Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Biochem Soc Trans ; 52(3): 1061-1069, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38695730

RESUMO

The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Multimerização Proteica , Quinases raf/metabolismo , Quinases raf/química , Animais , Chaperoninas/metabolismo , Chaperoninas/química , Transdução de Sinais , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Modelos Moleculares
2.
Histopathology ; 84(7): 1199-1211, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38409885

RESUMO

AIMS: Intracranial germ cell tumour (IGCT) is a type of rare central nervous system tumour that mainly occurs in children and adolescents, with great variation in its incidence rate and molecular characteristics in patients from different populations. The genetic alterations of IGCT in the Chinese population are still unknown. METHODS AND RESULTS: In this study, 47 patients were enrolled and their tumour specimens were analysed by whole-exome sequencing (WES). We found that KIT was the most significantly mutated gene (15/47, 32%), which mainly occurred in the germinoma group (13/20, 65%), and less frequently in NGGCT (2/27, 7%). Copy number variations (CNVs) of FGF6 and TFE3 only appeared in NGGCT patients (P = 0.003 and 0.032, respectively), while CNVs of CXCR4, RAC2, PDGFA, and FEV only appeared in germinoma patients (P = 0.004 of CXCR4 and P = 0.027 for the last three genes). Compared with a previous Japanese cohort, the somatic mutation rates of RELN and SYNE1 were higher in the Chinese. Prognostic analysis showed that the NF1 mutation was associated with shorter overall survival and progression-free survival in IGCT patients. Clonal evolution analysis revealed an early branched evolutionary pattern in two IGCT patients who underwent changes in the histological subtype or degree of differentiation during disease surveillance. CONCLUSION: This study indicated that Chinese IGCT patients may have distinct genetic characteristics and identified several possible genetic alterations that have the potential to become prognostic biomarkers of NGGCT patients.


Assuntos
Neoplasias Encefálicas , Sequenciamento do Exoma , Neoplasias Embrionárias de Células Germinativas , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Adulto Jovem , Povo Asiático/genética , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , China/epidemiologia , Variações do Número de Cópias de DNA , População do Leste Asiático , Mutação , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Prognóstico , Proteína Reelina
3.
Mol Cell ; 64(5): 875-887, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889448

RESUMO

Ras pathway signaling plays a critical role in cell growth control and is often upregulated in human cancer. The Raf kinases selectively interact with GTP-bound Ras and are important effectors of Ras signaling, functioning as the initiating kinases in the ERK cascade. Here, we identify a route for the phospho-inhibition of Ras/Raf/MEK/ERK pathway signaling that is mediated by the stress-activated JNK cascade. We find that key Ras pathway components, the RasGEF Sos1 and the Rafs, are phosphorylated on multiple S/TP sites in response to JNK activation and that the hyperphosphorylation of these sites renders the Rafs and Sos1 unresponsive to upstream signals. This phospho-regulatory circuit is engaged by cancer therapeutics, such as rigosertib and paclitaxel/Taxol, that activate JNK through mitotic and oxidative stress as well as by physiological regulators of the JNK cascade and may function as a signaling checkpoint to suppress the Ras pathway during conditions of cellular stress.


Assuntos
Glicina/análogos & derivados , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Paclitaxel , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Sulfonas , Ativação Enzimática/efeitos dos fármacos , Glicina/farmacocinética , Glicina/farmacologia , Células HeLa , Humanos , Estresse Oxidativo , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Fosforilação , Sulfonas/farmacocinética , Sulfonas/farmacologia , Proteínas ras/metabolismo
4.
Chem Biodivers ; 21(2): e202300865, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180793

RESUMO

In this study, we evaluated the toxicological and antiproliferative effects of B. glabra Choisy bract extract (BGCE) in its free and loaded into liposomes forms administered to C. elegans mutants with let-60 gain-of-function (gf). Our results demonstrated that the concentration up to 75 µg CAE/mL of BGCE was safe for the worms. Notably, we developed BGCE-loaded liposomes to extend the pharmacological window up to 100 µg CAE/mL without toxicity. In addition, the extract and liposomes reduced the number and area of the multivulva formed in let-60 gf mutants. There was also an increase in the apoptotic signaling in the germline cells and increased longevity mediated through DAF-16 nuclear translocation with GST-4 activation in the treated animals. Our findings demonstrated that the BGCE-loaded liposomes possess antitumoral effects due to the activation of the apoptotic signaling and DAF-16 nuclear translocation.


Assuntos
Proteínas de Caenorhabditis elegans , Nyctaginaceae , Animais , Caenorhabditis elegans/fisiologia , Hiperplasia , Lipossomos
5.
Mod Pathol ; 36(8): 100198, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37105495

RESUMO

Plasmablastic lymphoma (PBL) is a rare and aggressive B-cell lymphoma with overlapping characteristics with diffuse large B-cell lymphoma (DLBCL) and multiple myeloma. Hyperactive Wnt signaling derails homeostasis and promotes oncogenesis and chemoresistance in DLBCL and multiple myeloma. Evidence suggests active cross-talk between the Wnt and RAS pathways impacting metastasis in solid cancers in which combined targeted therapies show effective results. Recent genomic studies in PBL demonstrated a high frequency of mutations linked with the RAS signaling pathway. However, the role of RAS and Wnt signaling pathway molecule expression in PBL remained unknown. We examined the expression of Wnt and RAS pathway-related genes in a well-curated cohort of PBL. Because activated B cells are considered immediate precursors of plasmablasts in B cell development, we compared this data with activated B-cell type DLBCL (ABC-DLBCL) patients, employing NanoString transcriptome analysis (770 genes). Hierarchical clustering revealed distinctive differential gene expression between PBL and ABC-DLBCL. Gene set enrichment analysis labeled the RAS signaling pathway as the most enriched (37 genes) in PBL, including upregulating critical genes, such as NRAS, RAF1, SHC1, and SOS1. Wnt pathway genes were also enriched (n = 22) by gene set enrichment analysis. Molecules linked with Wnt signaling activation, such as ligands or targets (FZD3, FZD7, c-MYC, WNT5A, WNT5B, and WNT10B), were elevated in PBL. Our data also showed that, unlike ABC-DLBCL, the deranged Wnt signaling activity in PBL was not linked with hyperactive nuclear factor κB and B-cell receptor signaling. In divergence, Wnt signaling inhibitors (CXXC4, SFRP2, and DKK1) also showed overexpression in PBL. The high expression of RAS signaling molecules reported may indicate linkage with gain-in-function RAS mutations. In addition, high expression of Wnt and RAS signaling molecules may pave pathways to explore benefiting from combined targeted therapies, as reported in solid cancer, to improve prognosis in PBL patients.


Assuntos
Linfoma Difuso de Grandes Células B , Mieloma Múltiplo , Linfoma Plasmablástico , Humanos , Via de Sinalização Wnt/genética , Linfoma Difuso de Grandes Células B/patologia , Expressão Gênica , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
6.
Reprod Biol Endocrinol ; 21(1): 33, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005590

RESUMO

BACKGROUND: The pathogenesis of deep infiltrating endometriosis (DIE) is poorly understood. It is considered a benign disease but has histologic features of malignancy, such as local invasion or gene mutations. Moreover, it is not clear whether its invasive potential is comparable to that of adenomyosis uteri (FA), or whether it has a different biological background. Therefore, the aim of this study was to molecularly characterize the gene expression signatures of both diseases in order to gain insight into the common or different underlying pathomechanisms and to provide clues to pathomechanisms of tumor development based on these diseases. METHODS: In this study, we analyzed formalin-fixed and paraffin-embedded tissue samples from two independent cohorts. One cohort involved 7 female patients with histologically confirmed FA, the other cohort 19 female patients with histologically confirmed DIE. The epithelium of both entities was microdissected in a laser-guided fashion and RNA was extracted. We analyzed the expression of 770 genes using the nCounter expression assay human PanCancer (Nanostring Technology). RESULTS: In total, 162 genes were identified to be significantly down-regulated (n = 46) or up-regulated (n = 116) in DIE (for log2-fold changes of < 0.66 or > 1.5 and an adjusted p-value of < 0.05) compared to FA. Gene ontology and KEGG pathway analysis of increased gene expression in DIE compared to FA revealed significant overlap with genes upregulated in the PI3K pathway and focal adhesion signaling pathway as well as other solid cancer pathways. In FA, on the other hand, genes of the RAS pathway showed significant expression compared to DIE. CONCLUSION: DIE and FA differ significantly at the RNA expression level: in DIE the most expressed genes were those belonging to the PI3K pathway, and in FA those belonging to the RAS pathway.


Assuntos
Adenomiose , Endometriose , Neoplasias , Humanos , Feminino , Adenomiose/genética , Adenomiose/patologia , Endometriose/metabolismo , Fosfatidilinositol 3-Quinases/genética , Oncogenes , Útero/metabolismo , Expressão Gênica
7.
Hematol Oncol ; 41(1): 159-166, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36316121

RESUMO

Single gene mutations in the RAS pathway are uncommon and of unknown significance in myelodysplastic syndrome (MDS) patients, RAS pathway-related gene mutations (RASwaymut ) as a whole may be significant and require further elucidation. The clinical and molecular data of 370 MDS patients who were newly diagnosed between 1 November 2016 and 31 August 2020 in our hospital were collected and retrospectively reviewed. RASwaymut were detected in 57 (15.41%) patients. Higher median percentage of marrow blasts (2% vs. 1%, P = 0.00), more co-mutated genes (4, interquartile range [IQR]: 2-5. vs. 2, IQR:1-4, P = 0.00), more higher risk patients according to international prognostic scoring system-revised (IPSS-R) (80.70% vs. 59.11%, P = 0.002) as well as higher acute myeloid leukemia transformation rate (35.09% vs. 14.38%, P = 0.02) were observed in patients with RASwaymut when compared to those with wild type RAS pathway-related genes (RASwaywt ). The most frequent co-mutated genes were ASXL1 (28.6%), TET2 (23.2%), U2AF1, RUNX1, TP53 (14.3%); DNMT3A (12.5%), among which ASXL1 mutation rate were significantly higher than those with RASwaywt (p < 0.05). RASwaymut had no significant effect on response to disease-modifying treatment in MDS patients. However, Overall survivals (OS) of RASwaymut patients were significantly shorter than those with RASwaywt (16.05 m. vs. 92.3 m, P = 0.00), especially in patients with marrow blasts less than 5% (P = 0.002), normal karyotype (P = 0.01) and lower risk (P = 0.00). While multivariate prognostic analysis showed that RASwaymut co-mutated with TET2 was an independent poor prognostic factor for all MDS patients (P = 0.00, hazrad ratio [HR] = 4.77 with 95% confidence interval [CI]: 2.4-9.51) and RASwaymut patients (P = 0.02, HR 2.76, 95% CI 1.21-6.29). In conclusion, RASwaymut was associated with higher IPSS-R risk, higher incidence of leukemic transformation thus shorter OS in MDS patients, it could be viewed as a whole to predict poor prognosis. Co-mutation with TET2 may promote disease progression and was an independent poor prognostic factor in MDS patients.


Assuntos
Relevância Clínica , Síndromes Mielodisplásicas , Humanos , Estudos Retrospectivos , Mutação , Prognóstico , Síndromes Mielodisplásicas/genética
8.
Arch Toxicol ; 97(6): 1599-1611, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37029817

RESUMO

The RAS pathway participates in the cascade of proliferation and cell division process, and the activated RAS pathway can lead to tumorigenesis including hepatocellular carcinoma (HCC). However, few studies have explored the effects of genetic variants in the RAS pathway-related genes on the survival of patients with HBV-related HCC. In the present study, we assessed the associations between 11,658 single-nucleotide polymorphisms (SNPs) in 62 RAS pathway genes and the overall survival (OS) of 866 HBV-related HCC individuals, which were randomly split (1:1) into discovery and validation datasets. As a result, three potentially functional SNPs were identified, based on multivariable cox proportional hazards regression analyses, in SOS Ras/Rho guanine nucleotide exchange factor 2 (SOS2, rs4632055 A > G), Ras protein-specific guanine nucleotide releasing factor 2 (RASGRF2, rs26418A > G) and mitogen-activated protein kinase 1 (MAP2K1,rs57120695 C > T), which were significantly and independently associated with OS of HBV-related HCC patients [adjusted hazards ratios (HRs) of 1.42, 1.32 and 1.50, respectively; 95% confidence intervals (CI), 1.14 to 1.76, 1.15 to 1.53 and 1.15 to 1.97, respectively; P = 0.001, < 0.001 and 0.003, respectively]. Additionally, the joint effects as the unfavorable genotypes of these three SNPs showed a significant association with the poor survival of HCC (trend test P < 0.001). The expression quantitative trait loci (eQTL) analysis further revealed that the rs4632055 G allele and the rs26418 A allele were associated with lower mRNA expression levels of SOS2 and RASGRF2, respectively. Collectively, these potentially functional SNPs of RASGRF2, SOS2 and M2PAK1 may become potential prognostic biomarkers for HBV-related HCC after hepatectomy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Genótipo , Alelos , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , MAP Quinase Quinase 1/genética , Fatores ras de Troca de Nucleotídeo Guanina/genética
9.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835447

RESUMO

Noonan syndrome (NS) is an autosomal dominant multisystem disorder, characterized by variable expressivity and locus heterogeneity, being caused by mutations in one of a subset of RAS pathway genes. Nevertheless, for 20-30% of patients it is not possible to provide molecular diagnosis, suggesting that further unknown genes or mechanisms are involved in NS pathogenesis. Recently, we proposed a digenic inheritance of subclinical variants as an alternative NS pathogenic model in two NS patients negative for molecular diagnosis. They showed hypomorphic variants of RAS pathway genes co-inherited from both their healthy parents that we hypothesized to generate an additive effect. Here, we report on the phosphoproteome and proteome analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) performed on the immortalized peripheral blood mononuclear cells (PBMCs) from the two above trios. Our results indicate that the two unrelated patients show overlapped profiles in both protein abundances and their phosphorylation levels not reached by their parents. IPA software predicted RAS-related pathways as significantly activated in the two patients. Interestingly, they remained unchanged or only slightly activated in both patients' parents. These findings suggest that the presence of one subclinical variant can activate the RAS pathway below the pathological threshold, which can instead be exceeded by the additive effect due to the co-presence of two subclinical variants causing NS, supporting our digenic inheritance hypothesis.


Assuntos
Síndrome de Noonan , Proteínas ras , Humanos , Linhagem Celular , Cromatografia Líquida , Leucócitos Mononucleares , Mutação , Síndrome de Noonan/genética , Fenótipo , Fosforilação , Espectrometria de Massas em Tandem , Proteínas ras/metabolismo
10.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982349

RESUMO

Over the years, several studies have shown that kinase-regulated signaling pathways are involved in the development of rare genetic diseases. The study of the mechanisms underlying the onset of these diseases has opened a possible way for the development of targeted therapies using particular kinase inhibitors. Some of these are currently used to treat other diseases, such as cancer. This review aims to describe the possibilities of using kinase inhibitors in genetic pathologies such as tuberous sclerosis, RASopathies, and ciliopathies, describing the various pathways involved and the possible targets already identified or currently under study.


Assuntos
Serina-Treonina Quinases TOR , Esclerose Tuberosa , Humanos , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Esclerose Tuberosa/tratamento farmacológico , Esclerose Tuberosa/genética
11.
J Cell Mol Med ; 26(15): 4244-4253, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35775110

RESUMO

This study aimed to further investigate the effect of PLD1 on the biological characteristics of human cervical cancer (CC) cell line, CASKI and the potential related molecular mechanism. CRISPR/Cas9 genome editing technology was used to knock out the PLD1 gene in CASKI cells. Cell function assays were performed to evaluate the effect of PLD1 on the biological function of CASKI cells in vivo and in vitro. A PLD1-overexpression rescue experiment in these knockout cells was performed to further confirm its function. Two PLD1-knockout CASKI cell lines (named PC-11 and PC-40, which carried the ins1/del4 mutation and del1/del2/ins1 mutation, respectively), were constructed by CRISPR/Cas9. PLD1 was overexpressed in these knockout cells (named PC11-PLD1 and PC40-PLD1 cells), which rescued the expression of PLD1 by approximately 71.33% and 74.54%, respectively. In vivo, the cell function assay results revealed that compared with wild-type (WT)-CASKI cells, the ability of PC-11 and PC-40 cells to proliferate, invade and migrate was significantly inhibited. The expression of H-Ras and phosphorylation of Erk1/2 (p-Erk1/2) was decreased in PC-11 and PC-40 cells compared with WT-CASKI cells. PC-11 and PC-40 cells could sensitize CASKI cells to cisplatin. More importantly, the proliferation, migration and invasion of PC11-PLD1 and PC40-PLD1 cells with PLD1 overexpression were significantly improved compared with those of the two types of PLD1 knockout cells. The sensitivity to cisplatin was decreased in PC11-PLD1 and PC40-PLD1 cells compared with PC-11 and PC-40 cells. In vivo, in the PC-11 and PC-40 tumour groups, tumour growth was significantly inhibited and tumour weight (0.95 ± 0.27 g and 0.66 ± 0.43 g vs. 1.59 ± 0.67 g, p = 0.0313 and 0.0108) and volume (1069.41 ± 393.84 and 1077.72 mm3 ± 815.07 vs. 2142.94 ± 577.37 mm3 , p = 0.0153 and 0.0128) were significantly reduced compared to those in the WT-CASKI group. Tumour differentiation of the PC-11 and PC40 cells was significantly better than that of the WT-CASKI cells. The immunohistochemistry results confirmed that the expression of H-Ras and p-Erk1/2 was decreased in PC-11 and PC-40 tumour tissues compared with WT-CASKI tumour tissues. PLD1 promotes CC progression by activating the RAS pathway. Inhibition of PLD1 may serve as an attractive therapeutic modality for CC.


Assuntos
Fosfolipase D , Neoplasias do Colo do Útero , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Feminino , Humanos , Imuno-Histoquímica , Fosfolipase D/genética , Fosfolipase D/metabolismo , Fosfolipase D/farmacologia , Neoplasias do Colo do Útero/patologia
12.
Int J Cancer ; 151(11): 2020-2030, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029220

RESUMO

Ground-glass opacity (GGO)-associated pulmonary nodules have been known as a radiologic feature of early-stage lung cancers and exhibit an indolent biological behavior. However, the correlation between driver genes and radiologic features as well as the immune microenvironment remains poorly understood. We performed a custom 1021-gene panel sequencing of 334 resected pulmonary nodules presenting as GGO from 262 Chinese patients. A total of 130 multiple pulmonary nodules were sampled from 58 patients. Clinical-pathologic and radiologic parameters of these pulmonary nodules were collected. Immunohistochemistry (IHC) and multiplex immunofluorescent staining (mIF) were applied to analyze proliferation and immune cell markers of GGO-associated pulmonary nodules. Compared with pure GGO nodules, mixed GGO nodules were enriched for invasive adenocarcinoma (IAC) (182/216 vs 73/118, P < .001). Eighty-eight percent (294/334) of GGO-associated nodules carried at least one mutation in EGFR/ERBB2/BRAF/KRAS/MAP2K1 of the RTK/RAS signaling pathway, and the alterations in these driver genes were mutually exclusive. The analysis of multifocal pulmonary nodules from the same patient revealed evidence of functional convergence on RTK/RAS pathways. Nodules with ERBB2/BRAF/MAP2K1 mutations tended to be more indolent than those with EGFR and KRAS mutations. IHC and mIF staining showed that KRAS-mutant GGO nodules displayed higher infiltration of CD4+ T cell and CD8+ T cell as well as stronger proliferation and immune inhibitory signals. Our study demonstrates a driver landscape of radiologically detectable GGO-associated pulmonary nodules in Chinese patients and supports that different driver patterns in RTK/RAS pathway are corresponding to different radiologic features.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Genômica , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/genética , Nódulos Pulmonares Múltiplos/patologia , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras)/genética , Microambiente Tumoral
13.
Pediatr Blood Cancer ; 69(11): e29930, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36094370

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a rare and aggressive clonal neoplasm of early childhood, classified as an overlap myeloproliferative/myelodysplastic neoplasm by the World Health Organization. In 90% of the patients with JMML, typical initiating mutations in the canonical Ras pathway genes NF1, PTPN11, NRAS, KRAS, and CBL can be identified. Hematopoietic stem cell transplantation (HSCT) currently is the established standard of care in most patients, although long-term survival is still only 50-60%. Given the limited therapeutic options and the important morbidity and mortality associated with HSCT, new therapeutic approaches are urgently needed. Hyperactivation of the Ras pathway as disease mechanism in JMML lends itself to the use of targeted therapy. Targeted therapy could play an important role in the future treatment of patients with JMML. This review presents a comprehensive overview of targeted therapies already developed and evaluated in vitro and in vivo in patients with JMML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mielomonocítica Juvenil , Síndromes Mielodisplásicas , Pré-Escolar , Humanos , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/metabolismo , Leucemia Mielomonocítica Juvenil/terapia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
14.
Acta Haematol ; 145(5): 529-536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35717939

RESUMO

INTRODUCTION: RAS pathway mutations are common mechanisms of resistance to acute myeloid leukemia (AML) therapies. Trametinib, an oral MEK inhibitor, has been shown to have single-agent activity in relapsed/refractory AML and preclinical synergy with venetoclax. METHODS: We conducted a single-center, open-label, phase 2 trial of the combination of azacitidine, venetoclax, and trametinib in patients with relapsed or refractory AML harboring a RAS pathway-activating mutation. RESULTS: Sixteen patients were treated. The patients were heavily pretreated with a median number of 4 prior therapies; 13 (81%) had received a prior hypomethylating agent (HMA) with venetoclax, and 8 (50%) had undergone prior stem cell transplant. Four patients (25%) responded (CR, n = 1; CRi, n = 1; MLFS, n = 2). Two of the 3 patients (67%) who had not previously received HMA plus venetoclax responded; in contrast, only 2 of the 13 patients (15%) who had previously received HMA plus venetoclax responded. The median OS was 2.4 months, and the 6-month OS rate was 31%. Related grade 3-4 adverse events occurred in 50% of patients, and 50% of patients required a dose adjustment of trametinib. CONCLUSIONS: The combination of azacitidine, venetoclax, and trametinib had only modest activity in patients with relapsed/refractory AML, with a response rate that was similar to previous reports of trametinib monotherapy. Substantial toxicity was observed with this combination. Given the established role of RAS pathway mutations in mediating resistance to AML therapies, future studies of better tolerated, more active inhibitors of this pathway are still needed.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Azacitidina/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Mutação , Piridonas , Pirimidinonas , Sulfonamidas
15.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456940

RESUMO

Mutations in KRAS are among the most frequent aberrations in cancer, including colon cancer. KRAS direct targeting is daunting due to KRAS protein resistance to small molecule inhibition. Moreover, its elevated affinity to cellular guanosine triphosphate (GTP) has made the design of specific drugs challenging. Indeed, KRAS was considered 'undruggable'. KRASG12C is the most commonly mutated variant of KRAS in non-small cell lung cancer. Currently, the achievements obtained with covalent inhibitors of this variant have given the possibility to assess the best therapeutic approach to KRAS-driven tumors. Mutation-related biochemical assets and the tissue of origin are expected to influence responses to treatment. Further attempts to obtain mutant-specific KRAS (KRASG12C) switch-II covalent inhibitors are ongoing and the results are promising. Drugs targeted to block KRAS effector pathways could be combined with direct KRAS inhibitors, immunotherapy or T cell-targeting approaches in KRAS-mutant tumors. The development of valuable combination regimens will be essential against potential mechanisms of resistance that may arise during treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias do Colo , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Humanos , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
16.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409154

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common malignancy among children. Despite the enormous progress in ALL therapy, resulting in achieving a 5-year survival rate of up to 90%, the ambitious goal of reaching a 100% survival rate is still being pursued. A typical ALL treatment includes three phases: remission induction and consolidation and maintenance, preceded by a prednisone prephase. Poor prednisone response (PPR) is defined as the presence of ≥1.0 × 109 blasts/L in the peripheral blood on day eight of therapy and results in significantly frequent relapses and worse outcomes. Hence, identifying risk factors of steroid resistance and finding methods of overcoming that resistance may significantly improve patients' outcomes. A mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK-ERK) pathway seems to be a particularly attractive target, as its activation leads to steroid resistance via a phosphorylating Bcl-2-interacting mediator of cell death (BIM), which is crucial in the steroid-induced cell death. Several mutations causing activation of MAPK-ERK were discovered, notably the interleukin-7 receptor (IL-7R) pathway mutations in T-cell ALL and rat sarcoma virus (Ras) pathway mutations in precursor B-cell ALL. MAPK-ERK pathway inhibitors were demonstrated to enhance the results of dexamethasone therapy in preclinical ALL studies. This report summarizes steroids' mechanism of action, resistance to treatment, and prospects of steroids therapy in pediatric ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Prednisona/uso terapêutico
17.
J Cell Mol Med ; 25(19): 9306-9318, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34435746

RESUMO

To determine the differentially expressed proteins (DEPs) between paired samples of cervical cancer (CC) and paracancerous tissue by quantitative proteomics and to examine the effects of DUSP7 expression on the tumorigenesis and progression of CC. Proteomic profiles of three paired samples of CC and paracancerous tissue were quantitatively analysed to identify DEPs. The relationship between DEP expression and patient clinicopathological characteristics and prognosis was evaluated. The effects of the selected DEPs on CC progression were examined in SIHA cells. A total of 129 DEPs were found. Western blot and immunohistochemistry (IHC) staining analyses confirmed the results from quantitative proteomic analysis showing that the selected DEP, HRAS, P-ERK1/2, and PLD1 levels were increased, whereas the DUSP7 level was decreased in CC tissue compared with the paired normal paracancerous tissues. The IHC results from the CC TMA analysis showed that the decreased expression of DUSP7 (p = 0.045 and 0.044) was significantly associated with a tumour size >2 cm and parametrial infiltration. In addition, the decreased expression of DUSP7 and increased expression of p-ERK1/2 were adversely related to patient relapse (p = 0.003 and 0.001) and survival (p = 0.034 and 0.006). The expression of HRAS and p-ERK1/2 was decreased in DUSP7-SIHA cells compared with NC-SIHA cells (p = 0.0003 and 0.0026). Biological functions in vitro, including invasion, migration and proliferation and tumour formation in vivo were decreased in DUSP7-SIHA cells (all p < 0.05) but increased in shDUSP7-SIHA cells (all p < 0.05). DUSP7 inhibits cervical cancer progression by inactivating the RAS pathway.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Transdução de Sinais , Neoplasias do Colo do Útero/metabolismo , Proteínas ras/metabolismo , Adulto , Idoso , Animais , Biomarcadores , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/genética , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Proteoma , Proteômica/métodos , Neoplasias do Colo do Útero/etiologia , Neoplasias do Colo do Útero/patologia
18.
Br J Haematol ; 195(5): 748-756, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34590720

RESUMO

Juvenile myelomonocytic leukaemia (JMML), a rare clonal haematopoietic disorder of childhood, is characterised as a myelodysplastic/myeloproliferative neoplasm. Despite ground-breaking genetic discoveries, JMML remains difficult to diagnose given its diverse clinical features and disease course. A total of 24 patients with JMML were diagnosed and treated at a single institution, and their genetic profiles and association with clinical and laboratory characteristics were analysed. In all, 22 of the patients received allogeneic haematopoietic stem cell transplantation after myeloablative conditioning, mostly from a haploidentical family donor. RAS pathway mutations were identified in 88% of patients: PTPN11 [nine (38%)], NRAS [nine (38%)], KRAS [two (8%)], NF1 [five (21%)] and CBL [one (4%)]. Secondary mutations were found in 25% of patients: SETBP1, JAK3, ASXL1, GATA2, KIT, KDM6A, and BCOR. Six patients showed cytogenetic abnormalities, including three with monosomy 7. The estimated 5-year event-free survival (EFS) and overall survival (± standard error) of the entire cohort were 58·9 (10·9)% and 73·5 (10·8)% respectively. NRAS (+) patients had a higher 5-year EFS than NRAS (-) patients [72·9 (16·5)% vs. 52·5 (13·1)%, P = 0·127]. NRAS (+) patients had a better 5-year EFS than PTPN11 (+) patients [41·7 (17·3)%, P = 0·071]. Our study revealed the genetic characteristics of Korean JMML patients with RAS pathway and secondary mutations.


Assuntos
Leucemia Mielomonocítica Juvenil/genética , Mutação , Criança , Pré-Escolar , Feminino , GTP Fosfo-Hidrolases/genética , Humanos , Lactente , Leucemia Mielomonocítica Juvenil/epidemiologia , Leucemia Mielomonocítica Juvenil/terapia , Masculino , Proteínas de Membrana/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , República da Coreia/epidemiologia
19.
Pediatr Blood Cancer ; 68(4): e28899, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33522704

RESUMO

BACKGROUND: IKZF1deletion is an unfavorable factor in Philadelphia negative (Ph -) B-cell acute lymphoblastic leukemia. However, the effects of IKZF1 deletions co-existing genetic alterations in Ph (-) ALL have not been extensively studied. METHODS: Bone marrow samples from 368 children with Ph (-) ALL were analyzed by using multiplex ligation-dependent probe amplification kit for detection of gene deletions and Sanger sequencing for mutational analysis of RAS pathway genes. The outcome was analyzed on 215 patients treated with Taiwan Pediatric Oncology Group-ALL-2002 protocol. RESULTS: IKZF1 deletions were present in 12.8% and IKZF1plus in 6.3% of patients. Mutations of RAS pathway genes were detected in 25.0% of IKZF1-deleted patients. The 10-year event-free survival (EFS) of IKZF1-undeleted patients was significantly better compared with IKZF1-deleted patients (80.0% vs. 47.8%, p = 0.001). Compared with outcome of patients harboring IKZF1 deletion alone, no difference in EFS was observed in patients with IKZF1plus , whereas three patients carried both IKZF1 and ERG deletions had a superior 10-year EFS (100%). The 10-year EFS of patients with any gene mutation of RAS pathway was worse than that of patients with wild-type genes (79.1% vs. 61.6%, p = 0.033). In multivariate analysis, RAS pathway mutations and IKZF1 deletion were independent predictors of inferior EFS. Co-existence of IKZF1 deletion with RAS pathway mutations had a worst 10-year EFS (11.1 ± 10.5%) and 10-year OS (53.3 ± 17.6%). CONCLUSIONS: Our results showed that RAS pathway mutation is an added-value biomarker in pediatric IKZF1-deleted Ph (-) ALL patients.


Assuntos
Fator de Transcrição Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas ras/genética , Criança , Pré-Escolar , Feminino , Deleção de Genes , Humanos , Lactente , Masculino , Mutação , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo
20.
Biol Pharm Bull ; 44(7): 992-998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34193694

RESUMO

The RAS protein activator like 2 (Rasal2) has been reported to be a tumor suppressor in variety of cancers; while an oncogenic protein in ovarian cancer and triple negative breast cancer (TNBC). However, the exact role of Rasal2 in non-small cell lung cancer (NSCLC) is lacking. This study aimed to investigate the role of Rasal2 in NSCLC and the underlying mechanisms. Rasal2 expression level was measured in NSCLC tissue and cells by using quantitative (q)-PCR and immunoblotting analysis. The clinical implication of Rasal2 in NSCLC patients was also analyzed. The function role of Rasal2 in NSCLC cells were measured by small interfering RNA (si-RNA), immunostaining, transwell assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Low Rasal2 expression level was observed in human NSCLC tissue and cell lines and significantly related to tumor thickness, ulceration and TNM staging in NSCLC patients. Rasal2 knockdown significantly increased NSCLC cell invasion and migration. Mechanistically, we showed that Rasal2 knockdown significantly increased the phosphorylation level of extracellular signal-regulated kinase (ERK)/Raf1/mitogen-activated protein extracellular kinase (MEK) thus activated Ras/ERK signal pathway. Thus, our data showed that Rasal2 is downregulated in NSCLC cells and act as an epithelial-mesenchymal transition (EMT) and metastasis suppressor through the Ras/ERK pathway. Rasal2 may be a prognostic biomarker for NSCLC in the future.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Pulmonares/patologia , Idoso , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Proteínas Ativadoras de GTPase/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa