Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Transl Med ; 22(1): 288, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493128

RESUMO

OBJECTIVE: Non-small cell lung cancer (NSCLC) often exhibits resistance to radiotherapy, posing significant treatment challenges. This study investigates the role of SMAD3 in NSCLC, focusing on its potential in influencing radiosensitivity via the ITGA6/PI3K/Akt pathway. METHODS: The study utilized gene expression data from the GEO database to identify differentially expressed genes related to radiotherapy resistance in NSCLC. Using the GSE37745 dataset, prognostic genes were identified through Cox regression and survival analysis. Functional roles of target genes were explored using Gene Set Enrichment Analysis (GSEA) and co-expression analyses. Gene promoter methylation levels were assessed using databases like UALCAN, DNMIVD, and UCSC Xena, while the TISCH database provided insights into the correlation between target genes and CAFs. Experiments included RT-qPCR, Western blot, and immunohistochemistry on NSCLC patient samples, in vitro studies on isolated CAFs cells, and in vivo nude mouse tumor models. RESULTS: Fifteen key genes associated with radiotherapy resistance in NSCLC cells were identified. SMAD3 was recognized as an independent prognostic factor for NSCLC, linked to poor patient outcomes. High expression of SMAD3 was correlated with low DNA methylation in its promoter region and was enriched in CAFs. In vitro and in vivo experiments confirmed that SMAD3 promotes radiotherapy resistance by activating the ITGA6/PI3K/Akt signaling pathway. CONCLUSION: High expression of SMAD3 in NSCLC tissues, cells, and CAFs is closely associated with poor prognosis and increased radiotherapy resistance. SMAD3 is likely to enhance radiotherapy resistance in NSCLC cells by activating the ITGA6/PI3K/Akt signaling pathway.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Metilação de DNA/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Tolerância a Radiação/genética , Regiões Promotoras Genéticas/genética , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Proteína Smad3/genética , Proteína Smad3/metabolismo
2.
Breast Cancer Res ; 25(1): 38, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029374

RESUMO

BACKGROUND: Radiotherapy is widely applied in breast cancer treatment, while radiotherapy resistance is inevitable. TGF-ß1 has been considered to be an endogenous factor for the development of radiotherapy resistance. As a large portion of TGF-ß1 is secreted in an extracellular vesicles-associated form (TGF-ß1EV), particularly in radiated tumors. Thus, the understanding of the regulation mechanisms and the immunosuppressive functions of TGF-ß1EV will pave a way for overcoming the radiotherapy resistance in cancer treatment. METHODS: The superoxide-Zinc-PKC-ζ-TGF-ß1EV pathway in breast cancer cells was identified through sequence alignments of different PKC isoforms, speculation and experimental confirmation. A series of functional and molecular studies were performed by quantitative real-time PCR, western blot and flow cytometry analysis. Mice survival and tumor growth were recorded. Student's t test or two-way ANOVA with correction was used for comparisons of groups. RESULTS: The radiotherapy resulted in an increased expression of the intratumoral TGF-ß1 and an enhanced infiltration of the Tregs in the breast cancer tissues. The intratumoral TGF-ß1 was found mainly in the extracellular vesicles associated form both in the murine breast cancer model and in the human lung cancer tissues. Furthermore, radiation induced more TGF-ß1EV secretion and higher percentage of Tregs by promoting the expression and phosphorylation of protein kinase C zeta (PKC-ζ). Importantly, we found that naringenin rather than 1D11 significantly improved radiotherapy efficacy with less side effects. Distinct from TGF-ß1 neutralizing antibody 1D11, the mechanism of naringenin was to downregulate the radiation-activated superoxide-Zinc-PKC-ζ-TGF-ß1EV pathway. CONCLUSIONS: The superoxide-zinc-PKC-ζ-TGF-ß1EV release pathway was elucidated to induce the accumulation of Tregs, resulting in radiotherapy resistance in the TME. Therefore, targeting PKC-ζ to counteract TGF-ß1EV function could represent a novel strategy to overcome radiotherapy resistance in the treatment of breast cancer or other cancers. TRIAL REGISTRATION: The using of patient tissues with malignant Non-Small Cell Lung Cancer (NSCLC) was approved by the ethics committees at Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (NCC2022C-702, from June 8th, 2022).


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína Quinase C , Fator de Crescimento Transformador beta1 , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Fosforilação , Superóxidos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo
3.
Mol Cancer ; 22(1): 91, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264402

RESUMO

Cancer therapy resistance is the main cause of cancer treatment failure. The mechanism of therapy resistance is a hot topic in epigenetics. As one of the most common RNA modifications, N6-methyladenosine (m6A) is involved in various processes of RNA metabolism, such as stability, splicing, transcription, translation, and degradation. A large number of studies have shown that m6A RNA methylation regulates the proliferation and invasion of cancer cells, but the role of m6A in cancer therapy resistance is unclear. In this review, we summarized the research progress related to the role of m6A in regulating therapy resistance in cancers.


Assuntos
Neoplasias , Humanos , Metilação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Splicing de RNA , Epigênese Genética , RNA/metabolismo
4.
J Transl Med ; 21(1): 134, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814284

RESUMO

BACKGROUND: Radiotherapy resistance is the main cause of treatment failure in nasopharyngeal carcinoma (NPC), which leads to poor prognosis. It is urgent to elucidate the molecular mechanisms underlying radiotherapy resistance. METHODS: RNA-seq analysis was applied to five paired progressive disease (PD) and complete response (CR) NPC tissues. Loss-and gain-of-function assays were used for oncogenic function of FLI1 both in vitro and in vivo. RNA-seq analysis, ChIP assays and dual luciferase reporter assays were performed to explore the interaction between FLI1 and TIE1. Gene expression with clinical information from tissue microarray of NPC were analyzed for associations between FLI1/TIE1 expression and NPC prognosis. RESULTS: FLI1 is a potential radiosensitivity regulator which was dramatically overexpressed in the patients with PD to radiotherapy compared to those with CR. FLI1 induced radiotherapy resistance and enhanced the ability of DNA damage repair in vitro, and promoted radiotherapy resistance in vivo. Mechanistic investigations showed that FLI1 upregulated the transcription of TIE1 by binding to its promoter, thus activated the PI3K/AKT signaling pathway. A decrease in TIE1 expression restored radiosensitivity of NPC cells. Furthermore, NPC patients with high levels of FLI1 and TIE1 were correlated with poor prognosis. CONCLUSION: Our study has revealed that FLI1 regulates radiotherapy resistance of NPC through TIE1-mediated PI3K/AKT signaling pathway, suggesting that targeting the FLI1/TIE1 signaling pathway could be a potential therapeutic strategy to enhance the efficacy of radiotherapy in NPC.


Assuntos
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteína Proto-Oncogênica c-fli-1 , Tolerância a Radiação , Receptor de TIE-1 , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína Proto-Oncogênica c-fli-1/genética , Tolerância a Radiação/genética , Receptor de TIE-1/genética
5.
Cancer Cell Int ; 23(1): 231, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798649

RESUMO

OBJECTIVES: RAD51 overexpression has been reported to serve as a marker of poor prognosis in several cancer types. This study aimed to survey the role of RAD51 in oral squamous cell carcinoma and whether RAD51 could be a potential therapeutic target. MATERIALS AND METHODS: RAD51 protein expression, assessed by immunohistochemical staining, was used to examine associations with survival and clinicopathological profiles of patients with oral squamous cell carcinoma. Lentiviral infection was used to knock down or overexpress RAD51. The influence of RAD51 on the biological profile of oral cancer cells was evaluated. Cell viability and apoptosis after treatment with chemotherapeutic agents and irradiation were analyzed. Co-treatment with chemotherapeutic agents and B02, a RAD51 inhibitor, was used to examine additional cytotoxic effects. RESULTS: Oral squamous cell carcinoma patients with higher RAD51 expression exhibited worse survival, especially those treated with adjuvant chemotherapy and radiotherapy. RAD51 overexpression promotes resistance to chemotherapy and radiotherapy in oral cancer cells in vitro. Higher tumorsphere formation ability was observed in RAD51 overexpressing oral cancer cells. However, the expression of oral cancer stem cell markers did not change in immunoblotting analysis. Co-treatment with RAD51 inhibitor B02 and cisplatin, compared with cisplatin alone, significantly enhanced cytotoxicity in oral cancer cells. CONCLUSION: RAD51 is a poor prognostic marker for oral squamous cell carcinoma. High RAD51 protein expression associates with resistance to chemotherapy and radiotherapy. Addition of B02 significantly increased the cytotoxicity of cisplatin. These findings suggest that RAD51 protein may function as a treatment target for oral cancer. TRIAL REGISTRATION: Number: KMUHIRB-E(I)-20190009 Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, approved on 20190130, Retrospective registration.

6.
BMC Cancer ; 23(1): 671, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460952

RESUMO

BACKGROUND: Previous studies have shown that Family with sequence similarity 134 member B (FAM134B) was involved in the occurrence and development of malignancy, however, the function and molecular mechanism of FAM134B in Hepatocellular Carcinoma (HCC) radiotherapy resistance remain unclear. Therefore, it may clinical effective to clarify the molecular mechanism and identify novel biomarker to overcome radiotherapy resistance in HCC. METHODS: The protein and mRNA expression of FAM134B were determined using Real-time PCR and Western blot, respectively. IHC assay was performed to investigate the association between FAM134B expression and the clinicopathological characteristics of 132 HCC patients. Functional assays, such as in situ model, colon formation, FACS, and Tunel assay were used to determine the oncogenic role of FAM134B in human HCC progression. Furthermore, western blotting and luciferase assay were used to determine the mechanism of FAM134B promotes radiation-sensitive in HCC cells. RESULTS: We noted that FAM134B was downregulated in HCC, which was correlated with the radiation resistance in patients with HCC. Overexpression of FAM134B contribute to radiation sensitive in HCC; however, inhibition of FAM134B confers HCC cell lines to radiation resistance both in vitro and in vivo. Moreover, we found that FAM134B interacts with FMS related receptor tyrosine kinase 3 (FLT3) and downregulation of FAM134B activated JAK/Stat3 signaling pathway. Importantly, pharmacological inhibition of JAK/Stat3 signaling pathway significantly counteracted downregulation of FAM134B-induced radiation resistance and enhanced radiation therapeutic efficacy in HCC. CONCLUSIONS: Our findings suggest that FAM134B may be a potential therapeutic biomarker for the treatment of HCC patients with radiotherapy tolerance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/metabolismo , Transdução de Sinais
7.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502547

RESUMO

Cancer stem cells (CSCs) can be induced from differentiated cancer cells in the tumor microenvironment or in response to treatments and exhibit chemo- and radioresistance, leading to tumor recurrence and metastasis. We previously reported that triple negative breast cancer (TNBC) cells with acquired radioresistance exhibited more aggressive features due to an increased CSC population. Therefore, here, we isolated CSCs from radiotherapy-resistant (RT-R)-TNBC cells and investigated the effects of these CSCs on tumor progression and NK cell-mediated cytotoxicity. Compared to MDA-MB-231 and RT-R-MDA-MB-231 cells, CD24-/low/CD44+ cells isolated from RT-R-MDA-MB-231 cells showed increased proliferation, migration and invasion abilities, and induced expression of tumor progression-related molecules. Moreover, similar to MDA-MB-231 cells, CD24-/low/CD44+ cells recruited NK cells but suppressed NK cell cytotoxicity by regulating ligands for NK cell activation. In an in vivo model, CD24-/low/CD44+ cell-injected mice showed enhanced tumor progression and lung metastasis via upregulation of tumor progression-related molecules and altered host immune responses. Specifically, NK cells were recruited into the peritumoral area tumor but lost their cytotoxicity due to the altered expression of activating and inhibitory ligands on tumors. These results suggest that CSCs may cause tumor evasion of immune cells, resulting in tumor progression.


Assuntos
Neoplasias da Mama/imunologia , Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/imunologia , Células-Tronco Neoplásicas/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Antígeno CD24/imunologia , Antígeno CD24/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/imunologia , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/efeitos da radiação , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Receptores de Hialuronatos/imunologia , Receptores de Hialuronatos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Radioterapia/métodos
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(6): 583-590, 2021 Jun 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34275926

RESUMO

OBJECTIVES: Long non-coding RNA (LncRNA) is an important transcriptional and post-transcriptional regulatory molecule in the body. In recent years, relationship between LncRNA and malignant phenotype of tumor cells has been revealed gradually. This study aims to investigate the expression characteristics of pit-oct-unc class 3 homeobox 3 related long non-coding RNA (Linc-POU3F3) in esophageal cancer and its relationship with radiation resistance (IR) as well as the expressions of cancer stem cell (CSC) markers in esophageal cancer cells. METHODS: The expression characteristics and potential interaction molecules of Linc-POU3F3 in esophageal cancer were collected from the public database via bioinformatics retrieval. Forty-two pair samples of esophageal cancer tissues and corresponding adjacent tissues were collected. Human normal esophageal epithelial cells (HEEC) and human esophageal cancer cell lines (ECA109, TE-1, TE-2, TE-13) were cultured. Real-time quantitative PCR (qPCR) was used to detect the expression level of Linc-POU3F3 in clinical tissues and cells. The formation of TE-13 IR cell line induced by different doses of radiation served as IR group cells, and the same condition treated with 0 Gy dose was set as control group (control) cells. Meanwhile, we used cell transfection technology to construct random interference sequence (siControl) cells and interference (siLinc-POU3F3) cells. In ECA109 cells, we transfected blank and over expressed Linc-POU3F3 plasmids as vector and over-expressed group (oeLinc-POU3F3). The mRNA and protein expressions of CD44, CD133 and CD90 were detected by qPCR and Western blotting, respectively. MTS [3-(4,5-dimenthylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] was used to detect the cell viability under different radiation doses, and the resistance of IR cells was verified by clone formation experiment. RESULTS: The expression of Linc-POU3F3 was correlated with the tumor progression and poor prognosis of esophageal cancer. The level of Linc-POU3F3 mRNA expression was significantly higher in esophageal cancer tissues and cell lines than that in normal adjacent tissues and cell lines (all P<0.01). The expressions of Linc-POU3F3 mRNA and protein expressions of CD44, CD133, and CD90 in IR cells were significantly higher than those in control cells (all P<0.01). The expression of Linc-POU3F3 in siLinc-POU3F3 cell was significantly lower than that in the siControl cells (P<0.01), and the inhibition rate was 87.21%. The mRNA and protein expressions of CD44, CD133, and CD90 in the siLinc-POU3F3 cells were significantly lower than those in the siControl cells (all P<0.05). The expressions of linc-POU3F3, CD44, CD133, and CD90 mRNA and protein in the oeLinc-POU3F3 cells were significantly higher than those in the vector cells. The relative activity and clone formation ability in the IR cells were significantly higher than those in the control cells at 2, 4, and 8 Gy doses (all P<0.01). The relative activity in the siLinc-POU3F3 cells was significantly lower than that in the siControl cells at 4 and 8 Gy doses (P<0.01). The relative activity in the oeLinc-POU3F3 cells was significantly higher than that in the vector cells at 4 and 8 Gy doses (P<0.01). CONCLUSIONS: Linc-POU3F3 is up-regulated in esophageal cancer and can promote IR and the expression of CSC markers in esophageal cancer cells.


Assuntos
Neoplasias Esofágicas , RNA Longo não Codificante , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , RNA Longo não Codificante/genética
9.
Eur Arch Otorhinolaryngol ; 277(10): 2869-2879, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32342199

RESUMO

PURPOSE: This study aimed to investigate the effects of activating transcription factor-5 (ATF5) on nasopharyngeal carcinoma (NPC) cell radioresistance. METHODS: HONE-1 nasopharyngeal carcinoma cells were irradiated by conventional fractionation to generate HONE-1R radiotherapy-resistant cells. Short hairpin RNA (shRNA) expression plasmids targeting the ATF5 gene were constructed and transfected into the HONE-1R cell line. The proliferation assay, colony formation analysis, Transwell Boyden chamber assay and other experimental methods were performed to verify changes in the radiosensitivity and other biological of NPC cells. RESULTS: X-ray irradiation significantly promoted the upregulation of ATF5 protein levels in HONE-1 cells, and the protein expression of ATF5 increased with the dose of X-ray irradiation (p < 0.05). The colony formation rate, cell survival rate and migration ability of HONE-1R cells were significantly higher than those of HONE-1 cells (p < 0.05). Simultaneously, X-ray could also promote the morphology of epithelial-mesenchymal transition (EMT) in HONE-1 cells, inducing a lower expression level of E-cadherin and a higher expression level of N-cadherin in a dose-dependent manner (p < 0.05). Inhibiting ATF5 significantly reduced the colony formation rate, cell survival rate, migration and invasiveness of HONE-1R cells (p < 0.05). Moreover, sensitizing HONE-1R cells to X-ray irradiation significantly upregulated the expression of E-cadherin and downregulated the expression of N-cadherin in these cells (p < 0.05). CONCLUSIONS: ATF5 may be a potential therapeutic target to improve radiosensitivity in NPC.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Fatores Ativadores da Transcrição/genética , Carcinoma/genética , Carcinoma/radioterapia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Fenótipo
10.
J Biomed Sci ; 26(1): 78, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31629410

RESUMO

In many solid tumor types, tumor-associated macrophages (TAMs) are important components of the tumor microenvironment (TME). Moreover, TAMs infiltration is strongly associated with poor survival in solid tumor patients. In this review, we describe the origins of TAMs and their polarization state dictated by the TME. We also specifically focus on the role of TAMs in promoting tumor growth, enhancing cancer cells resistance to chemotherapy and radiotherapy, promoting tumor angiogenesis, inducing tumor migration and invasion and metastasis, activating immunosuppression. In addition, we discuss TAMs can be used as therapeutic targets of solid tumor in clinics. The therapeutic strategies include clearing macrophages and inhibiting the activation of TAMs, promoting macrophage phagocytic activity, limiting monocyte recruitment and other targeted TAMs therapies.


Assuntos
Progressão da Doença , Macrófagos/microbiologia , Neoplasias/imunologia , Animais , Humanos , Camundongos , Neoplasias/etiologia , Neoplasias/fisiopatologia , Neovascularização Patológica , Microambiente Tumoral
11.
Mol Carcinog ; 57(5): 590-597, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29315835

RESUMO

The role of N6 -methyladenosine (m6 A) demethylase fat mass and obesity-associated protein (FTO) in the regulation of chemo-radiotherapy resistance remains largely unknown. Here, we show that the mRNA level of FTO is elevated in cervical squamous cell carcinoma (CSCC) tissues when compared with respective adjacent normal tissues. FTO enhances the chemo-radiotherapy resistance both in vitro and in vivo through regulating expression of ß-catenin by reducing m6 A levels in its mRNA transcripts and in turn increases excision repair cross-complementation group 1 (ERCC1) activity. Clinically, the prognostic value of FTO for overall survival is found to be dependent on ß-catenin expression in human CSCC samples. Taken together, these findings uncover a critical function for FTO and its substrate m6 A in the regulation of chemo-radiotherapy resistance, which may bear potential clinical implications for CSCC treatment.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Carcinoma de Células Escamosas/patologia , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Endonucleases/metabolismo , Tolerância a Radiação , Neoplasias do Colo do Útero/patologia , beta Catenina/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Quimiorradioterapia , Desmetilação , Feminino , Humanos , Camundongos , Transplante de Neoplasias , Prognóstico , Análise de Sobrevida , Regulação para Cima , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
12.
Int J Mol Sci ; 19(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142876

RESUMO

Vismodegib, an inhibitor of the Hedgehog signaling pathway, is an approved drug for monotherapy in locally advanced or metastatic basal cell carcinoma (BCC). Data on combined modality treatment by vismodegib and radiation therapy, however, are rare. In the present study, we examined the radiation sensitizing effects of vismodegib by analyzing viability, cell cycle distribution, cell death, DNA damage repair and clonogenic survival in three-dimensional cultures of a BCC and a head and neck squamous cell carcinoma (HNSCC) cell line. We found that vismodegib decreases expression of the Hedgehog target genes glioma-associated oncogene homologue (GLI1) and the inhibitor of apoptosis protein (IAP) Survivin in a cell line- and irradiation-dependent manner, most pronounced in squamous cell carcinoma (SCC) cells. Furthermore, vismodegib significantly reduced proliferation in both cell lines, while additional irradiation only slightly further impacted on viability. Analyses of cell cycle distribution and cell death induction indicated a G1 arrest in BCC and a G2 arrest in HNSCC cells and an increased fraction of cells in SubG1 phase following combined treatment. Moreover, a significant rise in the number of phosphorylated histone-2AX/p53-binding protein 1 (γH2AX/53BP1) foci in vismodegib- and radiation-treated cells was associated with a significant radiosensitization of both cell lines. In summary, these findings indicate that inhibition of the Hedgehog signaling pathway may increase cellular radiation response in BCC and HNSCC cells.


Assuntos
Anilidas/farmacologia , Antineoplásicos/farmacologia , Raios gama/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/antagonistas & inibidores , Piridinas/farmacologia , Radiossensibilizantes/farmacologia , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Carcinoma Basocelular/terapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Linhagem Celular Tumoral , Terapia Combinada/métodos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Especificidade de Órgãos , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Survivina/genética , Survivina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
13.
J Proteome Res ; 15(12): 4258-4264, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27790916

RESUMO

Hypoxia is thought to promote tumor radio-resistance via effects on gene expression in cancer cells that modulate their metabolism, proliferation, and DNA repair pathways to enhance survival. Here we demonstrate for the first time that under hypoxic condition A431 epithelial carcinoma cells exhibit increased viability when exposed to low-dose γ-irradiation, indicating that radiotherapy can promote tumor cell survival when oxygen supply is limited. When assessed using iTRAQ quantitative proteomics and Western blotting, irradiated tumor cells were observed to significantly up-regulate the expression of calcium-binding proteins CALM1, CALU, and RCN1, suggesting important roles for these mediators in promoting tumor cell survival during hypoxia. Accordingly, shRNA-knockdown of CALM1, CALU, and RCN1 expression reduced hypoxic tumor cell resistance to low-dose radiation and increased apoptosis. These data indicate that γ-irradiation of hypoxic tumor cells induces up-regulation of calcium-binding proteins that promote cancer cell survival and may limit the efficacy of radiotherapy in the clinic.


Assuntos
Proteínas de Ligação ao Cálcio/efeitos da radiação , Raios gama/efeitos adversos , Hipóxia , Neoplasias/radioterapia , Carga Tumoral/efeitos da radiação , Western Blotting , Proteínas de Ligação ao Cálcio/genética , Calmodulina/genética , Calmodulina/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Células Epiteliais/patologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Proteômica/métodos , Regulação para Cima/efeitos da radiação
14.
Adv Sci (Weinh) ; 11(6): e2306190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049204

RESUMO

Radiotherapy (RT) resistance is an enormous challenge in glioblastoma multiforme (GBM) treatment, which is largely associated with DNA repair, poor distribution of reactive radicals in tumors, and limited delivery of radiosensitizers to the tumor sites. Inspired by the aberrant upregulation of RAD51 (a critical protein of DNA repair), scavenger receptor B type 1 (SR-B1), and C-C motif chemokine ligand 5 (CCL5) in GBM patients, a reduction-sensitive nitric oxide (NO) donor conjugate of gemcitabine (RAD51 inhibitor) (NG) is synthesized as radio-sensitizer and a CCL5 peptide-modified bioinspired lipoprotein system of NG (C-LNG) is rationally designed, aiming to preferentially target the tumor sites and overcome the RT resistance. C-LNG can preferentially accumulate at the orthotopic GBM tumor sites with considerable intratumor permeation, responsively release the gemcitabine and NO, and then generate abundant peroxynitrite (ONOO- ) upon X-ray radiation, thereby producing a 99.64% inhibition of tumor growth and a 71.44% survival rate at 120 days in GL261-induced orthotopic GBM tumor model. Therefore, the rationally designed bioinspired lipoprotein of NG provides an essential strategy to target GBM and overcome RT resistance.


Assuntos
Glioblastoma , Oxidiazóis , Radiossensibilizantes , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Glioblastoma/genética , Gencitabina , Linhagem Celular Tumoral , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Lipoproteínas
15.
Front Oncol ; 14: 1388750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993643

RESUMO

Breast cancer stands as the most prevalent malignancy among women, with radiotherapy serving as a primary treatment modality. Despite radiotherapy, a subset of breast cancer patients experiences local recurrence, attributed to the intrinsic resistance of tumors to radiation. Therefore, there is a compelling need to explore novel approaches that can enhance cytotoxic effects through alternative mechanisms. Traditional Chinese Medicine (TCM) and its active constituents exhibit diverse pharmacological actions, including anti-tumor effects, offering extensive possibilities to identify effective components capable of overcoming radiotherapy resistance. This review delineates the mechanisms underlying radiotherapy resistance in breast cancer, along with potential candidate Chinese herbal medicines that may sensitize breast cancer cells to radiotherapy. The exploration of such herbal interventions holds promise for improving therapeutic outcomes in the context of breast cancer radiotherapy resistance.

16.
J Exp Clin Cancer Res ; 43(1): 122, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654320

RESUMO

BACKGROUND: Radiation therapy stands to be one of the primary approaches in the clinical treatment of malignant tumors. Nasopharyngeal Carcinoma, a malignancy predominantly treated with radiation therapy, provides an invaluable model for investigating the mechanisms underlying radiation therapy resistance in cancer. While some reports have suggested the involvement of circRNAs in modulating resistance to radiation therapy, the underpinning mechanisms remain unclear. METHODS: RT-qPCR and in situ hybridization were used to detect the expression level of circCDYL2 in nasopharyngeal carcinoma tissue samples. The effect of circCDYL2 on radiotherapy resistance in nasopharyngeal carcinoma was demonstrated by in vitro and in vivo functional experiments. The HR-GFP reporter assay determined that circCDYL2 affected homologous recombination repair. RNA pull down, RIP, western blotting, IF, and polysome profiling assays were used to verify that circCDYL2 promoted the translation of RAD51 by binding to EIF3D protein. RESULTS: We have identified circCDYL2 as highly expressed in nasopharyngeal carcinoma tissues, and it was closely associated with poor prognosis. In vitro and in vivo experiments demonstrate that circCDYL2 plays a pivotal role in promoting radiotherapy resistance in nasopharyngeal carcinoma. Our investigation unveils a specific mechanism by which circCDYL2, acting as a scaffold molecule, recruits eukaryotic translation initiation factor 3 subunit D protein (EIF3D) to the 5'-UTR of RAD51 mRNA, a crucial component of the DNA damage repair pathway to facilitate the initiation of RAD51 translation and enhance homologous recombination repair capability, and ultimately leads to radiotherapy resistance in nasopharyngeal carcinoma. CONCLUSIONS: These findings establish a novel role of the circCDYL2/EIF3D/RAD51 axis in nasopharyngeal carcinoma radiotherapy resistance. Our work not only sheds light on the underlying molecular mechanism but also highlights the potential of circCDYL2 as a therapeutic sensitization target and a promising prognostic molecular marker for nasopharyngeal carcinoma.


Assuntos
Carcinoma Nasofaríngeo , Rad51 Recombinase , Tolerância a Radiação , Reparo de DNA por Recombinação , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Camundongos , Animais , Tolerância a Radiação/genética , RNA Circular/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Linhagem Celular Tumoral , Feminino , Masculino , Prognóstico , Camundongos Nus
17.
Heliyon ; 10(10): e31346, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38807872

RESUMO

Pancreatic cancer is one of the most lethal cancers with significant radioresistance and tumor repopulation after radiotherapy. As a type of short non-coding RNA that regulate various biological and pathological processes, miRNAs might play vital role in radioresistance. We found by miRNA sequencing that microRNA-26a (miR-26a) was upregulated in pancreatic cancer cells after radiation, and returned to normal state after a certain time. miR-26a was defined as a tumor suppressive miRNA by conventional tumor biology experiments. However, transient upregulation of miR-26a after radiation significantly promoted radioresistance, while stable overexpression inhibited radioresistance, highlighting the importance of molecular dynamic changes after treatment. Mechanically, transient upregulation of miR-26a promoted cell cycle arrest and DNA damage repair to promote radioresistance. Further experiments confirmed HMGA2 as the direct functional target, which is an oncogene but enhances radiosensitivity. Moreover, PTGS2 was also the target of miR-26a, which might potentiate tumor repopulation via delaying the synthesis of PGE2. Overall, this study revealed that transient upregulation of miR-26a after radiation promoted radioresistance and potentiated tumor repopulation, highlighting the importance of dynamic changes of molecules upon radiotherapy.

18.
Adv Healthc Mater ; 13(9): e2303394, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38288911

RESUMO

Due to the inherent radiation tolerance, patients who suffered from glioma frequently encounter tumor recurrence and malignant progression within the radiation target area, ultimately succumbing to treatment ineffectiveness. The precise mechanism underlying radiation tolerance remains elusive due to the dearth of in vitro models and the limitations associated with animal models. Therefore, a bioprinted glioma model is engineered, characterized the phenotypic traits in vitro, and the radiation tolerance compared to 2D ones when subjected to X-ray radiation is assessed. By comparing the differential gene expression profiles between the 2D and 3D glioma model, identify functional genes, and analyze distinctions in gene expression patterns. Results showed that 3D glioma models exhibited substantial alterations in the expression of genes associated with the stromal microenvironment, notably a significant increase in the radiation tolerance gene ITGA2 (integrin subunit A2). In 3D glioma models, the knockdown of ITGA2 via shRNA resulted in reduced radiation tolerance in glioma cells and concomitant inhibition of the p-AKT pathway. Overall, 3D bioprinted glioma model faithfully recapitulates the in vivo tumor microenvironment (TME) and exhibits enhanced resistance to radiation, mediated through the ITGA2/p-AKT pathway. This model represents a superior in vitro platform for investigating glioma radiotherapy tolerance.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioma/genética , Glioma/radioterapia , Glioma/metabolismo , Transdução de Sinais , Microambiente Tumoral
19.
Heliyon ; 10(14): e34460, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39114003

RESUMO

Exosomes are nano-sized extracellular vesicles produced by almost all mammalian cells. They play an important role in cell-to-cell communication by transferring biologically active molecules from the cell of origin to the recipient cells. Ionizing radiation influences exosome production and molecular cargo loading. In cancer management, ionizing radiation is a form of treatment that exerts its cancer cytotoxicity by induction of DNA damage and other alterations to the targeted tissue cells. However, normal bystander non-targeted cells may exhibit the effects of ionizing radiation, a phenomenon called radiation-induced bystander effect (RIBE). The mutual communication between the two groups of cells (targeted and non-targeted) via radiation-influenced exosomes enables the exchange of radiosensitive molecules. This facilitates indirect radiation exposure, leading, among other effects, to epigenetic remodeling and subsequent adaptation to radiation. This review discusses the role exosomes play in epigenetically induced radiotherapy resistance through the mediation of RIBE.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39127084

RESUMO

PURPOSE: radiotherapy stands as an important complementary treatment for head and neck squamous cell carcinoma (HNSCC), yet it does not invariably result in complete tumor regression. The infiltration of immunosuppressive macrophages is believed to mediate the radiotherapy resistance, which mechanism remains largely unexplored. This study aimed to elucidate the role of immunosuppressive macrophages during radiotherapy and the associated underlying mechanisms. MATERIALS AND METHODS: Male C3H mice bearing syngeneic SCC-VII tumor were received irradiation (2 × 8Gy). The impact of irradiation on tumor-infiltrating macrophages were assessed. Bone marrow derived macrophages were evaluated in differentiation, proliferation, migration, and inflammatory cytokines after treatment of irradiated tumor culture medium (irCM) and irradiated tumor derived extracellular vesicles (irTEVs). A comprehensive metabolomics profiling of the irTEVs was conducted using liquid chromatography-mass spectrometry, while key metabolites were investigated the mechanism in macrophage in vitro and in vivo. RESULTS: Radiotherapy on SCC-VII syngeneic graft tumors increased polarization of both M1 and M2 macrophages in tumor microenvironment and drove infiltrated macrophages towards an immunosuppressive phenotype. Irradiation-induced polarization and immunosuppression of macrophages were dependent on irTEVs which delivered an increased amount of nicotinamide (NAM) to macrophages. NAM directly bound to the NF-κB transcriptional activity regulator USP7, through which NAM reduced translocation of NF-κB into the nucleus, thereby decreasing the release of cytokines IL6 and IL8. Increased enzyme activity of nicotinamide phosphoribosyl transferase (NAMPT) which is the rate-limiting enzyme of NAD+ metabolism, contributed to the irradiation-induced accumulation levels of NAM in irradiated HNSCC and irTEVs. Inhibition of NAMPT decreased NAM levels in irTEVs and increased radiotherapy sensitivity through alleviating immunosuppressive function of macrophages. CONCLUSIONS: Radiotherapy could induce NAD+ metabolic reprogramming of HNSCC cells, which regulate macrophage towards an immunosuppressive phenotype. Pharmacological targeting NAD+ metabolism might be a promising strategy for radiotherapy sensitization of HNSCC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa