Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
J Cell Mol Med ; 28(9): e18308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683131

RESUMO

Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Células Eritroides , Hemina , Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Proteínas Proto-Oncogênicas c-crk , Humanos , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular/efeitos dos fármacos , Células Eritroides/metabolismo , Células Eritroides/efeitos dos fármacos , Células Eritroides/patologia , Células Eritroides/citologia , Eritropoese/genética , Eritropoese/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Hemina/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Proteínas Proto-Oncogênicas c-crk/genética
2.
J Gene Med ; 26(1): e3649, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282155

RESUMO

BACKGROUND: Ovarian cancer is one of the most common cancers in women. Profiles changes of microRNAs (miRNAs) are closely linked to malignant tumors. In the present study, we investigated expression of miR-451a in high-grade serous ovarian cancer (HGSOC). We also investigated the potential pathological roles and the likely mechanism of miR-451a in the development of HGSOC using animal models and cell lines. METHODS: Using bioinformatics techniques and a real-time PCR, we analyzed differently expressed miRNAs in HGSOC compared to normal tissue. MTT (i.e. 3-[4, 5-dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), EDU (i.e. 5-ethynyl-2'-deoxyuridine) and transwell assays were performed to investigate the effect of miR-451a on the proliferation and migration of HGSOC SKOV-3 cells. A dual luciferase reporter assay was performed to verify the targeting relationship of miR-451 and RAB5A (one of the Rab GTPase proteins that regulates endocytosis and vesicle transport). Also, we analyzed levels of the RAB5A mRNA and protein by real-time PCR, western blotting and immunohistochemistry assays in HGSOC cells and tissues. Finally, we performed in vivo experiments using HGSOC mice. RESULTS: miR-451a was substantially upregulated in HGSOC and associated with favorable clinical characteristics. miR-451a knockdown significantly increased growth and metastasis of HGSOC cell line SKOV-3 through Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling. In addition, RAB5A, an early endosome marker, was shown to be a direct target of miR-451a. Moreover, RAB5A is correlated with unfavorable clinical features and shows independent prognostic significance in HGSOC. CONCLUSIONS: We found that the miR-451a/RAB5A axis is associated with tumorigenesis and progression through the Ras/Raf/MEK/ERK pathway, providing prognostic indicators and therapeutic targets for patients with HGSOC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Proteínas rab5 de Ligação ao GTP , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Neoplasias Ovarianas/genética , Proteínas rab5 de Ligação ao GTP/genética
3.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338909

RESUMO

Pancreatic cancer represents a formidable challenge in oncology, primarily due to its aggressive nature and limited therapeutic options. The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC), the main form of pancreatic cancer, remains disappointingly poor with a 5-year overall survival of only 5%. Almost 95% of PDAC patients harbor Kirsten rat sarcoma virus (KRAS) oncogenic mutations. KRAS activates downstream intracellular pathways, most notably the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling axis. Dysregulation of the RAF/MEK/ERK pathway is a crucial feature of pancreatic cancer and therefore its main components, RAF, MEK and ERK kinases, have been targeted pharmacologically, largely by small-molecule inhibitors. The recent advances in the development of inhibitors not only directly targeting the RAF/MEK/ERK pathway but also indirectly through inhibition of its regulators, such as Src homology-containing protein tyrosine phosphatase 2 (SHP2) and Son of sevenless homolog 1 (SOS1), provide new therapeutic opportunities. Moreover, the discovery of allele-specific small-molecule inhibitors against mutant KRAS variants has brought excitement for successful innovations in the battle against pancreatic cancer. Herein, we review the recent advances in targeted therapy and combinatorial strategies with focus on the current preclinical and clinical approaches, providing critical insight, underscoring the potential of these efforts and supporting their promise to improve the lives of patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Fibrossarcoma , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/metabolismo
4.
Mol Cancer ; 22(1): 125, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543582

RESUMO

Hairy cell leukemia (HCL) is a B-lymphoma induced by BRAF(V600E) mutation. However, introducing BRAF(V600E) in B-lymphocytes fails to induce hematological malignancy, suggesting that BRAF(V600E) needs concurrent mutations to drive HCL ontogeny. To resolve this issue, here we surveyed human HCL genomic sequencing data. Together with previous reports, we speculated that the tumor suppressor TP53, P27, or PTEN restrict the oncogenicity of BRAF(V600E) in B-lymphocytes, and therefore that their loss-of-function facilitates BRAF(V600E)-driven HCL ontogeny. Using genetically modified mouse models, we demonstrate that indeed BRAF(V600E)KI together with Trp53KO or pTENKO in B-lymphocytes induces chronic lymphoma with pathological features of human HCL. To further understand the cellular programs essential for HCL ontogeny, we profiled the gene expression of leukemic cells isolated from BRAF(V600E)KI and Trp53KO or pTENKO mice, and found that they had similar but different gene expression signatures that resemble that of M2 or M1 macrophages. In addition, we examined the expression signature of transcription factors/regulators required for germinal center reaction and memory B cell versus plasma cell differentiation in these leukemic cells and found that most transcription factors/regulators essential for these programs were severely inhibited, illustrating why hairy cells are arrested at a transitional stage between activated B cells and memory B cells. Together, our study has uncovered concurrent mutations required for HCL ontogeny, revealed the B cell origin of hairy cells and investigated the molecular basis underlying the unique pathological features of the disease, with important implications for HCL research and treatment.


Assuntos
Leucemia de Células Pilosas , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Leucemia de Células Pilosas/genética , Leucemia de Células Pilosas/metabolismo , Leucemia de Células Pilosas/patologia , Mutação , Proteínas Proto-Oncogênicas B-raf , Fatores de Transcrição/genética
5.
Development ; 147(24)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33144396

RESUMO

Activation of a canonical EGFR-Ras-Raf-ERK cascade initiates patterning of multipotent vulval precursor cells (VPCs) of Caenorhabditis elegans We have previously shown that this pathway includes a negative-feedback component in which MPK-1/ERK activity targets the upstream kinase LIN-45/Raf for degradation by the SEL-10/FBXW7 E3 ubiquitin ligase. This regulation requires a Cdc4 phosphodegron (CPD) in LIN-45 that is conserved in BRAF. Here, we identify and characterize the minimal degron that encompasses the CPD and is sufficient for SEL-10-mediated, MPK-1-dependent protein degradation. A targeted screen of conserved protein kinase-encoding genes yielded gsk-3 (an ortholog of human GSK3B) and cdk-2 (a CDK2-related kinase) as required for LIN-45 degron-mediated turnover. Genetic analysis revealed that LIN-45 degradation is blocked at the second larval stage due to cell cycle quiescence, and that relief of this block during the third larval stage relies on activation of CDKs. Additionally, activation of MPK-1 provides spatial pattern to LIN-45 degradation but does not bypass the requirement for gsk-3 and cdk-2 This analysis supports a model whereby MPK-1/ERK, GSK-3/GSK3 and CDK-2/CDK2, along with SEL-10/FBXW7, constitute a regulatory network that exerts spatial and temporal control of LIN-45/Raf degradation during VPC patterning.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Quinase 3 da Glicogênio Sintase/genética , Vulva/crescimento & desenvolvimento , Quinases raf/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Diferenciação Celular/genética , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Fosfotransferases/genética , Proteólise , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases , Vulva/metabolismo
6.
J Transl Med ; 21(1): 532, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550679

RESUMO

BACKGROUND: Glioblastoma (GBM) is a brain tumor with the highest level of malignancy and the worst prognosis in the central nervous system. Mitochondrial metabolism plays a vital role in the occurrence and development of cancer, which provides critical substances to support tumor anabolism. Mito-LND is a novel small-molecule inhibitor that can selectively inhibit the energy metabolism of tumor cells. However, the therapeutic effect of Mito-LND on GBM remains unclear. METHODS: The present study evaluated the inhibitory effect of Mito-LND on the growth of GBM cells and elucidated its potential mechanism. RESULTS: The results showed that Mito-LND could inhibit the survival, proliferation and colony formation of GBM cells. Moreover, Mito-LND induced cell cycle arrest and apoptosis. Mechanistically, Mito-LND inhibited the activity of mitochondrial respiratory chain complex I and reduced mitochondrial membrane potential, thus promoting ROS generation. Importantly, Mito-LND could inhibit the malignant proliferation of GBM by blocking the Raf/MEK/ERK signaling pathway. In vivo experiments showed that Mito-LND inhibited the growth of GBM xenografts in mice and significantly prolonged the survival time of tumor-bearing mice. CONCLUSION: Taken together, the current findings support that targeting mitochondrial metabolism may be as a potential and promising strategy for GBM therapy, which will lay the theoretical foundation for further clinical trials on Mito-LND in the future.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Linhagem Celular Tumoral , Transdução de Sinais , Apoptose , Neoplasias Encefálicas/patologia , Proliferação de Células
7.
Cell Commun Signal ; 21(1): 224, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626338

RESUMO

BACKGROUND: The role of the membrane-associated RING-CH (MARCH) family in carcinogenesis has been widely studied, but the member of this family, RNF173, has not yet been thoroughly explored in the context of hepatocellular carcinoma (HCC). METHODS: With the use of an HCC tissue microarray and IHC staining, we aim to determine the differential expression of RNF173 in HCC patients and its clinical significance. The biological role of RNF173 is investigated through in vitro and in vivo experiments. RNA sequencing, mass spectrometry, and immunoprecipitation are performed to uncover the underlying mechanism of RNF173's impact on the development of HCC. RESULTS: The mRNA and protein levels of RNF173 were significantly lower in HCC tissues than in normal tissues. HCC patients with low RNF173 expression had shorter overall survival and recurrence-free survival, and RNF173 was significantly correlated with tumor number, tumor capsule, tumor differentiation, and BCLC stage. In addition, in vitro and in vivo experiments showed that RNF173 downregulation exacerbated tumor progression, including migration, invasion, and proliferation. GRB2 is a key molecule in the RAF/MEK/ERK pathway. RNF173 inhibits the RAF/MEK/ERK signaling by ubiquitinating and degrading GRB2, thereby suppressing HCC cell proliferation, invasion and migration. Combining clinical samples, we found that HCC patients with high RNF173 and low GRB2 expression had the best prognosis. CONCLUSION: RNF173 inhibits the invasion and metastasis of HCC by ubiquitinating and degrading GRB2, thereby suppressing the RAF/MEK/ERK signaling pathway. RNF173 is an independent risk factor for the survival and recurrence of HCC patients. RNF173 may serve as a novel prognostic molecule and potential therapeutic target for HCC. Video Abstract Graphical abstract Model of RNF173 on RAF/MEK/ERK signaling. RNF173 knockdown resulted in impaired ubiquitination and degradation of GRB2, leading to the activation of the RAF/MEK/ERK signaling pathway and promotion of invasion and metastasis in HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteína Adaptadora GRB2 , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno , Transdução de Sinais
8.
Fish Shellfish Immunol ; 137: 108772, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37100311

RESUMO

Glyphosate is an herbicide commonly used worldwide, and its substantial use causes widespread pollution with runoff. However, research on glyphosate toxicity has mostly remained at the embryonic level and existing studies are limited. In the present study, we investigated whether glyphosate can induce autophagy in hepatic L8824 cells by regulating energy metabolism and rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated extracellular signal-regulated kinase (MEK)/extracellular regulated protein kinases (ERK) signaling by activating nitric oxide (NO). First, we selected 0, 50, 200, and 500 µg/mL as the challenge doses, according to the inhibitory concentration of 50% (IC50) of glyphosate. The results showed that glyphosate exposure increased the enzyme activity of inducible nitric oxide synthase (iNOS), which in turn increased the NO content. The activity and expression of enzymes related to energy metabolism, such as hexokinase (HK)1, HK2, phosphofructokinase (PFK), phosphokinase (PK), succinate dehydrogenase (SDH), and nicotinamide adenine dinucleotide with hydrogen (NADH), were inhibited, and the RAS/RAF/MEK/ERK signaling pathway was activated. This led to the negative expression of mammalian target of rapamycin (mTOR) and P62 in hepatic L8824 cells and the activation of the autophagy marker genes microtubule-associated proteins light chain 3 (LC3) and Beclin1 to induce autophagy. The above results were dependent on glyphosate concentration. To verify whether autophagy can be excited by the RAS/RAF/MEK/ERK signaling pathway, we treated L8824 cells with the ERK inhibitor U0126 and found that the autophagy gene LC3 was reduced due to the inhibition of ERK, thus demonstrating the reliability of the results. In conclusion, our results demonstrate that glyphosate can induce autophagy in hepatic L8824 cells by activating NO, thus regulating energy metabolism and the RAS/RAF/MEK/ERK signaling pathway.


Assuntos
Fibrossarcoma , MAP Quinase Quinase Quinases , Animais , Óxido Nítrico , Reprodutibilidade dos Testes , Quinases raf/genética , Transdução de Sinais , MAP Quinases Reguladas por Sinal Extracelular , Linhagem Celular , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Metabolismo Energético , Autofagia , Sistema de Sinalização das MAP Quinases , Mamíferos/metabolismo , Glifosato
9.
Cell Mol Life Sci ; 79(1): 65, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013790

RESUMO

Coronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air-liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Fenamatos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Adulto , Animais , COVID-19/metabolismo , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/metabolismo , SARS-CoV-2/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 117(28): 16557-16566, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601201

RESUMO

Influenza viruses (IV) exploit a variety of signaling pathways. Previous studies showed that the rapidly accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway is functionally linked to nuclear export of viral ribonucleoprotein (vRNP) complexes, suggesting that vRNP export is a signaling-induced event. However, the underlying mechanism remained completely enigmatic. Here we have dissected the unknown molecular steps of signaling-driven vRNP export. We identified kinases RSK1/2 as downstream targets of virus-activated ERK signaling. While RSK2 displays an antiviral role, we demonstrate a virus-supportive function of RSK1, migrating to the nucleus to phosphorylate nucleoprotein (NP), the major constituent of vRNPs. This drives association with viral matrix protein 1 (M1) at the chromatin, important for vRNP export. Inhibition or knockdown of MEK, ERK or RSK1 caused impaired vRNP export and reduced progeny virus titers. This work not only expedites the development of anti-influenza strategies, but in addition demonstrates converse actions of different RSK isoforms.


Assuntos
Vírus da Influenza A/metabolismo , Influenza Humana/virologia , Ribonucleoproteínas/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/metabolismo , Sistema de Sinalização das MAP Quinases , Sinais de Exportação Nuclear , Ribonucleoproteínas/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
11.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446128

RESUMO

Pituitary tumors (PT) are mostly benign, although occasionally they demonstrate aggressive behavior, invasion of surrounding tissues, rapid growth, resistance to conventional treatments, and multiple recurrences. The pathogenesis of PT is still not fully understood, and the factors responsible for its invasiveness, aggressiveness, and potential for metastasis are unknown. RAF/MEK/ERK and mTOR signaling are significant pathways in the regulation of cell growth, proliferation, and survival, its importance in tumorigenesis has been highlighted. The aim of our review is to determine the role of the activation of PI3K/AKT/mTOR and RAF/MEK/ERK pathways in the pathogenesis of pituitary tumors. Additionally, we evaluate their potential in a new therapeutic approach to provide alternative therapies and improved outcomes for patients with aggressive pituitary tumors that do not respond to standard treatment. We perform a systematic literature search using the PubMed, Embase, and Scopus databases (search date was 2012-2023). Out of the 529 screened studies, 13 met the inclusion criteria, 7 related to the PI3K/AKT/mTOR pathway, and 7 to the RAF/MEK/ERK pathway (one study was used in both analyses). Understanding the specific factors involved in PT tumorigenesis provides opportunities for targeted therapies. We also review the possible new targeted therapies and the use of mTOR inhibitors and TKI in PT management. Although the RAF/MEK/ERK and PI3K/AKT/mTOR pathways play a pivotal role in the complex signaling network along with many interactions, further research is urgently needed to clarify the exact functions and the underlying mechanisms of these signaling pathways in the pathogenesis of pituitary adenomas and their role in its invasiveness and aggressive clinical outcome.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias Hipofisárias , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hipofisárias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Carcinogênese
12.
Biochem Biophys Res Commun ; 595: 22-27, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35093636

RESUMO

BACKGROUND: Fibroblast growth factor receptor 4 (FGFR4) plays a key role in cancer progression, including tumour proliferation, invasion, and metastasis. Recent studies have shown that the FGFR4 selective inhibitor BLU-554 has clinical benefits on tumour regression in hepatocellular carcinoma patients. However, the effect of BLU-554 on gastric cancer remains unknown. METHODS: Changes in cell proliferation, apoptosis and cell cycle, migration, and invasion capabilities of MKN-45 cells treated with FGFR4 selective inhibitors were detected by CCK-8 assay, flow cytometry, transwell assay, and wound healing assay, respectively. Western blotting was used to detect the effect of BLU-554 on the expression of FGFR4, FRS2α, and p-ERK1/2. RESULTS: As the concentration of the inhibitor increased, the survival rate of gastric cancer cells decreased, and the trend of BLU-554 was more obvious; a high dose of BLU-554 caused significant cell apoptosis and cell cycle arrest as well as reduced cell invasion ability. The expression levels of FGFR4, FRS2α, and p-ERK1/2 were also significantly reduced when cells were treated with medium and high doses of BLU-554. CONCLUSION: BLU-554 inhibited the mitogen-activated protein kinase (RAS-RAF-MEK-ERK) pathway by inhibiting FGFR4, ultimately impeding the proliferation and invasion of gastric cancer cells and promoting cell apoptosis and cell cycle arrest.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Piranos/farmacologia , Quinazolinas/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Neoplasias Gástricas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Neoplasias Gástricas/patologia
13.
Glycoconj J ; 39(6): 725-735, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306024

RESUMO

A homogeneous polysaccharide named as LJW2F2 was extracted and purified from the flowers of Lonicera japonica Thunb. Structural characteristic indicated that LJW2F2 was a homogalacturonan composed of α-1,4-D-galacturonic acid with a molecular weight of 7.2 kDa. Previous investigation suggested that homogalacturonan might impede angiogenesis, however the mechanism is still vague. Here we reported that LJW2F2 significantly disrupted capillary-like tube formation of human microvascular endothelia cells (HMEC-1) on matrigel as well as the cells migration. Mechanism study revealed that LJW2F2 might inactivate phosphorylation of epidermal growth factor receptor (EGFR), subsequently suppress Raf, mitogen-activated protein kinase (MEK) and extracellular-related kinase (ERK) phosphorylation. Moreover, LJW2F2 markedly decreased the expression of Notch1 and Delta-like ligand 4 (Dll4). Therefore, our results suggested that LJW2F2 might be a potential angiogenesis inhibitor via disturbing multiple signaling pathways.


Assuntos
Lonicera , Humanos , Lonicera/química , Transdução de Sinais , Receptores ErbB/análise , Flores/química , Polissacarídeos/química
14.
Acta Haematol ; 145(2): 113-121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34673646

RESUMO

Differentiation therapy using all-trans retinoic acid (ATRA) is well established for the treatment of acute promyelocytic leukemia (APL). Several attempts have been made to treat non-APL acute myeloid leukemia (AML) patients by employing differentiation inducers, such as hypomethylating agents and low-dose cytarabine, with encouraging results. In the present review, I focus on other possible differentiation inducers: kinase inhibitors and interferons (IFNs). A number of kinase inhibitors have been reported to induce differentiation, including CDK inhibitors, GSK3 inhibitors, Akt inhibitors, p38 MAPK inhibitors, Src family kinase inhibitors, Syk inhibitors, mTOR inhibitors, and HSP90 inhibitors. Other powerful inducers are IFNs, which were reported to enhance differentiation with ATRA. Although clinical trials for these kinase modulators remain scarce, their mechanisms of action have been, at least partly, clarified. The Raf/MEK/ERK MAPK pathway and the RARα downstream are affected by many of the kinase inhibitors and IFNs and seem to play a pivotal role for the induction of myeloid differentiation. Further clarification of the mechanisms, as well as the establishment of efficient combination therapies with the kinase inhibitors or IFNs, may lead to the development of effective therapeutic strategies for AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Antineoplásicos/uso terapêutico , Diferenciação Celular , Quinase 3 da Glicogênio Sintase/uso terapêutico , Humanos , Interferons/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Tretinoína/farmacologia , Tretinoína/uso terapêutico
15.
J Oral Pathol Med ; 51(10): 878-887, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35610188

RESUMO

Vascular anomalies are a heterogenous group of vascular lesions that can be divided, according to the International Society for the Study of Vascular Anomalies Classification, into two main groups: vascular tumors and vascular malformations. Vascular malformations can be further subdivided into slow-flow and fast-flow malformations. This clinical and radiological classification allows for a better understanding of vascular anomalies and aims to offer a more precise final diagnosis. Correct diagnosis is essential to propose the best treatment, which traditionally consists of surgery, embolization, or sclerotherapy. Since a few years, medical treatment has become an important part of multidisciplinary treatment. Genetic and molecular knowledge of vascular anomalies are increasing rapidly and opens the door for a molecular classification of vascular anomalies according to the underlying pathways involved. The main pathways seem to be PI3K/AKT/mTOR and RAS/RAF/MEK/ERK. Knowing the underlying molecular cascades allows us to use targeted medical therapies. The first part of this article aims to review the vascular anomalies seen in the head and neck region and their underlying molecular causes and involved pathways. The second part will propose an overview of the available targeted therapies based on the affected molecular cascade. This article summarizes theragnostic treatments available in vascular anomalies.


Assuntos
Fosfatidilinositol 3-Quinases , Malformações Vasculares , Humanos , Malformações Vasculares/terapia , Malformações Vasculares/diagnóstico por imagem , Malformações Vasculares/patologia , Pescoço/patologia , Escleroterapia , Radiografia
16.
Gynecol Endocrinol ; 38(12): 1136-1146, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36592742

RESUMO

BACKGROUND: NeiyiKangfu tablets (NYKF) are widely used clinically for the treatment of endometriosis (EMS), whose mechanism of action has been extensively studied. Researchers have found that NYKF may control the development of ectopic lesions by inhibiting angiogenesis and inflammatory cytokine secretion. Nevertheless, NYKF's mechanism of action remains unclear. METHODS: In the present study, the function of NYKF in the progression of EMS and the associated underlying mechanism was investigated by in vivo and in vitro experiments. EMS model mice were treated with NYKF and the pro-inflammatory factors and apoptosis of ectopic endometrium as well as RAF/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling activation were assessed. In addition, human endometriosis-derived immortalized entopic stromal (hEM15A) cells transfected with or without RAF kinase inhibitor protein (RKIP)-small-interfering RNA (siRNA) were also treated with NYKF and the proliferation, migration, apoptosis, and RAF/MEK/ERK signaling activation were measured by Cell Counting Kit-8 (CCK-8), flow cytometry, Transwell, and western blot, respectively. RESULTS: Results showed that NYKF increased the expression of RKIP, inhibited RAF/MEK/ERK signaling activation, and induced apoptosis while inhibiting proliferation and migration both in EMS mice and hEM15A cells. RKIP knockdown could inhibit the effect of NYKF treatment, leading to the activation of RAF/MEK/ERK signaling and the proliferation and migration of hEM15A cells. CONCLUSIONS: In conclusion, these results suggest that NYKF treatment promotes apoptosis and inhibits proliferation and migration in EMS by inhibiting the RAF/MEK/ERK signaling pathway by targeting RKIP.


Assuntos
Medicamentos de Ervas Chinesas , Endometriose , MAP Quinases Reguladas por Sinal Extracelular , Proteína de Ligação a Fosfatidiletanolamina , Animais , Feminino , Humanos , Camundongos , Endometriose/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Proteína de Ligação a Fosfatidiletanolamina/efeitos dos fármacos , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/farmacologia , Transdução de Sinais
17.
Future Oncol ; 17(23): 3051-3060, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33906367

RESUMO

Background: The poor outcome of advanced renal cell carcinoma (RCC) necessitates new treatments. Cobimetinib is a MEK inhibitor and approved for the treatment of melanoma. This work investigated the efficacy of cobimetinib alone and in combination with anti-RCC drugs. Methods: Proliferation and apoptosis assays were performed, and combination index was analyzed on RCC cell lines (CaKi-2, 786-O, A-704, ACHN and A489) and xenograft models. Immunoblotting analysis was conducted to investigate the MAPK pathway. Results: Cobimetinib was active against RCC cells, with IC50 at 0.006-0.8µM, and acted synergistically with standard-of-care therapy. Cobimetinib at nontoxic doses prevented tumor formation, inhibited tumor growth and enhanced efficacy of 5-fluorouracil, sorafenib and sunitinib via suppressing Raf/MEK/ERK, leading to MAPK pathway inhibition. Conclusion: Our findings demonstrate the potent anti-RCC activity of cobimetinib and its synergism with RCC standard-of-care drugs, and confirm the underlying mechanism of the action of cobimetinib.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Azetidinas/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Azetidinas/uso terapêutico , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Neoplasias Renais/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Clin Exp Hypertens ; 43(2): 142-150, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33070656

RESUMO

OBJECTIVE: To explore the effect of renal sympathetic denervation (RSD) on left ventricle hypertrophy and the Raf/MEK/ERK signaling pathway in spontaneously hypertensive rats (SHRs). METHODS: SHRs were divided into SHR, SHR + Sham, SHR + RSD and SHR + U0126 groups, with WKY rats as the baseline controls. The blood pressure of rats was observed, while myocardial fibrosis was evaluated through Masson staining. Thereafter, real-time quantitative polymerase chain reaction (qRT-PCR) was carried out to determine the levels of myocardial-hypertrophy-related markers, and Western blotting was used to measure the activity of the Raf/MEK/ERK signaling pathway. RESULTS: In comparison with the WKY group, significant increases were observed in the systolic pressure and diastolic pressure of rats from the other four groups at different time points after surgery. In addition, rats in these groups had obvious increases in LVMI, renal NE and IVSd and decreases in LVEDd, LVEF and LVFS. In addition, the CVF of myocardial tissues was increased, with the upregulation of ANP, BNP and ß-MHC and the downregulation of α-MHC. For the activity of the Raf/MEK/ERK signaling pathway, the levels of p-Raf/Raf, p-MEK/MEK and p-ERK1/2/ERK1/2 were all remarkably elevated (all P < .05). Further comparison with the SHR group showed that the above indexes in the rats were significantly improved in the RSD group and SHR + U0126 group (all P < .05). CONCLUSION: RSD may decrease blood pressure, mitigate hypertension-induced left ventricle hypertrophy and improve cardiac function efficiently in SHRs via the suppression of the Raf/MEK/ERK signaling pathway.


Assuntos
Hipertensão , Hipertrofia Ventricular Esquerda , Rim/inervação , Miocárdio , Simpatectomia/métodos , Animais , Biomarcadores/metabolismo , Fibrose/prevenção & controle , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Hipertensão/complicações , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/cirurgia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/prevenção & controle , Sistema de Sinalização das MAP Quinases , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Endogâmicos SHR , Quinases raf/metabolismo
19.
Molecules ; 26(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34946644

RESUMO

Aberrant activity of oncogenic rat sarcoma virus (RAS) protein promotes tumor growth and progression. RAS-driven cancers comprise more than 30% of all human cancers and are refractory to frontline treatment strategies. Since direct targeting of RAS has proven challenging, efforts have been centered on the exploration of inhibitors for RAS downstream effector kinases. Two major RAS downstream signaling pathways, including the Raf/MEK/Erk cascade and the phosphatidylinositol-3-kinase (PI3K) pathway, have become compelling targets for RAS-driven cancer therapy. However, the main drawback in the blockade of a single RAS effector is the multiple levels of crosstalk and compensatory mechanisms between these two pathways that contribute to drug resistance against monotherapies. A growing body of evidence reveals that the sequential or synergistic inhibition of multiple RAS effectors is a more convenient route for the efficacy of cancer therapy. Herein, we revisit the recent developments and discuss the most promising modalities targeting canonical RAS downstream effectors for the treatment of RAS-driven cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Sistema de Sinalização das MAP Quinases , Neoplasias , Proteína Oncogênica p21(ras) , Quinases raf/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Quinases raf/genética
20.
J Cell Mol Med ; 24(12): 6952-6965, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32391634

RESUMO

Acute myeloid leukaemia (AML) remains a therapeutic challenge and improvements in chemotherapy are needed. 4-Amino-2-trifluoromethyl-phenyl retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been proven to show superior anticancer effect compared with ATRA on various cancers. However, its potential effect on AML remains largely unknown. Lactate dehydrogenase B (LDHB) is the key glycolytic enzyme that catalyses the interconversion between pyruvate and lactate. Currently, little is known about the role of LDHB in AML. In this study, we found that ATPR showed antileukaemic effects with RARα dependent in AML cells. LDHB was aberrantly overexpressed in human AML peripheral blood mononuclear cell (PBMC) and AML cell lines. A lentiviral vector expressing LDHB-targeting shRNA was constructed to generate a stable AML cells with low expression of LDHB. The effect of LDHB knockdown on differentiation and cycle arrest of AML cells was assessed in vitro and vivo, including involvement of Raf/MEK/ERK signalling. Finally, these data suggested that ATPR showed antileukaemic effects by RARα/LDHB/ ERK-glycolysis signalling axis. Further studies should focus on the underlying leukaemia-promoting mechanisms and investigate LDHB as a therapeutic target.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicólise , L-Lactato Desidrogenase/metabolismo , Leucemia Mieloide Aguda/patologia , Receptor alfa de Ácido Retinoico/metabolismo , Retinoides/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Isoenzimas/metabolismo , Leucemia Mieloide Aguda/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa