RESUMO
Multiresponsive materials with reversible and durable characteristics are indispensable because of their promising applications in environmental change detections. To fabricate multiresponsive materials in mass production, however, complex reactions and impractical situations are often involved. Herein, a dual responsive (light and pH) spiropyran-based smart sensor fabricated by a simple layer-by-layer (LbL) assembly process from upcycled thermoplastic polyester elastomer (TPEE) materials derived from recycled polyethylene terephthalate (r-PET) is proposed. Positively charged chitosan solutions and negatively charged merocyanine-COOH (MC-COOH) solutions are employed in the LbL assembly technique, forming the chitosan-spiropyran deposited TPEE (TPEE-CH-SP) film. Upon UV irradiation, the spiropyran-COOH (SP-COOH) molecules on the TPEE-CH-SP film undergo the ring-opening isomerization, along with an apparent color change from colorless to purple, to transform into the MC-COOH molecules. By further exposing the TPEE-CH-MC film to hydrogen chloride (HCl) and nitric acid (HNO3) vapors, the MC-COOH molecules can be transformed into protonated merocyanine-COOH (MCH-COOH) with the simultaneous color change from purple to yellow.
RESUMO
INTRODUCTION: Recycled bone autografts prepared using extracorporeal irradiation (ECIR) or liquid nitrogen freezing (LNF) methods have been used for the reconstruction of skeletal elements after wide resection of sarcomas involving bone tissues. Few reports include long-term follow-up data for histological analyses of recycled autografts, particularly in the case of ECIR autografts. MATERIALS: A total of 34 malignant bone and soft tissue tumors were resected and reconstructed using 11 ECIR- and 23 LNF-recycled autografts; the mean postoperative follow-ups were 14 and 8 years, respectively. ECIR was used for either osteosarcomas or Ewing sarcomas, whereas in addition to these tumors LNF was used for chondrosarcomas and soft tissue sarcomas involving bone tissues. Recycled bone was implanted as total bone, osteoarticular, or intercalary grafts, with or without prosthesis or vascularized fibular grafts. RESULTS: The 10-year graft survival rate was similar between groups, 81.8% using ECIR and 70.2% using LNF. There were no autograft-related tumor recurrences in either group. Graft survival was unrelated to type of graft or additional procedures. Complication rates tended to be higher using ECIR (64%) compared with LNF (52%) and the infection rate was significantly higher with ECIR (27%) versus LNF (0%). At the final assessment, plain radiographs revealed original recycled bone was present in 7 of 11 ECIR cases and in zero cases treated with LNF autografts, indicating that recycled bone treated with LNF autografts was remodeled into new bone. Histological examination of ECIR-treated bones revealed a delayed and incomplete endochondral ossification process, necrosis and empty lacunae. Conversely, LNF autografts showed remodeled bones with normal trabecular structures. CONCLUSIONS: ECIR and LNF treatment of autografts provided adequate tumor control with acceptable clinical results as a reconstruction method.
Assuntos
Neoplasias Ósseas , Transplante Ósseo , Nitrogênio , Humanos , Neoplasias Ósseas/cirurgia , Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/patologia , Transplante Ósseo/métodos , Masculino , Feminino , Adulto , Adolescente , Pessoa de Meia-Idade , Criança , Adulto Jovem , Condrossarcoma/cirurgia , Condrossarcoma/radioterapia , Condrossarcoma/patologia , Osteossarcoma/cirurgia , Osteossarcoma/patologia , Osteossarcoma/radioterapia , Sobrevivência de Enxerto , Seguimentos , Sarcoma de Ewing/cirurgia , Sarcoma de Ewing/radioterapia , Sarcoma de Ewing/patologia , Autoenxertos , Sarcoma/cirurgia , Sarcoma/radioterapia , Sarcoma/patologia , Congelamento , Neoplasias de Tecidos Moles/radioterapia , Neoplasias de Tecidos Moles/cirurgia , Neoplasias de Tecidos Moles/patologiaRESUMO
Life-cycle assessment (LCA) is one of the most widely applied methods for sustainability assessment. A main application of LCA is to compare alternative products to identify and promote those that are more environmentally friendly. Such comparative LCA studies often rest on, explicitly or implicitly, an idealized assumption, namely, 1:1 displacement between functionally equivalent products. However, product displacement in the real world is much more complicated, affected by various factors such as the rebound effect and policy schemes. Here, we quantitatively review studies that have considered these aspects to evaluate the magnitude and distribution of realistic displacement estimates across several major product categories (biofuels, electricity, electric vehicles, and recycled products). Results show that displacement ratios concentrate around 40-60%, suggesting considerable overestimation of the benefits of alternative products if the 1:1 displacement assumption was used. Overall, there have been a small number of modeling studies on realistic product displacement and their scopes were limited. Additional research is needed to cover more product categories and geographies and improve the modeling of market and policy complexities. As such research accumulates, their displacement estimates can form a database that can be drawn upon by comparative LCA studies to more accurately determine the environmental impacts of alternative products.
Assuntos
Reciclagem , Biocombustíveis , Modelos Teóricos , Meio AmbienteRESUMO
The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Qualidade da Água , Perfilação da Expressão Gênica , BioensaioRESUMO
Sample preparation is a constantly evolving step in the measurement process with a positive effect on its performance. Its evolution has been marked by an underlying environmental commitment, with simplification, miniaturization, and automation being three of its driving forces. This trends article deepens how the sample preparation can go sustainable through the efficient design of new sorptive materials, either liquid or solid. This objective can be achieved by using natural and/or biodegradable materials as precursors of the functional sorptive phases and by designing materials that simplify the procedures (thus reducing the energy or resources required). Although environmental performance is a crucial aspect of a new material, its applicability is what really defines its incorporation into the sample preparation toolbox. For this reason, their characteristics and more relevant applications will be briefly presented to conclude with the tendency of their use in the very near future.
RESUMO
This study presents an experimental investigation of the mechanical behaviour of recycled rubber pads coated with graphene nanoplatelets. The investigation is part of an effort to develop a novel rubber-based composite that aims to reroute rubber from end-of-life tyres from illegal landfills and incineration back into the market in the form of a novel composite for vibration isolation. Graphene nanoplatelets were deposited on rubber pads via ultrasonic spray coating. The pads were made of a combination of recycled rubber (from tyres) and virgin rubber. A comprehensive analysis of the structural and chemical properties of the graphene coating, ensuring its integrity on the rubber substrate, was performed by combining surface topography, Raman and Fourier-transform infrared (FTIR) spectroscopy. Stacked coated pads were cured and tested dynamically in compression and shear under cyclic loading. Results showed promising improvements in the mechanical properties, in particular, in compressive stiffness and damping of the coated specimens with respect to their uncoated counterparts, laying the foundation for using graphene-enhanced recycled rubber as a novel composite.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.
RESUMO
Polyethelene terephthalate (PET) is a well-known thermoplastic, and recycling PET waste is important for the natural environment and human health. This study provides a comprehensive overview of the recycling and reuse of PET waste through energy recovery and physical, chemical, and biological recycling. This article summarizes the recycling methods and the high-value products derived from PET waste, specifically detailing the research progress on regenerated PET prepared by the mechanical recycling of fiber/yarn, fabric, and composite materials, and introduces the application of PET nanofibers recycled by physical dissolution and electrospinning in fields such as filtration, adsorption, electronics, and antibacterial materials. This article explains the energy recovery of PET through thermal decomposition and comprehensively discusses various chemical recycling methods, including the reaction mechanisms, catalysts, conversion efficiencies, and reaction products, with a brief introduction to PET biodegradation using hydrolytic enzymes provided. The analysis and comparison of various recycling methods indicated that the mechanical recycling method yielded PET products with a wide range of applications in composite materials. Electrospinning is a highly promising recycling strategy for fabricating recycled PET nanofibers. Compared to other methods, physical recycling has advantages such as low cost, low energy consumption, high value, simple processing, and environmental friendliness, making it the preferred choice for the recycling and high-value utilization of waste PET.
Assuntos
Polietilenotereftalatos , Reciclagem , Polietilenotereftalatos/química , Reciclagem/métodos , Biodegradação AmbientalRESUMO
Recovery of carbon fibres and resin from wind turbine blade waste (WTB) composed of carbon fibres (CF)-reinforced unsaturated polyester resin (UPR) has been environmentally challenging due to its complex structure that is not biodegradable and that is rich in highly toxic styrene (main component of UPR). Within this framework, this paper aims to liberate CF and UPR from WTB using a pyrolysis process. The treatment was performed on commercial WTB (CF/UPR) up to 600 °C using a 250 g reactor. The UPR fraction was decomposed into liquid and gaseous phases, while CF remained as a residue. The composition of gaseous phase was monitored during the entire treatment using a digital gas analyser, while gas chromatography-mass spectrometry (GC-MS) was used to characterize the collected liquid phase. CF fraction was collected and exposed to additional oxidation process after treatment at 450 °C for purification propose, then it was analysed using FTIR and SEM-EDX. Finally, the life cycle assessment (LCA) of the CF/UPR pyrolysis was studied using SimaPro software and the results were compared with landfill disposal practices. The pyrolysis results manifested that 500 °C was sufficient for UPR decomposition into styrene-rich oil and gaseous products with yields of 15.23 wt% and 6.83 wt%, respectively, accompanied by 77.93 wt% solid residue including CF. The LCA results showed that pyrolysis with oxidation process has high environmental potential in WTB recycling with significant reduction in several impact categories compared to landfill. However, the pyrolysis scenario revealed several additional environmental burdens related to ecosystems, acidification, Ozone formation, and fine particulate matter formation that must be overcome before upscaling.
Assuntos
Ecossistema , Pirólise , Fibra de Carbono , Poliésteres , Estireno , CarbonoRESUMO
This investigation assesses the embodied energy and carbon footprint in the manufacture of pavers using varying proportions of recycled Construction and Demolition Waste (CDW). Additionally, Thin Film Composite Polyamide fiber (TFC PA), extracted from end-of-life Reverse Osmosis (RO) membranes, is introduced as an additive to enhance the concrete's strength. Machine learning techniques, namely Artificial Neural Network (ANN), Support Vector Regression (SVR), and Response Surface Methodology (RSM), are employed to predict the mechanical properties of pavers. The study focuses on examining the energy required and embodied carbon in various mix proportions, as well as the mechanical properties-specifically compressive strength and split tensile strength of concrete with different CDW and TFC PA proportions. Findings reveal that the optimal percentage of TFC PA is 3 % for all CDW replacement proportions, resulting in low carbon content both in terms of energy and embodiment and in mechanical behavior. The implementation of ANN and SVR is conducted in MATLAB, while a Design Expert is employed to generate the experimental design for RSM. The RSM regression model demonstrates a robust correlation between variables and observed outcomes, with optimal p-values, R2 values, and f-values. The ANN model successfully captures the variability in the data. Additionally, the findings indicate a consistent superiority of the Support Vector Regression (SVR) model over both Artificial Neural Network (ANN) and Response Surface Model (RSM) models when considering diverse performance metrics such as residuals and correlation coefficients.
Assuntos
Carbono , Materiais de Construção , Resíduos Industriais/análise , Reciclagem/métodos , FiltraçãoRESUMO
Nanocomposite microbeads (average diameter = 10-100 µm) were prepared by a microemulsion-solidification method and applied to the magnetic solid-phase extraction (m-SPE) of fourteen analytes, among pesticides, drugs, and hormones, from human urine samples. The microbeads, perfectly spherical in shape to maximize the surface contact with the analytes, were composed of magnetic nanoparticles dispersed in a polylactic acid (PLA) solid bulk, decorated with multi-walled carbon nanotubes (mPLA@MWCNTs). In particular, PLA was recovered from filters of smoked electronic cigarettes after an adequate cleaning protocol. A complete morphological characterization of the microbeads was performed via Fourier-transform infrared (FTIR) spectroscopy, UV-Vis spectroscopy, thermogravimetric and differential scanning calorimetry analysis (TGA and DSC), scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The recovery study of the m-SPE procedure showed yields ≥ 64%, with the exception of 4-chloro-2-methylphenol (57%) at the lowest spike level (3 µg L-1). The method was validated according to the main FDA guidelines for the validation of bioanalytical methods. Using liquid chromatography-tandem mass spectrometry, precision and accuracy were below 11% and 15%, respectively, and detection limits of 0.1-1.8 µg L-1. Linearity was studied in the range of interest 1-15 µg L-1 with determination coefficients greater than 0.99. In light of the obtained results, the nanocomposite microbeads have proved to be a valid and sustainable alternative to traditional sorbents, offering good analytical standards and being synthetized from recycled plastic material. One of the main objectives of the current work is to provide an innovative and optimized procedure for the recycling of a plastic waste, to obtain a regular and reliable microstructure, whose application is here presented in the field of analytical chemistry. The simplicity and greenness of the method endows the procedure with a versatile applicability in different research and industrial fields.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nanocompostos , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Xenobióticos , Microesferas , Poliésteres , Extração em Fase Sólida/métodos , Nanocompostos/química , Fenômenos MagnéticosRESUMO
Recycled carbon fibre (rCF) composites are increasingly being explored for applications such as strain sensing, manufacturing of automobile parts, assistive technologies, and structural health monitoring due to their properties and economic and environmental benefits. The high conductivity of carbon and its wide application for sensing makes rCF very attractive for integrating sensing into passive structures. In this paper, capacitive sensors have been fabricated using rCF composites of varying compositions. First, we investigated the suitability of recycled carbon fibre polymer composites for different sensing applications. As a proof of concept, we fabricated five touch/proximity sensors and three soil moisture sensors, using recycled carbon fibre composites and their performances compared. The soil moisture sensors were realised using rCF as electrodes. This makes them corrosion-resistant and more environmental-friendly, compared to conventional soil moisture sensors realised using metallic electrodes. The results of the touch/proximity sensing show an average change in capacitance (ΔC/C~34) for 20 mm and (ΔC/C~5) for 100 mm, distances of a hand from the active sensing region. The results of the soil moisture sensors show a stable and repeatable response, with a high sensitivity of ~116 pF/mL of water in the linear region. These results demonstrate their respective potential for touch/proximity sensing, as well as smart and sustainable agriculture.
RESUMO
Ternary alkali-activated binder was prepared by blast furnace slag (GGBS), recycled powder (RP) and waste glass powder (WGP) using simplex centroid design method. By measuring the fluidity, setting time, drying shrinkage and mechanical property of specimen, the complementary effect of GGBS, RP and WGP was discussed. The reaction mechanism and microstructure were explored by X-ray diffraction and scanning electron microscopy. The results reveal that the addition of RP could significantly reduce the fluidity and setting time of paste, while WGP can obviously improve the rheological property and play a retarding role. The workability of paste can be effectively regulated by mixing RP and WGP together. Whether added alone or in combination, RP and WGP can effectively improve the shrinkage performance. In the ternary system, GGBS can be rapidly activated and form a skeleton structure. The fine RP particles can play a good role in filling the structure, and the pozzolanic reaction of WGP gradually occurs, which makes the microstructure more compact. The incorporation of GGBS, RP and WGP can promote the growth of hydration products, improve the density of microstructure, and form a certain complementary effect.
Assuntos
Álcalis , Vidro , Pós , Reciclagem , Vidro/química , Álcalis/química , Difração de Raios X , Microscopia Eletrônica de VarreduraRESUMO
With the continuous advancement of urban renewal, the application of recycled aggregates (RA) is a win-win measure to solve the treatment of construction waste and provide the required building materials. However, the existence of a large amount of old adhesive mortar (OAM) makes it difficult for RA to equivalently replace natural aggregates (NA) due to their higher water absorption and crushing index, as well as a lower apparent density. From the published literature on enhancing RA, the most mature and easiest method for construction is physical enhancement technology. Therefore, through a review of recent related researches, this article summarizes and compares the modification effects of mechanical grinding technology, traditional heating and grinding technology, and microwave heating technology on the physical properties of RA, including water absorption, apparent density, and crushing value. The related modification mechanisms were discussed. Additionally, the impacts of different physical enhancement technologies on the environment and economy effects are assessed from the perspectives of carbon emissions and cost required during processing. Based on multi-criteria analysis, microwave heating technology is more efficient and cleaner, which is the most recommended in the future.
Assuntos
Resíduos Industriais , Reciclagem , Resíduos Industriais/análise , Reciclagem/métodos , Materiais de Construção , Água , Desempenho Físico FuncionalRESUMO
This paper presents an overview of the scholarly works employing the life cycle assessment (LCA) approach to evaluate the environmental impact of construction and demolition waste (CDW) fine fractions derived from concrete elements throughout their life cycle. Unlike conventional studies, this work addresses the challenge of reducing the carbon footprint associated with CDW-based building materials, emphasizing environmental impact mitigation. The study highlights that approximately 30% of CDW is landfilled, 50% is recycled, and 20% is used as fill material, underscoring the potential for increasing recycling rates through improved processing techniques and management practices. In the reviewed studies, most research has been conducted in Europe, Asia, the USA, and China. The primary and secondary data sources for the life cycle inventory (LCI) vary depending on the study region and locality. By exploring innovative practices and critical stages in CDW fine fractions utilization for concrete components, the study aims to contribute to greener construction practices and sustainable resource management. The distinctive aspect of this research lies in its comprehensive review of CDW-based aggregates, binders, and alternative cementitious materials, highlighting the significance of sustainable energy resources and transportation strategies in enhancing the sustainability of CDW-derived concrete. Key findings highlight the necessity of sustainable energy for pretreatment and optimized transportation strategies, including route planning and vehicle selection, to produce greener CDW fine fraction-based building materials. Additionally, the study suggests key steps and parameters required for defining the system boundary and preparing the inventory for conducting an LCA of building materials based on CDW fine fractions. Through a detailed analysis of environmental burdens at each production stage, this study seeks to promote the adoption of greener concrete solutions worldwide. The use of CDW in concrete production promotes environmental sustainability and greener concrete regardless of the region.
Assuntos
Materiais de Construção , Reciclagem , Gerenciamento de Resíduos/métodos , Conservação dos Recursos NaturaisRESUMO
This study proposed a data driven approach to predict the compressive strength (CS) of recycled aggregate concrete (RAC) for sustainable construction using an elite single genetic optimization algorithm-based cascade forward neural network (ESGA-CFNN) model. It was applied to 272 RAC samples under different conditions and compositions focusing on key parameters for CS prediction: water-to-cement ratio (WCR), water absorption (WA), recycled coarse aggregate (RCA) density, fine aggregate (FA) density, naturally occurring coarse aggregate (NCA) density and water-to-total material ratio (WTMR). These parameters were used to develop the ESGA-CFNN model which was then evaluated for its performance. To compare the ESGA-CFNN model, two other models were developed and compared: particle swarm optimization-based CFNN (PSO-CFNN) and artificial bee colony-based CFNN (ABC-CFNN). K-fold cross-validation was used during model development to prevent overfitting. Results showed that ESGA-CFNN model performed better with an RMSE (root-mean-squared error) of 1.144, R2 (determination coefficient) of 0.991 and a10-index of 1.000. ABC-CFNN model had an RMSE of 1.434, R2 of 0.987 and a10-index of 0.982 while PSO-CFNN had an RMSE of 1.561, R2 of 0.984 and a10-index of 0.982. Practical validation with 6 RAC samples confirmed the real world applicability of these models. The findings of this study showed that the proposed ESGA-CFNN model is important for quality control in RAC production and optimizing mix designs to achieve required compressive strength to meet standards and reduce cost and increase sustainability in concrete construction. This study introduces a novel hybrid approach combining ESGA-CFNN, PSO-CFNN, and ABC-CFNN algorithms for accurately predicting the compressive strength of RAC. These models outperform traditional methodologies by offering enhanced predictive accuracy and generalization capability, especially in complex, real-world datasets.
RESUMO
The impact of degradation on plastics is a critical factor influencing their properties and behavior, particularly evident in polyethylene (PE) and polypropylene (PP) and their blends. However, the effect of photoaging and thermal degradation, specifically within recycled polyethylene (rPE) and recycled polypropylene (rPP), on the thermo-mechanical and thermostability aspects of these blends remains unexplored. To address this gap, a range of materials, including virgin polyethylene (vPE), recycled polyethylene (rPE), virgin polypropylene (vPP), recycled polypropylene (rPP), and their blends with different ratios, were comprehensively investigated. Through a systematic assessment encompassing variables such as melting flow index (MFI), functional groups, mechanical traits, crystallization behavior, microscopic morphology, and thermostability, it was found that thermo-oxidative degradation generated hydroxyl and carboxyl functional groups in rPE and rPP. Optimal mechanical properties were achieved with a 6:4 mass ratio of rPE to rPP, as validated by FTIR spectroscopy and microscopic morphology. By establishing the chemical model, the changes in the system with an rPE-rPP ratio of 6:4 and 8:2 were monitored by the molecular simulation method. When the rPE-rPP ratio was 6:4, the system's energy was lower, and the number of hydrogen bonds was higher, which also confirmed the above experimental results. Differential scanning calorimetry revealed an increased crystallization temperature in rPE, a reduced crystallization peak area in rPP, and a diminished crystallization capacity in rPE/rPP blends, with rPP exerting a pronounced influence. This study plays a pivotal role in enhancing recycling efficiency and reducing production costs for waste plastics, especially rPE and rPP-the primary components of plastic waste. By uncovering insights into the degradation effects and material behaviors, our research offers practical pathways for more sustainable waste management. This approach facilitates the optimal utilization of the respective performance characteristics of rPE and rPP, enabling the development of highly cost-effective rPE/rPP blend materials and promoting the efficient reuse of waste materials.
RESUMO
To solve the decrease in the crystallization, mechanical and thermal properties of recycled polyethylene terephthalate (rPET) during mechanical recycling, the aromatic amide fatty acid salt nucleating agents Na-4-ClBeAmBe, Na-4-ClBeAmGl and Na-4-ClAcAmBe were synthesized and the rPET/nucleating agent blend was prepared by melting blending. The molecular structure, the thermal stability, the microstructure and the crystal structure of the nucleating agent were characterized in detail. The differential scanning calorimetry (DSC) result indicated that the addition of the nucleating agent improved the crystallization temperature and accelerated the crystallization rate of the rPET. The nucleation efficiencies (NE) of the Na-4-ClBeAmBe, Na-4-ClBeAmGl and Na-4-ClAcAmBe were increased by 87.2%, 87.3% and 41.7% compared with rPET which indicated that Na-4-ClBeAmBe and Na-4-ClBeAmGl, with their long-strip microstructures, were more conducive to promoting the nucleation of rPET. The equilibrium melting points (Tm0) of rPET/Na-4-ClBeAmBe, rPET/Na-4-ClBeAmGl and rPET/Na-4-ClAcAmBe were increased by 11.7 °C, 18.6 °C and 1.9 °C compared with rPET, which illustrated that the lower mismatch rate between rPET and Na-4-ClBeAmGl (0.8% in b-axis) caused Na-4-ClBeAmGl to be the most capable in inducing the epitaxial crystallization and orient growth along the b-axis direction of the rPET. The small angle X-ray diffraction (SAXS) result proved this conclusion. Meanwhile, the addition of Na-4-ClBeAmGl caused the clearest increase in the rPET of its flexural strength and heat-distortion temperature (HDT) at 20.4% and 46.7%.
RESUMO
Cellulose was isolated from recycled pulp and paper sludge and used to synthesize cellulose nanocrystals. Response surface methodology and Box-Behnken design model were used to predict, improve, and optimize the cellulose isolation process. The optimal conditions were a reaction temperature of 87.5 °C, 180 min with 4% sodium hydroxide. SEM and TEM results revealed that the isolated cellulose had long rod-like structures of different dimensions than CNCs with short rod-like structures. The crystallinity index from XRD significantly increased from 41.33%, 63.7%, and 75.6% for Kimberly mill pulp sludge (KMRPPS), chemically purified cellulose and cellulose nanocrystals, respectively. The TGA/DTG analysis showed that the isolated cellulosic materials possessed higher thermal stability. FTIR analysis suggested that the chemical structures of cellulose and CNCs were modified by chemical treatment. The cellulose surface was highly hydrophilic compared to the CNCs based on the high water holding capacity of 65.31 ± 0.98% and 83.14 ± 1.22%, respectively. The synthesized cellulosic materials portrayed excellent properties for high-end industrial applications like biomedical engineering, advanced materials, nanotechnology, sustainable packaging, personal care products, environmental remediation, additive manufacturing, etc.
Assuntos
Nanopartículas , Esgotos , Celulose/química , Temperatura , Água/química , Nanotecnologia , Nanopartículas/químicaRESUMO
The present study examines the current practices for managing construction and demolition waste (CDW) in two tier-2 cities of Karnataka state: Hubli-Dharwad and Davanagere. The research highlights the quantification, characterization, and effective management strategies for CDW. CDW dumping sites were identified through field visits conducted across all wards of the cities and recorded using a mobile-based app. At each site, data were collected on the types of vehicles dumping CDW, the frequency of dumping, the volume of waste in the vehicles, and the quantity of CDW removed for reuse. The dumping sites were categorized into large, medium, and small based on the area and volume of waste. In total, 130 unauthorised dumping sites were identified in Hubli-Dharwad and 62 in Davanagere. The study estimated that Hubli-Dharwad generates approximately 607 tonnes per day (TPD) of CDW, while Davanagere produces around 287 TPD. The characterization of CDW revealed that in Hubli-Dharwad, CDW consists of 14.4% concrete, 25.5% brick and mortar, 39.1% soil and aggregates, and 20% other materials. In Davanagere, the composition includes 19% concrete, 29% brick and mortar, 38% soil, and 14% other materials. Based on these findings, the study proposes a system for the collection and transportation of CDW and recommends suitable recycling technologies. While the approach outlined in this paper is well-suited for urban local bodies to assess CDW, the data on CDW reuse and recycling is primarily based on informal practices. This makes accurate quantification challenging and subject to variation over time due to a lack of regulatory oversight. Additionally, the study provides only a snapshot of CDW generation and management at a specific point in time, potentially missing seasonal variations or long-term trends in waste handling.
Assuntos
Cidades , Materiais de Construção , Monitoramento Ambiental , Gerenciamento de Resíduos , Índia , Gerenciamento de Resíduos/métodos , Monitoramento Ambiental/métodos , Indústria da Construção , Reciclagem , Resíduos Industriais , Eliminação de Resíduos/métodosRESUMO
Recycled manure solids has emerged as a promising alternative for animal bedding, owing to its economic feasibility, ready availability on farms, and soft, non-abrasive nature. This research aimed to assess the impact of recycled manure solids (RMS) bedding, combined with a conditioner containing 7.5% lime and 6% sodium hydrosulphate, on dairy cow welfare and gait kinematics over three months. Hock and knee injury scores, lameness incidence, and gait kinematic parameters were evaluated for animals housed on cement flooring (Control), RMS bedding (Treatment I), and conditioner-added RMS bedding (Treatment II) on days 0, 45, and 90 of the experiment with six crossbred cows in each group. The results revealed a significant reduction (p < 0.05) in lameness scores (5-point scale) for animals in both the RMS and conditioner-added RMS groups, with scores of 1.09 ± 0.05 and 1.04 ± 0.03, respectively, compared to those on cement floors. Moreover, a noteworthy decrease (p < 0.05) in knee and hock injury scores (4-point scale) was observed in the RMS groups, indicating a potentially positive impact on joint health. Gait kinematic analysis demonstrated that animals in the RMS (1.03 ± 0.04 m/s) and conditioner-added RMS (1.02 ± 0.06 m/s) groups exhibited higher walking speeds and increased step angles (158.59 ± 4.82° and 149.58 ± 3.85°) compared to their cement-floor counterparts. No significant changes (p > 0.05) were observed in stride length, step asymmetry, step length, and step width. The study concluded that the conditioner incorporated recycled manure solids resulting in a substantial decrease in lameness incidence and a reduction in hock and knee injuries among dairy cows. Additionally, the improved gait kinematics observed in non-lame animals suggest that this bedding combination positively influences overall animal well-being. These findings underscore the potential of sustainable bedding practices to enhance both physical health and locomotor behaviour in dairy cattle.