Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 238: 315-322, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30852408

RESUMO

The focus of this research was to synthesize novel clay-biochar composites by incorporating montmorillonite (MMT) and red earth (RE) clay materials in a municipal solid waste (MSW) biochar for the adsorptive removal of tetracycline (TC) from aqueous media. X-ray Fluorescence Analysis (XRF), Fourier Transform Infrared Spectroscopy (FTIR), Powder X-ray Diffraction (PXRD) and Scanning Electron Microscopy (SEM) were used for the characterization of the synthesized raw biochar (MSW-BC) and clay-biochar composites (MSW-MMT and MSW-RE). Results showed that minute clay particles were dispersed on biochar surfaces. The FTIR bands due to Si-O functional group vibrations in the spectra of the clay-biochar composites provided further evidence for successful composite formation. The kinetic TC adsorption data of MSW-MMT were well fitted to the Elovich model expressing high surface activity of biochar and involvement of multiple mechanisms in the adsorption. The kinetic TC adsorption data of MSW-BC and MSW-RE were fitted to the pseudo second order model indicating dominant contribution of chemisorption mechanism during the adsorption. The adsorption differentiation obtained in the kinetic studies was mainly due to the structure of the combined clay material. The adsorption isotherm data of all the adsorbents were well fitted to the Freundlich model suggesting that the adsorption of TC onto the materials occurred via both physisorption and chemisorption mechanisms. In comparison to the raw biochar and MSW-RE, MSW-MMT exhibited higher TC adsorption capacity. Therefore, MSW-MMT clay-biochar composite could be applied in the remediation of TC antibiotic residues in contaminated aqueous media.


Assuntos
Argila , Poluentes Químicos da Água , Adsorção , Antibacterianos , Carvão Vegetal , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
2.
MethodsX ; 7: 100804, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33457213

RESUMO

This study was carried out to investigate Pb (II) and Zn (II) removal from aqueous solutions by Red Earth (RE) as a new local natural adsorbent in using the batch method. The chemical structure of RE adsorbent was characterized by XRF. Giles, Langmuir, and Freundlich isotherms were used to describe the adsorption data. The effect of metals concentration, initial pH, adsorbent dosage, and agitation time were studied. The results showed that RE contains of SiO2 (58 %) and Al2O3 (15.2 %) as major compounds. The equilibrium time was reached following 30 min and the maximum adsorption capacities (mg/g), based on Langmuir equation were 10.31 and 8.74 for Pb (II) and Zn (II), respectively. By increasing the initial metal ions concentration, the adsorption efficiencies were decreased and adsorption capacity of RE increased with an increase in the initial pH.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa