Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 795
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Microbiol ; 77: 213-231, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100406

RESUMO

Ralstonia solanacearum species complex (RSSC) strains are devastating plant pathogens distributed worldwide. The primary cell density-dependent gene expression system in RSSC strains is phc quorum sensing (QS). It regulates the expression of about 30% of all genes, including those related to cellular activity, primary and secondary metabolism, pathogenicity, and more. The phc regulatory elements encoded by the phcBSRQ operon and phcA gene play vital roles. RSSC strains use methyl 3-hydroxymyristate (3-OH MAME) or methyl 3-hydroxypalmitate (3-OH PAME) as the QS signal. Each type of RSSC strain has specificity in generating and receiving its QS signal, but their signaling pathways might not differ significantly. In this review, I describe the genetic and biochemical factors involved in QS signal input and the regulatory network and summarize control of the phc QS system, new cell-cell communications, and QS-dependent interactions with soil fungi.


Assuntos
Percepção de Quorum , Ralstonia solanacearum , Percepção de Quorum/genética , Ralstonia solanacearum/genética , Virulência , Transdução de Sinais
2.
EMBO J ; 41(23): e107257, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314733

RESUMO

Plant immunity is tightly controlled by a complex and dynamic regulatory network, which ensures optimal activation upon detection of potential pathogens. Accordingly, each component of this network is a potential target for manipulation by pathogens. Here, we report that RipAC, a type III-secreted effector from the bacterial pathogen Ralstonia solanacearum, targets the plant E3 ubiquitin ligase PUB4 to inhibit pattern-triggered immunity (PTI). PUB4 plays a positive role in PTI by regulating the homeostasis of the central immune kinase BIK1. Before PAMP perception, PUB4 promotes the degradation of non-activated BIK1, while after PAMP perception, PUB4 contributes to the accumulation of activated BIK1. RipAC leads to BIK1 degradation, which correlates with its PTI-inhibitory activity. RipAC causes a reduction in pathogen-associated molecular pattern (PAMP)-induced PUB4 accumulation and phosphorylation. Our results shed light on the role played by PUB4 in immune regulation, and illustrate an indirect targeting of the immune signalling hub BIK1 by a bacterial effector.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal/genética , Doenças das Plantas , Proteínas Serina-Treonina Quinases/genética
3.
Semin Cell Dev Biol ; 148-149: 3-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36526528

RESUMO

Plant diseases caused by soilborne pathogens are a major limiting factor in crop production. Bacterial wilt disease, caused by soilborne bacteria in the Ralstonia solanacearum Species Complex (Ralstonia), results in significant crop loss throughout the world. Ralstonia invades root systems and colonizes plant xylem, changing plant physiology and ultimately causing plant wilting in susceptible varieties. Elucidating how Ralstonia invades and colonizes plants is central to developing strategies for crop protection. Here we review Ralstonia pathogenesis from root detection and attachment, early root colonization, xylem invasion and subsequent wilting. We focus primarily on studies in tomato from the last 5-10 years. Recent work has identified elegant mechanisms Ralstonia uses to adapt to the plant xylem, and has discovered new genes that function in Ralstonia fitness in planta. A picture is emerging of an amazingly versatile pathogen that uses multiple strategies to make its surrounding environment more hospitable and can adapt to new environments.


Assuntos
Ralstonia solanacearum , Ralstonia , Virulência , Ralstonia solanacearum/genética , Plantas , Doenças das Plantas/microbiologia
4.
J Biol Chem ; 300(8): 107523, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969063

RESUMO

Despite the ever-growing research interest in polyhydroxyalkanoates (PHAs) as green plastic alternatives, our understanding of the regulatory mechanisms governing PHA synthesis, storage, and degradation in the model organism Ralstonia eutropha remains limited. Given its importance for central carbon metabolism, PHA homeostasis is probably controlled by a complex network of transcriptional regulators. Understanding this fine-tuning is the key for developing improved PHA production strains thereby boosting the application of PHAs. We conducted promoter pull-down assays with crude protein extracts from R. eutropha Re2058/pCB113, followed by liquid chromatography with tandem mass spectrometry, to identify putative transcriptional regulators involved in the expression control of PHA metabolism, specifically targeting phasin phaP1 and depolymerase phaZ3 and phaZ5 genes. The impact on promoter activity was studied in vivo using ß-galactosidase assays and the most promising candidates were heterologously produced in Escherichia coli, and their interaction with the promoters investigated in vitro by electrophoretic mobility shift assays. We could show that R. eutropha DNA-binding xenobiotic response element-family-like protein H16_B1672, specifically binds the phaP1 promoter in vitro with a KD of 175 nM and represses gene expression from this promoter in vivo. Protein H16_B1672 also showed interaction with both depolymerase promoters in vivo and in vitro suggesting a broader role in the regulation of PHA metabolism. Furthermore, in vivo assays revealed that the H-NS-like DNA-binding protein H16_B0227 and the peptidyl-prolyl cis-trans isomerase PpiB, strongly repress gene expression from PphaP1 and PphaZ3, respectively. In summary, this study provides new insights into the regulation of PHA metabolism in R. eutropha, uncovering specific interactions of novel transcriptional regulators.

5.
Plant J ; 117(1): 121-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37738430

RESUMO

Plants have evolved a sophisticated immune system to defend against invasion by pathogens. In response, pathogens deploy copious effectors to evade the immune responses. However, the molecular mechanisms used by pathogen effectors to suppress plant immunity remain unclear. Herein, we report that an effector secreted by Ralstonia solanacearum, RipAK, modulates the transcriptional activity of the ethylene-responsive factor ERF098 to suppress immunity and dehydration tolerance, which causes bacterial wilt in pepper (Capsicum annuum L.) plants. Silencing ERF098 enhances the resistance of pepper plants to R. solanacearum infection not only by inhibiting the host colonization of R. solanacearum but also by increasing the immunity and tolerance of pepper plants to dehydration and including the closure of stomata to reduce the loss of water in an abscisic acid signal-dependent manner. In contrast, the ectopic expression of ERF098 in Nicotiana benthamiana enhances wilt disease. We also show that RipAK targets and inhibits the ERF098 homodimerization to repress the expression of salicylic acid-dependent PR1 and dehydration tolerance-related OSR1 and OSM1 by cis-elements in their promoters. Taken together, our study reveals a regulatory mechanism used by the R. solanacearum effector RipAK to increase virulence by specifically inhibiting the homodimerization of ERF098 and reprogramming the transcription of PR1, OSR1, and OSM1 to boost susceptibility and dehydration sensitivity. Thus, our study sheds light on a previously unidentified strategy by which a pathogen simultaneously suppresses plant immunity and tolerance to dehydration by secreting an effector to interfere with the activity of a transcription factor and manipulate plant transcriptional programs.


Assuntos
Capsicum , Ralstonia solanacearum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ralstonia solanacearum/fisiologia , Desidratação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Imunidade Vegetal/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Capsicum/metabolismo , Resistência à Doença/genética
6.
Plant J ; 118(2): 388-404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38150324

RESUMO

The intercellular space or apoplast constitutes the main interface in plant-pathogen interactions. Apoplastic subtilisin-like proteases-subtilases-may play an important role in defence and they have been identified as targets of pathogen-secreted effector proteins. Here, we characterise the role of the Solanaceae-specific P69 subtilase family in the interaction between tomato and the vascular bacterial wilt pathogen Ralstonia solanacearum. R. solanacearum infection post-translationally activated several tomato P69s. Among them, P69D was exclusively activated in tomato plants resistant to R. solanacearum. In vitro experiments showed that P69D activation by prodomain removal occurred in an autocatalytic and intramolecular reaction that does not rely on the residue upstream of the processing site. Importantly P69D-deficient tomato plants were more susceptible to bacterial wilt and transient expression of P69B, D and G in Nicotiana benthamiana limited proliferation of R. solanacearum. Our study demonstrates that P69s have conserved features but diverse functions in tomato and that P69D is involved in resistance to R. solanacearum but not to other vascular pathogens like Fusarium oxysporum.


Assuntos
Ralstonia solanacearum , Solanaceae , Solanum lycopersicum , Solanum lycopersicum/genética , Nicotiana/genética , Ralstonia solanacearum/fisiologia , Doenças das Plantas/microbiologia
7.
Genomics ; 116(2): 110784, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199265

RESUMO

Bacterial wilt (BW) caused by Ralstonia solanacearum is a globally prevalent bacterial soil-borne disease. In this study, transcriptome sequencing were subjected to roots after infection with the R. solanacearum in the resistant and susceptible tobacco variety. DEGs that responded to R. solanacearum infection in both resistant and susceptible tobacco contributed to pectinase and peroxidase development and were enriched in plant hormone signal transduction, signal transduction and MAPK signalling pathway KEGG terms. Core DEGs in the resistant tobacco response to R. solanacearum infection were enriched in cell wall, membrane, abscisic acid and ethylene terms. qRT-PCR indicated that Nitab4.5_0004899g0110, Nitab4.5_0004234g0080 and Nitab4.5_0001439g0050 contributed to the response to R. solanacearum infection in different resistant and susceptible tobacco. Silencing the p450 gene Nitab4.5_0001439g0050 reduced tobacco resistance to bacterial wilt. These results improve our understanding of the molecular mechanism of BW resistance in tobacco and solanaceous plants.


Assuntos
Ralstonia solanacearum , Ralstonia solanacearum/genética , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico , Nicotiana/genética , Inativação Gênica , Resistência à Doença/genética
8.
Plant J ; 113(5): 887-903, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36628472

RESUMO

A major challenge in global crop production is mitigating yield loss due to plant diseases. One of the best strategies to control these losses is through breeding for disease resistance. One barrier to the identification of resistance genes is the quantification of disease severity, which is typically based on the determination of a subjective score by a human observer. We hypothesized that image-based, non-destructive measurements of plant morphology over an extended period after pathogen infection would capture subtle quantitative differences between genotypes, and thus enable identification of new disease resistance loci. To test this, we inoculated a genetically diverse biparental mapping population of tomato (Solanum lycopersicum) with Ralstonia solanacearum, a soilborne pathogen that causes bacterial wilt disease. We acquired over 40 000 time-series images of disease progression in this population, and developed an image analysis pipeline providing a suite of 10 traits to quantify bacterial wilt disease based on plant shape and size. Quantitative trait locus (QTL) analyses using image-based phenotyping for single and multi-traits identified QTLs that were both unique and shared compared with those identified by human assessment of wilting, and could detect QTLs earlier than human assessment. Expanding the phenotypic space of disease with image-based, non-destructive phenotyping both allowed earlier detection and identified new genetic components of resistance.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Progressão da Doença
9.
Plant J ; 115(5): 1443-1457, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37248633

RESUMO

Plant immune receptors, known as NOD-like receptors (NLRs), possess unique integrated decoy domains that enable plants to attract pathogen effectors and initiate a specific immune response. The present study aimed to create a library of these integrated domains (IDs) and screen them with pathogen effectors to identify targets for effector virulence and NLR-effector interactions. This works compiles IDs found in NLRs from seven different plant species and produced a library of 78 plasmid clones containing a total of 104 IDs, representing 43 distinct InterPro domains. A yeast two-hybrid assay was conducted, followed by an in planta interaction test, using 32 conserved effectors from Ralstonia pseudosolanacearum type III. Through these screenings, three interactions involving different IDs (kinase, DUF3542, WRKY) were discovered interacting with two unrelated type III effectors (RipAE and PopP2). Of particular interest was the interaction between PopP2 and ID#85, an atypical WRKY domain integrated into a soybean NLR gene (GmNLR-ID#85). Using a Förster resonance energy transfer-fluorescence lifetime imaging microscopy technique to detect protein-protein interactions in living plant cells, PopP2 was demonstrated to physically associate with ID#85 in the nucleus. However, unlike the known WRKY-containing Arabidopsis RRS1-R NLR receptor, GmNLR-ID#85 could not be acetylated by PopP2 and failed to activate RPS4-dependent immunity when introduced into the RRS1-R immune receptor. The generated library of 78 plasmid clones, encompassing these screenable IDs, is publicly available through Addgene. This resource is expected to be valuable for the scientific community with respect to discovering targets for effectors and potentially engineering plant immune receptors.


Assuntos
Proteínas NLR , Proteínas de Plantas , Plantas , Produtos Agrícolas , Técnicas do Sistema de Duplo-Híbrido , Núcleo Celular , Fatores de Transcrição , Proteínas NLR/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Proteínas de Plantas/metabolismo , Biblioteca Gênica
10.
Plant J ; 116(5): 1342-1354, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614094

RESUMO

Miraculin-like proteins (MLPs), members of the Kunitz trypsin inhibitor (KTI) family that are present in various plants, have been discovered to have a role in defending plants against pathogens. In this study, we identified a gene StMLP1 in potato that belongs to the KTI family. We found that the expression of StMLP1 gradually increases during Ralstonia solanacearum (R. solanacearum) infection. We characterized the promoter of StMLP1 as an inducible promoter that can be triggered by R. solanacearum and as a tissue-specific promoter with specificity for vascular bundle expression. Our findings demonstrate that StMLP1 exhibits trypsin inhibitor activity, and that its signal peptide is essential for proper localization and function. Overexpression of StMLP1 in potato can enhance the resistance to R. solanacearum. Inhibiting the expression of StMLP1 during infection accelerated the infection by R. solanacearum to a certain extent. In addition, the RNA-seq results of the overexpression-StMLP1 lines indicated that StMLP1 was involved in potato immunity. All these findings in our study reveal that StMLP1 functions as a positive regulator that is induced and specifically expressed in vascular bundles in response to R. solanacearum infection.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Solanum tuberosum/genética , Ralstonia solanacearum/fisiologia , Inibidores da Tripsina/metabolismo , Feixe Vascular de Plantas , Plantas , Doenças das Plantas
11.
Mol Plant Microbe Interact ; 37(5): 467-476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805410

RESUMO

The soil-borne phytopathogenic gram-negative bacterium Ralstonia solanacearum species complex (RSSC) produces staphyloferrin B and micacocidin as siderophores that scavenge for trivalent iron (Fe3+) in the environment, depending on the intracellular divalent iron (Fe2+) concentration. The staphyloferrin B-deficient mutant reportedly retains its virulence, but the relationship between micacocidin and virulence remains unconfirmed. To elucidate the effect of micacocidin on RSSC virulence, we generated the micacocidin productivity-deficient mutant (ΔRSc1806) that lacks RSc1806, which encodes a putative polyketide synthase/non-ribosomal peptide synthetase, using the RSSC phylotype I Ralstonia pseudosolanacearum strain OE1-1. When incubated in the condition without Fe2+, ΔRSc1806 showed significantly lower Fe3+-scavenging activity, compared with OE1-1. Until 8 days after inoculation on tomato plants, ΔRSc1806 was not virulent, similar to the mutant (ΔphcA) missing phcA, which encodes the LysR-type transcriptional regulator PhcA that regulates the expression of the genes responsible for quorum sensing (QS)-dependent phenotypes including virulence. The transcriptome analysis revealed that RSc1806 deletion significantly altered the expression of more than 80% of the PhcA-regulated genes in the mutant grown in medium with or without Fe2+. Among the PhcA-regulated genes, the transcript levels of the genes whose expression was affected by the deletion of RSc1806 were strongly and positively correlated between the ΔRSc1806 and the phcA-deletion mutant. Furthermore, the deletion of RSc1806 significantly modified QS-dependent phenotypes, similar to the effects of the deletion of phcA. Collectively, our findings suggest that the deletion of micacocidin production-related RSc1806 alters the regulation of PhcA-regulated genes responsible for QS-dependent phenotypes including virulence as well as Fe3+-scavenging activity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas , Percepção de Quorum , Solanum lycopersicum , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Ferro/metabolismo , Ralstonia/genética , Ralstonia/patogenicidade , Sideróforos/metabolismo , Deleção de Genes , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo
12.
BMC Genomics ; 25(1): 191, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373891

RESUMO

BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum species complex (RSSC) is one of the devastating diseases in crop production, seriously reducing the yield of crops. R. pseudosolanacearum, is known for its broad infrasubspecific diversity and comprises 36 sequevars that are currently known. Previous studies found that R. pseudosolanacearum contained four sequevars (13, 14, 17 and 54) isolated from sunflowers sown in the same field. RESULTS: Here, we provided the complete genomes and the results of genome comparison of the four sequevars strains (RS639, RS642, RS647, and RS650). Four strains showed different pathogenicities to the same cultivars and different host ranges. Their genome sizes were about 5.84 ~ 5.94 Mb, encoding 5002 ~ 5079 genes and the average G + C content of 66.85% ~ 67%. Among the coding genes, 146 ~ 159 specific gene families (contained 150 ~ 160 genes) were found in the chromosomes and 34 ~ 77 specific gene families (contained 34 ~ 78 genes) in the megaplasmids from four strains. The average nucleotide identify (ANI) values between any two strains ranged from 99.05% ~ 99.71%, and the proportion of the total base length of collinear blocks accounts for the total gene length of corresponding genome was all more than 93.82%. Then, we performed a search for genomic islands, prophage sequences, the gene clusters macromolecular secretion systems, type III secreted effectors and other virulence factors in these strains, which provided detailed comparison results of their presence and distinctive features compared to the reference strain GMI1000. Among them, the number and types of T2SS gene clusters were different in the four strains, among which RS650 included all five types. T4SS gene cluster of RS639 and RS647 were missed. In the T6SS gene cluster, several genes were inserted in the RS639, RS647, and RS650, and gene deletion was also detected in the RS642. A total of 78 kinds of type III secreted effectors were found, which included 52 core and 9 specific effectors in four strains. CONCLUSION: This study not only provided the complete genomes of multiple R. pseudosolanacearum strains isolated from a new host, but also revealed the differences in their genomic levels through comparative genomics. Furthermore, these findings expand human knowledge about the range of hosts that Ralstonia can infect, and potentially contribute to exploring rules and factors of the genetic evolution and analyzing its pathogenic mechanism.


Assuntos
Asteraceae , Helianthus , Ralstonia solanacearum , Humanos , Ralstonia/genética , Genômica , Ralstonia solanacearum/genética , Filogenia , Doenças das Plantas/microbiologia
13.
BMC Genomics ; 25(1): 200, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378471

RESUMO

BACKGROUND: Calmodulins (CaMs)/CaM-like proteins (CMLs) are crucial Ca2+-binding sensors that can decode and transduce Ca2+ signals during plant development and in response to various stimuli. The CaM/CML gene family has been characterized in many plant species, but this family has not yet been characterized and analyzed in peanut, especially for its functions in response to Ralstonia solanacearum. In this study, we performed a genome-wide analysis to analyze the CaM/CML genes and their functions in resistance to R. solanacearum. RESULTS: Here, 67, 72, and 214 CaM/CML genes were identified from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea, respectively. The genes were divided into nine subgroups (Groups I-IX) with relatively conserved exon‒intron structures and motif compositions. Gene duplication, which included whole-genome duplication, tandem repeats, scattered repeats, and unconnected repeats, produced approximately 81 pairs of homologous genes in the AhCaM/CML gene family. Allopolyploidization was the main reason for the greater number of AhCaM/CML members. The nonsynonymous (Ka) versus synonymous (Ks) substitution rates (less than 1.0) suggested that all homologous pairs underwent intensive purifying selection pressure during evolution. AhCML69 was constitutively expressed in different tissues of peanut plants and was involved in the response to R. solanacearum infection. The AhCML69 protein was localized in the cytoplasm and nucleus. Transient overexpression of AhCML69 in tobacco leaves increased resistance to R. solanacearum infection and induced the expression of defense-related genes, suggesting that AhCML69 is a positive regulator of disease resistance. CONCLUSIONS: This study provides the first comprehensive analysis of the AhCaM/CML gene family and potential genetic resources for the molecular design and breeding of peanut bacterial wilt resistance.


Assuntos
Arachis , Ralstonia solanacearum , Arachis/metabolismo , Ralstonia solanacearum/genética , Melhoramento Vegetal , Duplicação Gênica , Íntrons , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
14.
Biochem Biophys Res Commun ; 690: 149256, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992525

RESUMO

14-3-3 proteins play important roles in plant metabolism and stress response. Tomato 14-3-3 proteins, SlTFT4 and SlTFT7, serve as hubs of plant immunity and are targeted by some pathogen effectors. Ralstonia solanacearum with more than 70 type Ⅲ effectors (T3Es) is one of the most destructive plant pathogens. However, little is known on whether R. solanacearum T3Es target SlTFT4 and SlTFT7 and hence interfere with plant immunity. We first detected the associations of SlTFT4/SlTFT7 with R. solanacearum T3Es by luciferase complementation assay, and then confirmed the interactions by yeast two-hybrid approach. We demonstrated that 22 Ralstonia T3Es were associated with both SlTFT4 and SlTFT7, and five among them suppressed the hypersensitive response induced by MAPKKKα, a protein kinase which associated with SlTFT4/SlTFT7. We further demonstrated that suppression of MAPKKKα-induced HR and plant basal defense by the T3E RipAC depend on its association with 14-3-3 proteins. Our findings firstly demonstrate that R. solanacearum T3Es can manipulate plant immunity by targeting 14-3-3 proteins, SlTFT4 and SlTFT7, providing new insights into plant-R. solanacearum interactions.


Assuntos
Proteínas 14-3-3 , Ralstonia solanacearum , Proteínas 14-3-3/metabolismo , Proteínas de Bactérias/metabolismo , Imunidade Vegetal , Ralstonia solanacearum/fisiologia , Doenças das Plantas , Proteínas de Plantas/metabolismo
15.
BMC Plant Biol ; 24(1): 522, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853241

RESUMO

BACKGROUND: Several WRKY transcription factors (TFs), including CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 are known to govern the resistance of pepper (Capsicum annuum L.) plants to Ralstonia solanacearum infestation (RSI) and other abiotic stresses. However, the molecular mechanisms underlying these processes remain elusive. METHODS: This study functionally described CaWRKY3 for its role in pepper immunity against RSI. The roles of phytohormones in mediating the expression levels of CaWRKY3 were investigated by subjecting pepper plants to 1 mM salicylic acid (SA), 100 µM methyl jasmonate (MeJA), and 100 µM ethylene (ETH) at 4-leaf stage. A virus-induced gene silencing (VIGS) approach based on the Tobacco Rattle Virus (TRV) was used to silence CaWRKY3 in pepper, and transiently over-expressed to infer its role against RSI. RESULTS: Phytohormones and RSI increased CaWRKY3 transcription. The transcriptions of defense-associated marker genes, including CaNPR1, CaPR1, CaDEF1, and CaHIR1 were decreased in VIGS experiment, which made pepper less resistant to RSI. Significant hypersensitive (HR)-like cell death, H2O2 buildup, and transcriptional up-regulation of immunological marker genes were noticed in pepper when CaWRKY3 was transiently overexpressed. Transcriptional activity of CaWRKY3 was increased with overexpression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40, and vice versa. In contrast, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) was easily repelled by the innate immune system of transgenic Arabidopsis thaliana that overexpressed CaWRKY3. The transcriptions of defense-related marker genes like AtPR1, AtPR2, and AtNPR1 were increased in CaWRKY3-overexpressing transgenic A. thaliana plants. CONCLUSION: It is concluded that CaWRKY3 favorably regulates phytohormone-mediated synergistic signaling, which controls cell death in plant and immunity of pepper plant against bacterial infections.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Reguladores de Crescimento de Plantas , Imunidade Vegetal , Proteínas de Plantas , Ralstonia solanacearum , Fatores de Transcrição , Ralstonia solanacearum/fisiologia , Capsicum/genética , Capsicum/imunologia , Capsicum/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ciclopentanos/metabolismo , Resistência à Doença/genética , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Etilenos/metabolismo , Inativação Gênica , Acetatos/farmacologia
16.
Plant Biotechnol J ; 22(7): 2054-2074, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38450864

RESUMO

To challenge the invasion of various pathogens, plants re-direct their resources from plant growth to an innate immune defence system. However, the underlying mechanism that coordinates the induction of the host immune response and the suppression of plant growth remains unclear. Here we demonstrate that an auxin response factor, CaARF9, has dual roles in enhancing the immune resistance to Ralstonia solanacearum infection and in retarding plant growth by repressing the expression of its target genes as exemplified by Casmc4, CaLBD37, CaAPK1b and CaRROP1. The expression of these target genes not only stimulates plant growth but also negatively impacts pepper resistance to R. solanacearum. Under normal conditions, the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 is active when promoter-bound CaARF9 is complexed with CaIAA2. Under R. solanacearum infection, however, degradation of CaIAA2 is triggered by SA and JA-mediated signalling defence by the ubiquitin-proteasome system, which enables CaARF9 in the absence of CaIAA2 to repress the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 and, in turn, impeding plant growth while facilitating plant defence to R. solanacearum infection. Our findings uncover an exquisite mechanism underlying the trade-off between plant growth and immunity mediated by the transcriptional repressor CaARF9 and its deactivation when complexed with CaIAA2.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Ralstonia solanacearum , Ralstonia solanacearum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Capsicum/genética , Capsicum/imunologia , Capsicum/crescimento & desenvolvimento , Capsicum/microbiologia , Capsicum/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Resistência à Doença/genética
17.
Plant Biotechnol J ; 22(3): 602-616, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37870975

RESUMO

Ralstonia solanacearum, a species complex of bacterial plant pathogens that causes bacterial wilt, comprises four phylotypes that evolved when a founder population was split during the continental drift ~180 million years ago. Each phylotype contains strains with RipTAL proteins structurally related to transcription activator-like (TAL) effectors from the bacterial pathogen Xanthomonas. RipTALs have evolved in geographically separated phylotypes and therefore differ in sequence and potentially functionality. Earlier work has shown that phylotype I RipTAL Brg11 targets a 17-nucleotide effector binding element (EBE) and transcriptionally activates the downstream arginine decarboxylase (ADC) gene. The predicted DNA binding preferences of Brg11 and RipTALs from other phylotypes are similar, suggesting that most, if not all, RipTALs target the Brg11-EBE motif and activate downstream ADC genes. Here we show that not only phylotype I RipTAL Brg11 but also RipTALs from other phylotypes activate host genes when preceded by the Brg11-EBE motif. Furthermore, we show that Brg11 and RipTALs from other phylotypes induce the same quantitative changes of ADC-dependent plant metabolites, suggesting that most, if not all, RipTALs induce functionally equivalent changes in host cells. Finally, we report transgenic tobacco lines in which the RipTAL-binding motif Brg11-EBE mediates RipTAL-dependent transcription of the executor-type resistance (R) gene Bs4C from pepper, thereby conferring resistance to RipTAL-delivering R. solanacearum strains. Our results suggest that cell death-inducing executor-type R genes, preceded by the RipTAL-binding motif Brg11-EBE, could be used to genetically engineer broad-spectrum bacterial wilt resistance in crop plants without any apparent fitness penalty.


Assuntos
Ralstonia solanacearum , Ralstonia solanacearum/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
18.
New Phytol ; 243(3): 1137-1153, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877712

RESUMO

Bacterial pathogens inject effector proteins inside plant cells to manipulate cellular functions and achieve a successful infection. The soil-borne pathogen Ralstonia solanacearum (Smith), the causal agent of bacterial wilt disease, secretes > 70 different effectors inside plant cells, although only a handful of them have been thoroughly characterized. One of these effectors, named RipI, is required for full R. solanacearum pathogenicity. RipI associates with plant glutamate decarboxylases (GADs) to promote the accumulation of gamma-aminobutyric acid (GABA), which serves as bacterial nutrient. In this work, we found that RipI can also suppress plant immune responses to bacterial elicitors, which seems to be unrelated to the ability of RipI to induce GABA accumulation and plant cell death. A detailed characterization of the RipI features that contribute to its virulence activities identified two residues at the C-terminal domain that mediate RipI interaction with plant GADs and the subsequent promotion of GABA accumulation. These residues are also required for the appropriate homeostasis of RipI in plant cells and the induction of cell death, although they are partially dispensable for the suppression of plant immune responses. Altogether, we decipher and uncouple the virulence activities of an important bacterial effector at the biochemical level.


Assuntos
Proteínas de Bactérias , Morte Celular , Imunidade Vegetal , Ralstonia solanacearum , Ácido gama-Aminobutírico , Ralstonia solanacearum/patogenicidade , Ralstonia solanacearum/fisiologia , Ácido gama-Aminobutírico/metabolismo , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Nicotiana/microbiologia , Nicotiana/imunologia , Virulência , Proteínas de Plantas/metabolismo , Glutamato Descarboxilase/metabolismo , Homeostase
19.
New Phytol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129060

RESUMO

Ethylene response factors (ERFs) have been associated with biotic stress in Arabidopsis, while their function in non-model plants is still poorly understood. Here we investigated the role of potato ERF StPti5 in plant immunity. We show that StPti5 acts as a susceptibility factor. It negatively regulates potato immunity against potato virus Y and Ralstonia solanacearum, pathogens with completely different modes of action, and thereby has a different role than its orthologue in tomato. Remarkably, StPti5 is destabilised in healthy plants via the autophagy pathway and accumulates exclusively in the nucleus upon infection. We demonstrate that StEIN3 and StEIL1 directly bind the StPti5 promoter and activate its expression, while synergistic activity of the ethylene and salicylic acid pathways is required for regulated StPti expression. To gain further insight into the mode of StPti5 action in attenuating potato defence responses, we investigated transcriptional changes in salicylic acid deficient potato lines with silenced StPti5 expression. We show that StPti5 regulates the expression of other ERFs and downregulates the ubiquitin-proteasome pathway as well as several proteases involved in directed proteolysis. This study adds a novel element to the complex puzzle of immune regulation, by deciphering a two-level regulation of ERF transcription factor activity in response to pathogens.

20.
J Exp Bot ; 75(7): 2064-2083, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38011680

RESUMO

Plant diseases tend to be more serious under conditions of high-temperature/high-humidity (HTHH) than under moderate conditions, and hence disease resistance under HTHH is an important determinant for plant survival. However, how plants cope with diseases under HTHH remains poorly understood. In this study, we used the pathosystem consisting of pepper (Capsicum annuum) and Ralstonia solanacearum (bacterial wilt) as a model to examine the functions of the protein mildew resistance locus O 1 (CaMLO1) and U-box domain-containing protein 21 (CaPUB21) under conditions of 80% humidity and either 28 °C or 37 °C. Expression profiling, loss- and gain-of-function assays involving virus-induced gene-silencing and overexpression in pepper plants, and protein-protein interaction assays were conducted, and the results showed that CaMLO1 acted negatively in pepper immunity against R. solanacearum at 28 °C but positively at 37 °C. In contrast, CaPUB21 acted positively in immunity at 28 °C but negatively at 37 °C. Importantly, CaPUB21 interacted with CaMLO1 under all of the tested conditions, but only the interaction in response to R. solanacearum at 37 °C or to exposure to 37 °C alone led to CaMLO1 degradation, thereby turning off defence responses against R. solanacearum at 37 °C and under high-temperature stress to conserve resources. Thus, we show that CaMLO1 and CaPUB21 interact with each other and function distinctly in pepper immunity against R. solanacearum in an environment-dependent manner.


Assuntos
Capsicum , Ralstonia solanacearum , Termotolerância , Imunidade Vegetal/fisiologia , Temperatura , Proteínas de Plantas/metabolismo , Resistência à Doença , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Capsicum/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa