Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.009
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(7): 1913-1929.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33333020

RESUMO

Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.


Assuntos
Córtex Cerebral/fisiologia , Córtex Motor/fisiologia , Organoides/fisiologia , Animais , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Vértebras Cervicais , Regulação da Expressão Gênica , Glutamatos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Músculos/fisiologia , Mioblastos/metabolismo , Rede Nervosa/fisiologia , Optogenética , Organoides/ultraestrutura , Rombencéfalo/fisiologia , Esferoides Celulares/citologia , Medula Espinal/citologia
2.
Cell ; 170(2): 382-392.e14, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28689641

RESUMO

Neural networks are emerging as the fundamental computational unit of the brain and it is becoming progressively clearer that network dysfunction is at the core of a number of psychiatric and neurodegenerative disorders. Yet, our ability to target specific networks for functional or genetic manipulations remains limited. Monosynaptically restricted rabies virus facilitates the anatomical investigation of neural circuits. However, the inherent cytotoxicity of the rabies largely prevents its implementation in long-term functional studies and the genetic manipulation of neural networks. To overcome this limitation, we developed a self-inactivating ΔG-rabies virus (SiR) that transcriptionally disappears from the infected neurons while leaving permanent genetic access to the traced network. SiR provides a virtually unlimited temporal window for the study of network dynamics and for the genetic and functional manipulation of neural circuits in vivo without adverse effects on neuronal physiology and circuit function.


Assuntos
Vias Neurais , Neurobiologia/métodos , Vírus da Raiva/genética , Animais , Camundongos , Neurônios/metabolismo , Sinapses
3.
Cell ; 167(4): 961-972.e16, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773481

RESUMO

Memories about sensory experiences are tightly linked to the context in which they were formed. Memory contextualization is fundamental for the selection of appropriate behavioral reactions needed for survival, yet the underlying neuronal circuits are poorly understood. By combining trans-synaptic viral tracing and optogenetic manipulation, we found that the ventral hippocampus (vHC) and the amygdala, two key brain structures encoding context and emotional experiences, interact via multiple parallel pathways. A projection from the vHC to the basal amygdala mediates fear behavior elicited by a conditioned context, whereas a parallel projection from a distinct subset of vHC neurons onto midbrain-projecting neurons in the central amygdala is necessary for context-dependent retrieval of cued fear memories. Our findings demonstrate that two fundamentally distinct roles of context in fear memory retrieval are processed by distinct vHC output pathways, thereby allowing for the formation of robust contextual fear memories while preserving context-dependent behavioral flexibility.


Assuntos
Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Memória , Vias Neurais , Animais , Condicionamento Psicológico , Fenômenos Eletrofisiológicos , Medo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/fisiologia , Optogenética , Vírus da Raiva/genética , Sinapses
4.
Annu Rev Neurosci ; 44: 425-447, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863253

RESUMO

What changes in neural architecture account for the emergence and expansion of dexterity in primates? Dexterity, or skill in performing motor tasks, depends on the ability to generate highly fractionated patterns of muscle activity. It also involves the spatiotemporal coordination of activity in proximal and distal muscles across multiple joints. Many motor skills require the generation of complex movement sequences that are only acquired and refined through extensive practice. Improvements in dexterity have enabled primates to manufacture and use tools and humans to engage in skilled motor behaviors such as typing, dance, musical performance, and sports. Our analysis leads to the following synthesis: The neural substrate that endows primates with their enhanced motor capabilities is due, in part, to (a) major organizational changes in the primary motor cortex and (b) the proliferation of output pathways from other areas of the cerebral cortex, especially from the motor areas on the medial wall of the hemisphere.


Assuntos
Córtex Motor , Animais , Destreza Motora , Movimento
5.
Proc Natl Acad Sci U S A ; 120(7): e2023481120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-37053554

RESUMO

Monosynaptic tracing using rabies virus is an important technique in neuroscience, allowing brain-wide labeling of neurons directly presynaptic to a targeted neuronal population. A 2017 article reported the development of a noncytotoxic version-a major advance-based on attenuating the rabies virus by the addition of a destabilization domain to the C terminus of a viral protein. However, this modification did not appear to hinder the ability of the virus to spread between neurons. We analyzed two viruses provided by the authors and show here that both were mutants that had lost the intended modification, explaining the paper's paradoxical results. We then made a virus that actually did have the intended modification in at least the majority of virions and found that it did not spread efficiently under the conditions described in the original paper, namely, without an exogenous protease being expressed in order to remove the destabilization domain. We found that it did spread when the protease was supplied, although this also appeared to result in the deaths of most source cells by 3 wk postinjection. We conclude that the new approach is not robust but that it could become a viable technique given further optimization and validation.


Assuntos
Vírus da Raiva , Raiva , Humanos , Vírus da Raiva/metabolismo , Neurônios/metabolismo , Proteínas Virais/metabolismo , Encéfalo/metabolismo , Peptídeo Hidrolases/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(24): e2210719120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279261

RESUMO

Astroglial dysfunction contributes to the pathogenesis of Huntington's disease (HD), and glial replacement can ameliorate the disease course. To establish the topographic relationship of diseased astrocytes to medium spiny neuron (MSN) synapses in HD, we used 2-photon imaging to map the relationship of turboRFP-tagged striatal astrocytes and rabies-traced, EGFP-tagged coupled neuronal pairs in R6/2 HD and wild-type (WT) mice. The tagged, prospectively identified corticostriatal synapses were then studied by correlated light electron microscopy followed by serial block-face scanning EM, allowing nanometer-scale assessment of synaptic structure in 3D. By this means, we compared the astrocytic engagement of single striatal synapses in HD and WT brains. R6/2 HD astrocytes exhibited constricted domains, with significantly less coverage of mature dendritic spines than WT astrocytes, despite enhanced engagement of immature, thin spines. These data suggest that disease-dependent changes in the astroglial engagement and sequestration of MSN synapses enable the high synaptic and extrasynaptic levels of glutamate and K+ that underlie striatal hyperexcitability in HD. As such, these data suggest that astrocytic structural pathology may causally contribute to the synaptic dysfunction and disease phenotype of those neurodegenerative disorders characterized by network overexcitation.


Assuntos
Doença de Huntington , Camundongos , Animais , Camundongos Transgênicos , Doença de Huntington/patologia , Astrócitos/patologia , Sinapses/fisiologia , Corpo Estriado/patologia , Modelos Animais de Doenças
7.
Proc Natl Acad Sci U S A ; 120(14): e2217066120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989298

RESUMO

Viruses form extensive interfaces with host proteins to modulate the biology of the infected cell, frequently via multifunctional viral proteins. These proteins are conventionally considered as assemblies of independent functional modules, where the presence or absence of modules determines the overall composite phenotype. However, this model cannot account for functions observed in specific viral proteins. For example, rabies virus (RABV) P3 protein is a truncated form of the pathogenicity factor P protein, but displays a unique phenotype with functions not seen in longer isoforms, indicating that changes beyond the simple complement of functional modules define the functions of P3. Here, we report structural and cellular analyses of P3 derived from the pathogenic RABV strain Nishigahara (Nish) and an attenuated derivative strain (Ni-CE). We identify a network of intraprotomer interactions involving the globular C-terminal domain and intrinsically disordered regions (IDRs) of the N-terminal region that characterize the fully functional Nish P3 to fluctuate between open and closed states, whereas the defective Ni-CE P3 is predominantly open. This conformational difference appears to be due to the single mutation N226H in Ni-CE P3. We find that Nish P3, but not Ni-CE or N226H P3, undergoes liquid-liquid phase separation and this property correlates with the capacity of P3 to interact with different cellular membrane-less organelles, including those associated with immune evasion and pathogenesis. Our analyses propose that discrete functions of a critical multifunctional viral protein depend on the conformational arrangements of distant individual domains and IDRs, in addition to their independent functions.


Assuntos
Vírus da Raiva , Raiva , Humanos , Vírus da Raiva/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Isoformas de Proteínas/metabolismo
8.
Traffic ; 24(3): 146-157, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36479968

RESUMO

The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.


Assuntos
Vírus Hendra , Lyssavirus , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Ribossômico , Lyssavirus/genética , Lyssavirus/metabolismo , Ribossomos/metabolismo , Vírus Hendra/genética , Vírus Hendra/metabolismo , Fatores de Transcrição
9.
Traffic ; 24(3): 114-130, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35146839

RESUMO

The cytoskeleton is an essential component of the cell and it is involved in multiple physiological functions, including intracellular organization and transport. It is composed of three main families of proteinaceous filaments; microtubules, actin filaments and intermediate filaments and their accessory proteins. Motor proteins, which comprise the dynein, kinesin and myosin superfamilies, are a remarkable group of accessory proteins that mainly mediate the intracellular transport of cargoes along with the cytoskeleton. Like other cellular structures and pathways, viruses can exploit the cytoskeleton to promote different steps of their life cycle through associations with motor proteins. The complexity of the cytoskeleton and the differences among viruses, however, has led to a wide diversity of interactions, which in most cases remain poorly understood. Unveiling the details of these interactions is necessary not only for a better comprehension of specific infections, but may also reveal new potential drug targets to fight dreadful diseases such as rabies disease and acquired immunodeficiency syndrome (AIDS). In this review, we describe a few examples of the mechanisms that some human viruses, that is, rabies virus, adenovirus, herpes simplex virus, human immunodeficiency virus, influenza A virus and papillomavirus, have developed to hijack dyneins, kinesins and myosins.


Assuntos
Proteínas do Citoesqueleto , Vírus , Humanos , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Vírus/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Cinesinas/metabolismo , Dineínas/metabolismo
10.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38503494

RESUMO

The subiculum (SUB), a hippocampal formation structure, is among the earliest brain regions impacted in Alzheimer's disease (AD). Toward a better understanding of AD circuit-based mechanisms, we mapped synaptic circuit inputs to dorsal SUB using monosynaptic rabies tracing in the 5xFAD mouse model by quantitatively comparing the circuit connectivity of SUB excitatory neurons in age-matched controls and 5xFAD mice at different ages for both sexes. Input-mapped brain regions include the hippocampal subregions (CA1, CA2, CA3), medial septum and diagonal band, retrosplenial cortex, SUB, postsubiculum (postSUB), visual cortex, auditory cortex, somatosensory cortex, entorhinal cortex, thalamus, perirhinal cortex (Prh), ectorhinal cortex, and temporal association cortex. We find sex- and age-dependent changes in connectivity strengths and patterns of SUB presynaptic inputs from hippocampal subregions and other brain regions in 5xFAD mice compared with control mice. Significant sex differences for SUB inputs are found in 5xFAD mice for CA1, CA2, CA3, postSUB, Prh, lateral entorhinal cortex, and medial entorhinal cortex: all of these areas are critical for learning and memory. Notably, we find significant changes at different ages for visual cortical inputs to SUB. While the visual function is not ordinarily considered defective in AD, these specific connectivity changes reflect that altered visual circuitry contributes to learning and memory deficits. Our work provides new insights into SUB-directed neural circuit mechanisms during AD progression and supports the idea that neural circuit disruptions are a prominent feature of AD.


Assuntos
Doença de Alzheimer , Raiva , Camundongos , Feminino , Masculino , Animais , Hipocampo , Córtex Entorrinal/fisiologia , Neurônios/fisiologia
11.
J Virol ; 98(7): e0060624, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38809020

RESUMO

Rabies virus (RABV) is highly lethal and triggers severe neurological symptoms. The neuropathogenic mechanism remains poorly understood. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a Rho-GTPase that is involved in actin remodeling and has been reported to be closely associated with neuronal dysfunction. In this study, by means of a combination of pharmacological inhibitors, small interfering RNA, and specific dominant-negatives, we characterize the crucial roles of dynamic actin and the regulatory function of Rac1 in RABV infection, dominantly in the viral entry phase. The data show that the RABV phosphoprotein interacts with Rac1. RABV phosphoprotein suppress Rac1 activity and impedes downstream Pak1-Limk1-Cofilin1 signaling, leading to the disruption of F-actin-based structure formation. In early viral infection, the EGFR-Rac1-signaling pathway undergoes a biphasic change, which is first upregulated and subsequently downregulated, corresponding to the RABV entry-induced remodeling pattern of F-actin. Taken together, our findings demonstrate for the first time the role played by the Rac1 signaling pathway in RABV infection and may provide a clue for an explanation for the etiology of rabies neurological pathogenesis.IMPORTANCEThough neuronal dysfunction is predominant in fatal rabies, the detailed mechanism by which rabies virus (RABV) infection causes neurological symptoms remains in question. The actin cytoskeleton is involved in numerous viruses infection and plays a crucial role in maintaining neurological function. The cytoskeletal disruption is closely associated with abnormal nervous symptoms and induces neurogenic diseases. In this study, we show that RABV infection led to the rearrangement of the cytoskeleton as well as the biphasic kinetics of the Rac1 signal transduction. These results help elucidate the mechanism that causes the aberrant neuronal processes by RABV infection and may shed light on therapeutic development aimed at ameliorating neurological disorders.


Assuntos
Citoesqueleto de Actina , Actinas , Vírus da Raiva , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Humanos , Citoesqueleto de Actina/metabolismo , Animais , Vírus da Raiva/fisiologia , Actinas/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Quinases Lim/metabolismo , Quinases Lim/genética , Internalização do Vírus , Raiva/metabolismo , Raiva/virologia , Linhagem Celular , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fatores de Despolimerização de Actina/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(22): e2203677119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609197

RESUMO

Cortical circuit tracing using modified rabies virus can identify input neurons making direct monosynaptic connections onto neurons of interest. However, challenges remain in our ability to establish the cell type identity of rabies-labeled input neurons. While transcriptomics may offer an avenue to characterize inputs, the extent of rabies-induced transcriptional changes in distinct neuronal cell types remains unclear, and whether these changes preclude characterization of rabies-infected neurons according to established transcriptomic cell types is unknown. We used single-nucleus RNA sequencing to survey the gene expression profiles of rabies-infected neurons and assessed their correspondence with established transcriptomic cell types. We demonstrated that when using transcriptome-wide RNA profiles, rabies-infected cortical neurons can be transcriptomically characterized despite global and cell-type-specific rabies-induced transcriptional changes. Notably, we found differential modulation of neuronal marker gene expression, suggesting that caution should be taken when attempting to characterize rabies-infected cells with single genes or small gene sets.


Assuntos
Impressões Digitais de DNA , Neurônios , Vírus da Raiva , Raiva , Humanos , Neurônios/fisiologia , Neurônios/virologia , Raiva/genética , Vírus da Raiva/genética , Análise de Sequência de RNA , Transcrição Gênica , Transcriptoma/genética
13.
Clin Infect Dis ; 78(6): 1748-1756, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38478634

RESUMO

BACKGROUND: A next-generation Vero cell rabies vaccine (PVRV-NG2) was developed using the same Pitman-Moore strain as in the licensed purified Vero cell vaccine (PVRV; Verorab) and the human diploid cell vaccine (HDCV; Imovax Rabies®). METHODS: This dual-center, modified, double-blind, phase 3 study evaluated the immunogenic non-inferiority and safety of PVRV-NG2 with and without concomitant intramuscular human rabies immunoglobulin (HRIG) versus PVRV + HRIG and HDCV + HRIG in a simulated post-exposure prophylaxis (PEP) regimen. Healthy adults ≥18 years old (N = 640) were randomized 3:1:1:1 to PVRV-NG2 + HRIG, PVRV + HRIG, HDCV + HRIG, or PVRV-NG2 alone (administered as single vaccine injections on days [D] 0, D3, D7, D14, and 28, with HRIG on D0 in applicable groups). Rabies virus neutralizing antibodies (RVNA) titers were assessed pre- (D0) and post-vaccination (D14, D28, and D42) using the rapid fluorescent focus inhibition test. Non-inferiority, based on the proportion of participants achieving RVNA titers ≥0.5 IU/mL (primary objective), was demonstrated if the lower limit of the 95% CI of the difference in proportions between PVRV-NG2 + HRIG and PVRV + HRIG/HDCV + HRIG was >-5% at D28. Safety was assessed up to 6 months after the last injection. RESULTS: Non-inferiority of PVRV-NG2 + HRIG compared with PVRV + HRIG and HDCV + HRIG was demonstrated. Nearly all participants (99.6%, PVRV-NG2 + HRIG; 100%, PVRV + HRIG; 98.7%, HDCV + HRIG; 100%, PVRV-NG2 alone) achieved RVNA titers ≥0.5 IU/mL at D28. Geometric mean titers were similar between groups with concomitant HRIG administration at all time points. Safety profiles were similar between PVRV-NG2 and comparator vaccines. CONCLUSIONS: In a simulated PEP setting, PVRV-NG2 + HRIG showed comparable immunogenicity and safety to current standard-of-care vaccines. CLINICAL TRIALS REGISTRATION: NCT03965962.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Profilaxia Pós-Exposição , Vacina Antirrábica , Vírus da Raiva , Raiva , Humanos , Vacina Antirrábica/imunologia , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/efeitos adversos , Adulto , Masculino , Raiva/prevenção & controle , Profilaxia Pós-Exposição/métodos , Feminino , Anticorpos Antivirais/sangue , Método Duplo-Cego , Pessoa de Meia-Idade , Adulto Jovem , Células Vero , Anticorpos Neutralizantes/sangue , França , Vírus da Raiva/imunologia , Animais , Chlorocebus aethiops , Adolescente , Imunogenicidade da Vacina , Voluntários Saudáveis
14.
Emerg Infect Dis ; 30(8): 1642-1650, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043404

RESUMO

Rabies, a viral disease that causes lethal encephalitis, kills ≈59,000 persons worldwide annually, despite availability of effective countermeasures. Rabies is endemic in Kenya and is mainly transmitted to humans through bites from rabid domestic dogs. We analyzed 164 brain stems collected from rabid animals in western and eastern Kenya and evaluated the phylogenetic relationships of rabies virus (RABV) from the 2 regions. We also analyzed RABV genomes for potential amino acid changes in the vaccine antigenic sites of nucleoprotein and glycoprotein compared with RABV vaccine strains commonly used in Kenya. We found that RABV genomes from eastern Kenya overwhelmingly clustered with the Africa-1b subclade and RABV from western Kenya clustered with Africa-1a. We noted minimal amino acid variances between the wild and vaccine virus strains. These data confirm minimal viral migration between the 2 regions and that rabies endemicity is the result of limited vaccine coverage rather than limited efficacy.


Assuntos
Genoma Viral , Filogenia , Vacina Antirrábica , Vírus da Raiva , Raiva , Vírus da Raiva/genética , Vírus da Raiva/imunologia , Vírus da Raiva/classificação , Animais , Quênia/epidemiologia , Raiva/epidemiologia , Raiva/veterinária , Raiva/virologia , Raiva/prevenção & controle , Vacina Antirrábica/imunologia , Vacina Antirrábica/administração & dosagem , Cães , Alinhamento de Sequência , Humanos , Filogeografia
15.
Emerg Infect Dis ; 30(5): 1039-1042, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666690

RESUMO

In Latin America, rabies virus has persisted in a cycle between Desmodus rotundus vampire bats and cattle, potentially enhanced by deforestation. We modeled bovine rabies virus outbreaks in Costa Rica relative to land-use indicators and found spatial-temporal relationships among rabies virus outbreaks with deforestation as a predictor.


Assuntos
Doenças dos Bovinos , Surtos de Doenças , Vírus da Raiva , Raiva , Animais , Costa Rica/epidemiologia , Raiva/epidemiologia , Raiva/veterinária , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Conservação dos Recursos Naturais , Quirópteros/virologia , História do Século XXI
16.
J Virol ; 97(2): e0161222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779762

RESUMO

Rabies virus (RABV) is a prototypical neurotropic virus that causes rabies in human and animals with an almost 100% mortality rate. Once RABV enters the central nervous system, no treatment is proven to prevent death. RABV glycoprotein (G) interacts with cell surface receptors and then enters cells via clathrin-mediated endocytosis (CME); however, the key host factors involved remain largely unknown. Here, we identified transferrin receptor 1 (TfR1), a classic receptor that undergoes CME, as an entry factor for RABV. TfR1 interacts with RABV G and is involved in the endocytosis of RABV. An antibody against TfR1 or the TfR1 ectodomain soluble protein significantly blocked RABV infection in HEK293 cells, N2a cells, and mouse primary neuronal cells. We further found that the endocytosis of TfR1 is coupled with the endocytosis of RABV and that TfR1 and RABV are transported to early and late endosomes. Our results suggest that RABV hijacks the transport pathway of TfR1 for entry, thereby deepening our understanding of the entry mechanism of RABV. IMPORTANCE For most viruses, cell entry involves engagement with many distinct plasma membrane components, each of which is essential. After binding to its specific receptor(s), rabies virus (RABV) enters host cells through the process of clathrin-mediated endocytosis. However, whether the receptor-dependent clathrin-mediated endocytosis of RABV requires other plasma membrane components remain largely unknown. Here, we demonstrate that transferrin receptor 1 (TfR1) is a functional entry factor for RABV infection. The endocytosis of RABV is coupled with the endocytosis of TfR1. Our results indicate that RABV hijacks the transport pathway of TfR1 for entry, which deepens our understanding of the entry mechanism of RABV.


Assuntos
Vírus da Raiva , Raiva , Receptores da Transferrina , Internalização do Vírus , Animais , Humanos , Camundongos , Clatrina/metabolismo , Células HEK293 , Raiva/metabolismo , Vírus da Raiva/metabolismo , Receptores da Transferrina/metabolismo , Linhagem Celular , Endocitose
17.
J Virol ; 97(2): e0161122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779763

RESUMO

Identification of bona fide functional receptors and elucidation of the mechanism of receptor-mediated virus entry are important to reveal targets for developing therapeutics against rabies virus (RABV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our previous studies suggest that metabotropic glutamate receptor subtype 2 (mGluR2) functions as an entry receptor for RABV in vitro, and is an important internalization factor for SARS-CoV-2 in vitro and in vivo. Here, we demonstrate that mGluR2 facilitates RABV internalization in vitro and infection in vivo. We found that transferrin receptor 1 (TfR1) interacts with mGluR2 and internalizes with mGluR2 and RABV in the same clathrin-coated pit. Knockdown of TfR1 blocks agonist-triggered internalization of mGluR2. Importantly, TfR1 also interacts with the SARS-CoV-2 spike protein and is important for SARS-CoV-2 internalization. Our findings identify a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry, and reveal TfR1 as a potential target for therapeutics against RABV and SARS-CoV-2. IMPORTANCE We previously found that metabotropic glutamate receptor subtype 2 (mGluR2) is an entry receptor for RABV in vitro, and an important internalization factor for SARS-CoV-2 in vitro and in vivo. However, whether mGluR2 is required for RABV infection in vivo was unknown. In addition, how mGluR2 mediates the internalization of RABV and SARS-CoV-2 needed to be resolved. Here, we found that mGluR2 gene knockout mice survived a lethal challenge with RABV. To our knowledge, mGluR2 is the first host factor to be definitively shown to play an important role in RABV street virus infection in vivo. We further found that transferrin receptor protein 1 (TfR1) directly interacts and cooperates with mGluR2 to regulate the endocytosis of RABV and SARS-CoV-2. Our study identifies a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry and opens a new door for the development of therapeutics against RABV and SARS-CoV-2.


Assuntos
COVID-19 , Vírus da Raiva , Receptores de Glutamato Metabotrópico , Receptores da Transferrina , SARS-CoV-2 , Internalização do Vírus , Animais , Humanos , Camundongos , Raiva/metabolismo , Vírus da Raiva/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores da Transferrina/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo
18.
J Virol ; 97(7): e0065623, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338411

RESUMO

Mounting evidence suggests that gut microbial composition and its metabolites, including short-chain fatty acids (SCFAs), have beneficial effects in regulating host immunogenicity to vaccines. However, it remains unknown whether and how SCFAs improve the immunogenicity of the rabies vaccine. In this study, we investigated the effect of SCFAs on the immune response to rabies vaccine in vancomycin (Vanco)-treated mice and found that oral gavage with butyrate-producing bacteria (C. butyricum) and butyrate supplementation elevated RABV-specific IgM, IgG, and virus-neutralizing antibodies (VNAs) in Vanco-treated mice. Supplementation with butyrate expanded antigen-specific CD4+ T cells and IFN-γ-secreting cells, augmented germinal center (GC) B cell recruitment, promoted plasma cells (PCs) and RABV-specific antibody-secreting cells (ASCs) generation in Vanco-treated mice. Mechanistically, butyrate enhanced mitochondrial function and activated the Akt-mTOR pathway in primary B cells isolated from Vanco-treated mice, ultimately promoting B lymphocyte-induced maturation protein-1 (Blimp-1) expression and CD138+ PCs generation. These results highlight the important role of butyrate in alleviating Vanco-caused humoral immunity attenuation in rabies-vaccinated mice and maintaining host immune homeostasis. IMPORTANCE The gut microbiome plays many crucial roles in the maintenance of immune homeostasis. Alteration of the gut microbiome and metabolites has been shown to impact vaccine efficacy. SCFAs can act as an energy source for B-cells, thereby promoting both mucosal and systemic immunity in the host by inhibiting HDACs and activation of GPR receptors. This study investigates the impact of orally administered butyrate, an SCFA, on the immunogenicity of rabies vaccines in Vanco-treated mice. The results showed that butyrate ameliorated humoral immunity by facilitating the generation of plasma cells via the Akt-mTOR in Vanco-treated mice. These findings unveil the impact of SCFAs on the immune response of the rabies vaccine and confirm the crucial role of butyrate in regulating immunogenicity to rabies vaccines in antibiotic-treated mice. This study provides a fresh insight into the relationship of microbial metabolites and rabies vaccination.


Assuntos
Vacina Antirrábica , Raiva , Camundongos , Animais , Raiva/prevenção & controle , Plasmócitos , Imunidade Humoral , Vancomicina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Anticorpos Antivirais , Serina-Treonina Quinases TOR , Ácidos Graxos Voláteis , Butiratos
19.
J Virol ; 97(5): e0043823, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37042780

RESUMO

Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host endosomal sorting complex required for transport (ESCRT) machinery, which contributes to the physiological functions of membrane modulation and abscission. Bullet-shaped viral particles are unique morphological characteristics of rhabdoviruses; however, the involvement of host factors in rhabdovirus infection and, specifically, the molecular mechanisms underlying virion formation are not fully understood. In the present study, we used a small interfering RNA (siRNA) screening approach and found that the ESCRT-I component TSG101 contributes to the propagation of rabies virus (RABV). We demonstrated that the matrix protein (M) of RABV interacts with TSG101 via the late domain containing the PY and YL motifs, which are conserved in various viral proteins. Loss of the YL motif in the RABV M or the downregulation of host TSG101 expression resulted in the intracellular aggregation of viral proteins and abnormal virus particle formation, indicating a defect in the RABV assembly and budding processes. These results indicate that the interaction of the RABV M and TSG101 is pivotal for not only the efficient budding of progeny RABV from infected cells but also for the bullet-shaped virion morphology. IMPORTANCE Enveloped viruses bud from cells with the host lipid bilayer. Generally, the membrane modulation and abscission are mediated by host ESCRT complexes. Some enveloped viruses utilize their late (L-) domain to interact with ESCRTs, which promotes viral budding. Rhabdoviruses form characteristic bullet-shaped enveloped virions, but the underlying molecular mechanisms involved remain elusive. Here, we showed that TSG101, one of the ESCRT components, supports rabies virus (RABV) budding and proliferation. TSG101 interacted with RABV matrix protein via the L-domain, and the absence of this interaction resulted in intracellular virion accumulation and distortion of the morphology of progeny virions. Our study reveals that virion formation of RABV is highly regulated by TSG101 and the virus matrix protein.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Vírus da Raiva , Raiva , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Morfogênese , Raiva/metabolismo , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/metabolismo , Liberação de Vírus , Linhagem Celular , Animais
20.
BMC Neurosci ; 25(1): 9, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383317

RESUMO

BACKGROUND: A pseudotyped modified rabies virus lacking the rabies glycoprotein (G-protein), which is crucial for transsynaptic spread, can be used for monosynaptic retrograde tracing. By coupling the pseudotyped virus with transgene expression of the G-protein and the avian leukosis and sarcoma virus subgroup A receptor (TVA), which is necessary for cell entry of the virus, researchers can investigate specific neuronal populations. Responder mouse lines, like the RΦGT mouse line, carry the genes encoding the G-protein and TVA under Cre-dependent expression. These mouse lines are valuable tools because they reduce the number of viral injections needed compared to when using helper viruses. Since RΦGT mice do not express Cre themselves, introducing the pseudotyped rabies virus into their brain should not result in viral cell entry or spread. RESULTS: We present a straightforward flowchart for adequate controls in tracing experiments, which we employed to demonstrate Cre-independent expression of TVA in RΦGT mice. CONCLUSIONS: Our observations revealed TVA leakage, indicating that RΦGT mice should be used with caution for transgene expression of TVA. Inaccurate tracing outcomes may occur if TVA is expressed in the absence of Cre since background leakage leads to nonspecific cell entry. Moreover, conducting appropriate control experiments can identify the source of potential caveats in virus-based neuronal tracing experiments.


Assuntos
Proteínas Aviárias , Vírus da Raiva , Camundongos , Animais , Design de Software , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Aviárias/metabolismo , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Proteínas de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa