p expression should be considered in the combinatorial design of new therapies against HBV, especially in the context of immune-mediated A3B induction. LAY SUMMARY: Immune-mediated induction of cytidine deaminase APOBEC3B is transcriptionally regulated by NF-κB signalling and post-transcriptionally downregulated by hsa-miR-138-5p expression, leading to cccDNA decay. Timely controlled APOBEC3B-mediated cccDNA decay occurs independently of cccDNA transcriptional activity and without damage to a subset of cancer-related genes. Thus, APOBEC3B-mediated cccDNA decay could offer an efficient therapeutic alternative to target hepatitis B virus chronic infection.

6.
Comput Struct Biotechnol J ; 18: 381-392, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32128068

RESUMO

Pulmonary atresia (PA) is a rare congenital heart defect (CHD) with complex manifestations and a high mortality rate. Since the genetic determinants in the pathogenesis of PA remain elusive, a thorough identification of the genetic factors through whole exome sequencing (WES) will provide novel insights into underlying mechanisms of PA. We performed WES data from PA/VSD (n = 60), PA/IVS (n = 20), TOF/PA (n = 20) and 100 healthy controls. Rare variants and novel genes were identified using variant-based association and gene-based burden analysis. Then we explored the expression pattern of our candidate genes in endothelium cell lines, pulmonary artery tissues, and embryonic hearts. 56 rare damage variants of 7 novel candidate genes (DNAH10, DST, FAT1, HMCN1, HNRNPC, TEP1, and TYK2) were certified to have function in PA pathogenesis for the first time. In our research, the genetic pattern among PA/VSD, PA/IVS and TOF/PA were different to some degree. Taken together, our findings contribute new insights into the molecular basis of this rare congenital birth defect.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa