Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur J Appl Physiol ; 122(10): 2271-2281, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35849183

RESUMO

PURPOSE: The purpose of this study was to investigate associations of muscle quality indices with joint-level power-related measures in the knee extensors of thirty-two older males (65-88 years). METHODS: Muscle quality indices included: echo intensity, ratio of intracellular- to total water content (ICW/TW), and specific muscle strength. Echo intensity was acquired from the rectus femoris (EIRF) and vastus lateralis (EIVL) by ultrasonography. ICW/TW was computed from electrical resistance of the right thigh obtained by bioelectrical impedance spectroscopy. Specific muscle strength was determined as the normalized maximal voluntary isometric knee extension (MVIC) torque to estimated knee extensor volume. Isotonic maximal effort knee extensions with a load set to 20% MVIC torque were performed to obtain the knee extension power-related measures (peak power, rate of power development [RPD], and rate of velocity development [RVD]). Power and RPD were normalized to MVIC. RESULTS: There were no significant correlations between muscle quality indices except between EIRF and EIVL (|r|≤ 0.253, P ≥ 0.162). EIRF was negatively correlated with normalized RPD and RVD (r ≤ - 0.361, P ≤ 0.050). ICW/TW was positively correlated with normalized peak power (r = 0.421, P = 0.020). Specific muscle strength was positively correlated with absolute peak power and RPD (r ≥ 0.452, P ≤ 0.012). CONCLUSION: Knee extension power-related measures were lower in participants with higher EI, lower ICW/TW, and lower specific muscle strength, but the muscle quality indices may be determined by independent physiological characteristics.


Assuntos
Joelho , Força Muscular , Idoso , Humanos , Contração Isométrica/fisiologia , Joelho/fisiologia , Articulação do Joelho , Masculino , Força Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/fisiologia , Torque , Água
2.
J Aging Phys Act ; 27(1): 1-8, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29485309

RESUMO

This study examined the effects of unilateral resistance training (RT) on maximal velocity parameters in the ipsilateral and contralateral legs in young and older males. Young (n = 22; age = 21.55 ± 2.23 years) and older (n = 20; age = 65.10 ± 9.65 years) males were assigned to training or control groups. Unilateral isokinetic RT of the knee extensors was performed for 4 weeks. Peak velocity and acceleration were identified during a dynamic maximal voluntary contraction before (PRE), at Week 2 (MID), and after Week 4 (POST) of RT. Age-independent increases in peak velocity (1.5%) and acceleration (4.5%) were demonstrated at POST for the trained leg. For the untrained leg, acceleration increased (4.3%) at POST similarly between training groups. These findings provide evidence for the high degree of neuromuscular plasticity, regardless of age, during the early phase of RT, and the potential for cross education of acceleration.


Assuntos
Envelhecimento/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido , Adaptação Fisiológica , Idoso , Humanos , Articulação do Joelho/fisiologia , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Adulto Jovem
3.
Sports Health ; : 19417381241257181, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864295

RESUMO

BACKGROUND: Improving muscle quality to prevent and treat muscle dysfunction is critical. However, effective measures to improve muscle quality remain poorly understood. We investigated the effects of high- and low-velocity resistance training (RT) on muscle quality, mass, and function before and after an 8-week intervention. HYPOTHESIS: High-velocity RT would improve muscle quality more effectively than low-velocity RT. STUDY DESIGN: Randomized controlled trial. LEVEL OF EVIDENCE: Level 1. METHODS: A total of 33 healthy young women (23.1 ± 2.2 years) were assigned randomly to high-velocity (n = 16) or low-velocity (n = 17) groups. Both groups underwent concentric knee extension RT with a 60% 1-repetition maximum (1RM) load, performing 10 repetitions of 4 sets, 3 times per week for 8 weeks. The high-velocity group was instructed to complete each repetition as quickly as possible (mean repetition duration of 0.5 seconds), while the low-velocity group was required to execute each repetition in 3 seconds. Before and after the 8-week intervention, quadriceps femoris echo intensity (EI), muscle thickness (MT), isokinetic peak torque (60 and 300 deg/s), rate of velocity development (RVD) at 300 deg/s, and 1RM were assessed. Split-plot factorial design analysis of variance was used to compare the group × time interaction. RESULTS: A group×time interaction was observed for EI (P < 0.01). Only the high-velocity group showed a significant reduction in EI after the intervention. MT revealed a main effect of time (P < 0.01), with both groups significantly increasing MT. RVD showed a group × time interaction (P < 0.05), with significant increase only in the high-velocity group. Isokinetic peak torque and 1RM showed main effects of time (P < 0.01), with significant increases in both groups. CONCLUSION: High-velocity RT may be superior to low-velocity RT in enhancing muscle quality and RVD. CLINICAL RELEVANCE: These results emphasize the importance of RT velocity for muscle quality improvement.

4.
Appl Physiol Nutr Metab ; 48(4): 331-339, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735922

RESUMO

The ability to rapidly generate muscular torque and velocity is important in specialized activities and daily tasks of living. Tendon stiffness is one factor in the neuromuscular system that influences musculoskeletal torque transmission. Previous studies have reported weak-to-moderate correlations between tendon stiffness and rate of torque development (RTD). However, these correlations have been reported only for isometric contractions, which may not be relevant to contractions involving joint rotation (i.e., dynamic). The purpose was to investigate the effect of calcaneal tendon stiffness on the dynamic RTD and rate of velocity development (RVD) in plantar flexor muscles. Young adult males (n = 13) and females (n = 2) performed prone isometric- and isotonic-mode maximal voluntary plantar flexion contractions (MVC). Ultrasound imaging was used to quantify tendon morphological characteristics to estimate Young's elastic modulus (YM). Maximal voluntary and electrically evoked (300 Hz) isometric- and isotonic-mode (at 10% and 40% MVC loads) contractions were evaluated for RTD and RVD through a 25° ankle joint range of motion. YM was correlated with isometric RTD, but only for evoked contractions (RTD0-50 ms: r = 0.54, p = 0.02, RTD0-200 ms: r = 0.62, p = 0.01). Conversely, YM was not correlated with dynamic RTD (voluntary: r = -0.07-0.41, p = 0.06-0.40, evoked: r = -0.2-0.3, p = 0.14-0.24) nor RVD (voluntary: r = -0.08-0.24, p = 0.27-0.40, evoked: r = 0.12-0.3, p = 0.14-0.34). These correlations would indicate that calcaneal tendon stiffness is an important factor for rapid isometric torque development, but less so for isotonic contractions. The determinants of dynamic contractile rates are more complex and warrant further study.


Assuntos
Tendão do Calcâneo , Músculo Esquelético , Masculino , Adulto Jovem , Feminino , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/fisiologia , Contração Muscular/fisiologia , Contração Isométrica/fisiologia , Módulo de Elasticidade , Torque
5.
J Appl Physiol (1985) ; 132(2): 497-510, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35023762

RESUMO

Time-dependent measures consisting of rate of torque development (RTD), rate of velocity development (RVD), and rate of neuromuscular activation can be used to evaluate explosive muscular performance, which becomes critical when performing movements throughout limited ranges of motion (ROM). In this study, we investigated how restricting ROM influences power production while also exploring the relationship with time-dependent measures before and after isometric resistance training. Using a HUMAC NORM dynamometer, seven males (27 ± 7 yr) and six females (22 ± 3 yr) underwent 8 wk of maximal isometric dorsiflexion training 3 days/wk. One leg was trained at 0° [short-muscle tendon unit (MTU) length] and the other at 40° of plantar flexion (long-MTU length). RTD and rate of neuromuscular activation were evaluated during "fast" maximal isometric contractions. Power, RVD, and rate of neuromuscular activation were assessed during maximal isotonic contractions in four conditions [small (40°-30° of plantar flexion) ROM at 10% and 50% MVC; large (40°-0° of plantar flexion) ROM at 10% and 50% MVC] for both legs, pre- and posttraining. Despite no change in rate of neuromuscular activation following training, peak power, RTD, and RVD increased at both MTU lengths (P < 0.05). Strong relationships (R2 = 0.73) were observed between RTD and peak power in the small ROM, indicating that fast time-dependent measures are critical for optimal performance when ROM is constrained. Meanwhile, strong relationships (R2 = 0.90) between RVD and power were observed at the 50% load, indicating that RVD is critical when limited by load and ROM is not confined. Maximal isometric dorsiflexion training can be used to improve time-dependent measures (RTD, RVD) to minimize power attenuation when ROM is restricted.NEW & NOTEWORTHY Power output was greater in the unrestricted than restricted ROM, and there were strong relationships between rate of torque development (RTD) and velocity development (RVD) with peak power. RTD and RVD had the strongest relationships with power when ROM was restricted and unrestricted, respectively. Following 8 wk of isometric training, discrepancies in power between restricted and unrestricted ROM were reduced. Increasing RTD through isometric training increased power in dynamic movements, especially when ROM was restricted.


Assuntos
Contração Isométrica , Músculo Esquelético , Feminino , Humanos , Contração Isométrica/fisiologia , Masculino , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular , Tendões/fisiologia , Torque
6.
Exp Gerontol ; 131: 110819, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31870890

RESUMO

The purposes of this study were to examine the age-related differences in absolute and normalized torque-time parameters in five distinct groups across the adult lifespan, and the relationship between rapid strength and limb acceleration capacities across the lifespan. One-hundred and thirty-six healthy men were categorized as young athletes (n = 27; age = 20.7 yrs), young controls (n = 32; 21.9 yrs), middle young (n = 32; 49.8 yrs), middle old (n = 15; 58.9 yrs), and old (n = 30; 71.3 yrs) cohorts. Participants performed maximal voluntary contractions (MVCs) of the leg extensors under isometric and isokinetic (240 deg.·s-1) conditions. Outcome measures included peak torque (PT), absolute and MVC normalized (norm) rate of torque development (RTD) at 50 and 200 ms, RTD50/PT ratio, and rate of velocity development (RVD). The PT and absolute RTD at 200 ms declined from young to old age (P < .05). The middle age groups exhibited an overall preservation of early RTD, and a potential enhancement of early normalized RTD (P = .06 for middle young vs. controls, for RTDnorm50). The RTD50/PT ratio was higher in the middle young (P < .05) compared to both the young groups. Generally, the RVD declined more linearly and exhibited worse preservation at mid-life than the early absolute or normalized RTD variables. All absolute torque-time variables were correlated (r = 0.43-0.73, P < .001) to the RVD for all groups combined. These findings showed distinct age-related declines occurred for different muscle function parameters unique to specific stages of the lifespan. Normalized RTD variables may reveal plausible mechanisms of age-related neuromuscular changes and the RTD50/PT ratio may be a useful tool for determining relative deficiencies, such that mid-life adults (45-64 yrs) should address their relative limitation of PT by enhancing strength at mid-life, whereas older adults (65+ yrs) may need more emphasis on RTD improvements. In addition, both mid-life and older men should seek to improve rapid limb velocity capacities due to the susceptibility of RVD to decline more incrementally across the lifespan. Such information may help to improve anti-aging strategies by countering age-specific muscle function deficiencies and may improve mid-life adults' ability to transition better functionally into old age.


Assuntos
Contração Isométrica/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Fatores Etários , Idoso , Envelhecimento/fisiologia , Fenômenos Biomecânicos , Humanos , Perna (Membro) , Longevidade , Masculino , Pessoa de Meia-Idade , Torque , Adulto Jovem
7.
Eur J Transl Myol ; 27(2): 6292, 2017 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28713534

RESUMO

This study investigated the effects of low-load high-velocity resistance exercises on neuromuscular and functional outcomes in patients with Type 2 diabetes (T2D) during the early-phase of resistance training. Thirty participants with T2D performed 18 training sessions (6 weeks - 3x week) in one of two groups: low-load high-velocity exercises (LLHV, n=15, 62.1±10.5 years) or recreational activities (RA, n=15 56.7 ± 19.4 years). LLHV performed resistance exercises with 3x 8reps as fast as possible with 50-60% 1RM. RA performed light activities. Strength, power, and functional tests were assessed. There was significant increasing in the knee extension peak-torque at 60°/s (7.6%) and 180°/s (12.2%), rate of force development in the LLHV group (P<0.05), whereas there were no changes in the RA group. Significant increases in functional test were observed in the LLHV group (P<0.01) with no changes in the RA group. In conclusion, the LLHV induced marked improvements in neuromuscular parameters, as well as in the functional capacity of participants with T2D.

8.
J Sports Sci Med ; 5(3): 400-6, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-24353457

RESUMO

ISOKINETIC RANGE OF MOTION (ROM) HAS THREE DISTINCT PHASES: rate of velocity development (RVD), load range (LR), and deceleration (DCC). The purpose of this study was to determine if differences in isokinetic knee extension/flexion LR exist between body positions. Ten subjects (4 males and 6 females, age 29.3 ± 5.4 yrs, ht 1.71 ± 0.10 m, wt 71.9 ± 12.9 kg) volunteered to participate in the seated vs. prone investigation and nine different subjects (4 males and 5 females, age 29.5 ± 6.9 yrs, ht 1.72 ± 0.09 m, wt 69.0 ± 13.8 kg) volunteered to participate in the seated vs. supine study. Each subject completed 3 maximal reciprocal concentric/concentric repetitions of dominant knee extension/flexion on a Biodex System 2 isokinetic dynamometer at 60, 120, 180, 240 and 360 deg·sec(-1) in the supine or prone and seated positions. Repeated measures ANOVA revealed that only seated flexion at 360 deg·sec(-1) (57.6 ± 1.7 degrees) elicited significantly (p < 0.05) greater LR than prone (49.2 ± 2.8 degrees). No significant differences in LR extension or flexion existed at any velocity between the supine vs. seated positions. ANOVA also demonstrated differences between seated vs. prone torque, work and power at most velocities while there was no difference between seated vs. supine. LR is the only phase of an isokinetic repetition where quantifiable resistance is maintained and this data appears to support that it may not be position-dependent but position may alter traditional performance variables. Key PointsLoad range is the constant velocity phase where torque is collected.Load range has an inverse relationship with velocity.Load range may not be position dependent for the knee extensors or flexors.

9.
Exp Gerontol ; 58: 128-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25102339

RESUMO

Declines in muscle strength and power are commonly reported as a consequence of aging; however, few studies have investigated the influence of aging on maximal and rapid velocity characteristics. The objective of this study was to examine the effects of aging on maximal and rapid velocity characteristics of the leg extensor muscles. Twenty-three young (age=25±3yrs) and twenty-one old (72±4yrs) men performed three leg extension maximal voluntary contractions (MVCs) at 240°·s(-1) and at maximum unloaded velocity (Vmax). Vmax was calculated as the highest velocity attained during the unloaded MVC and RVD was the linear slope of the velocity-time curve for the 240deg·s(-1) (RVD240) and maximum unloaded velocity (RVD-Vmax) contractions. The old men exhibited lower (P<0.01) Vmax (10.1%), RVD240 (37.2%), and RVD-Vmax (26.7%) compared to the young men. These lower velocity characteristics for the old men may contribute to the increased functional limitations often observed in older adults. Interestingly, the greater age-related declines observed for RVD240 and RVD-Vmax compared to Vmax perhaps suggest an enhanced age-related impairment in the ability of the older adults' muscle to generate velocity rapidly versus the ability to generate maximal velocity. Such findings highlight the importance of time-dependent velocity measures when assessing the effects of aging on rapid velocity capacities.


Assuntos
Envelhecimento/fisiologia , Contração Muscular , Força Muscular , Músculo Quadríceps/fisiologia , Adulto , Fatores Etários , Idoso , Avaliação Geriátrica , Humanos , Extremidade Inferior , Masculino , Fatores Sexuais , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa