RESUMO
The amount of ocean protected from fishing and other human impacts has often been used as a metric of conservation progress. However, protection efforts have highly variable outcomes that depend on local conditions, which makes it difficult to quantify what coral reef protection efforts to date have actually achieved at a global scale. Here, we develop a predictive model of how local conditions influence conservation outcomes on ~2,600 coral reef sites across 44 ecoregions, which we used to quantify how much more fish biomass there is on coral reefs compared to a modeled scenario with no protection. Under the assumptions of our model, our study reveals that without existing protection efforts there would be ~10% less fish biomass on coral reefs. Thus, we estimate that coral reef protection efforts have led to approximately 1 in every 10 kg of existing fish biomass.
Assuntos
Biomassa , Conservação dos Recursos Naturais , Recifes de Corais , Peixes , Animais , Peixes/fisiologia , Conservação dos Recursos Naturais/métodos , HumanosRESUMO
Climate change projections for coral reefs are founded exclusively on sea surface temperatures (SST). While SST projections are relevant for the shallowest reefs, neglecting ocean stratification overlooks the striking differences in temperature experienced by deeper reefs for all or part of the year. Density stratification creates a buoyancy barrier partitioning the upper and lower parts of the water column. Here, we mechanistically downscale climate models and quantify patterns of thermal stratification above mesophotic corals (depth 30 to 50 m) of the Great Barrier Reef (GBR). Stratification insulates many offshore regions of the GBR from heatwaves at the surface. However, this protection is lost once global average temperatures exceed ~3 °C above preindustrial, after which mesophotic temperatures surpass a recognized threshold of 30 °C for coral mortality. Bottom temperatures on the GBR (30 to 50 m) from 2050 to 2060 are estimated to increase by ~0.5 to 1 °C under lower climate emissions (SSP1-1.9) and ~1.2 to 1.7 °C under higher climate emissions (SSP5-8.5). In short, mesophotic coral reefs are also threatened by climate change and research might prioritize the sensitivity of such corals to stress.
Assuntos
Antozoários , Mudança Climática , Animais , Recifes de Corais , Temperatura , Água , EcossistemaRESUMO
Environmental DNA (eDNA) metabarcoding has the potential to revolutionize conservation planning by providing spatially and taxonomically comprehensive data on biodiversity and ecosystem conditions, but its utility to inform the design of protected areas remains untested. Here, we quantify whether and how identifying conservation priority areas within coral reef ecosystems differs when biodiversity information is collected via eDNA analyses or traditional visual census records. We focus on 147 coral reefs in Indonesia's hyper-diverse Wallacea region and show large discrepancies in the allocation and spatial design of conservation priority areas when coral reef species were surveyed with underwater visual techniques (fishes, corals, and algae) or eDNA metabarcoding (eukaryotes and metazoans). Specifically, incidental protection occurred for 55% of eDNA species when targets were set for species detected by visual surveys and 71% vice versa. This finding is supported by generally low overlap in detection between visual census and eDNA methods at species level, with more overlap at higher taxonomic ranks. Incomplete taxonomic reference databases for the highly diverse Wallacea reefs, and the complementary detection of species by the two methods, underscore the current need to combine different biodiversity data sources to maximize species representation in conservation planning.
Assuntos
Antozoários , DNA Ambiental , Animais , Recifes de Corais , Ecossistema , DNA Ambiental/genética , Biodiversidade , Antozoários/genética , Peixes , Código de Barras de DNA TaxonômicoRESUMO
In 1983 to 1984, a mass mortality event caused a Caribbean-wide, >95% population reduction of the echinoid grazer, Diadema antillarum. This led to blooms of algae contributing to the devastation of scleractinian coral populations. Since then, D. antillarum exhibited only limited and patchy population recovery in shallow water, and in 2022 was struck by a second mass mortality reported over many reef localities in the Caribbean. Half-a-century time-series analyses of populations of this sea urchin from St. John, US Virgin Islands, reveal that the 2022 event has reduced population densities by 98.00% compared to 2021, and by 99.96% compared to 1983. In 2021, coral cover throughout the Caribbean was approaching the lowest values recorded in modern times. However, prior to 2022, locations with small aggregations of D. antillarum produced grazing halos in which weedy corals were able to successfully recruit and become the dominant coral taxa. The 2022 mortality has eliminated these algal-free halos on St. John and perhaps many other regions, thereby increasing the risk that these reefs will further transition into coral-free communities.
Assuntos
Antozoários , Recifes de Corais , Animais , Região do Caribe , Dinâmica Populacional , Ouriços-do-MarRESUMO
Corals are a major habitat-building life-form on tropical reefs that support a quarter of all species in the ocean and provide ecosystem services to millions of people. Marine heat waves continue to threaten and shape reef ecosystems by killing individual coral colonies and reducing their diversity. However, marine heat waves are spatially and temporally heterogeneous, and so too are the environmental and biological factors mediating coral resilience during and following thermal events. This combination results in highly variable outcomes at both the coral bleaching and mortality stages of every event. This, in turn, impedes the assessment of changing reef-scale patterns of thermal tolerance or places of resistance known as reef refugia. We developed a large-scale, high-resolution coral mortality monitoring capability based on airborne imaging spectroscopy and applied it to a major marine heat wave in the Hawaiian Islands. While water depth and thermal stress strongly mediated coral mortality, relative coral loss was also inversely correlated with preheat-wave coral cover, suggesting the existence of coral refugia. Subsequent mapping analyses indicated that potential reef refugia underwent up to 40% lower coral mortality compared with neighboring reefs, despite similar thermal stress. A combination of human and environmental factors, particularly coastal development and sedimentation levels, differentiated resilient reefs from other more vulnerable reefs. Our findings highlight the role that coral mortality mapping, rather than bleaching monitoring, can play for targeted conservation that protects more surviving corals in our changing climate.
Assuntos
Antozoários , Animais , Antozoários/fisiologia , Conservação dos Recursos Naturais , Recifes de Corais , Ecossistema , Temperatura Alta , Refúgio de Vida SelvagemRESUMO
Rapid diversification is often observed when founding species invade isolated or newly formed habitats that provide ecological opportunity for adaptive radiation. However, most of the Earth's diversity arose in diverse environments where ecological opportunities appear to be more constrained. Here, we present a striking example of a rapid radiation in a highly diverse marine habitat. The hamlets, a group of reef fishes from the wider Caribbean, have radiated into a stunning diversity of color patterns but show low divergence across other ecological axes. Although the hamlet lineage is â¼26 My old, the radiation appears to have occurred within the last 10,000 generations in a burst of diversification that ranks among the fastest in fishes. As such, the hamlets provide a compelling backdrop to uncover the genomic elements associated with phenotypic diversification and an excellent opportunity to build a broader comparative framework for understanding the drivers of adaptive radiation. The analysis of 170 genomes suggests that color pattern diversity is generated by different combinations of alleles at a few large-effect loci. Such a modular genomic architecture of diversification has been documented before in Heliconius butterflies, capuchino finches, and munia finches, three other tropical radiations that took place in highly diverse and complex environments. The hamlet radiation also occurred in a context of high effective population size, which is typical of marine populations. This allows for the accumulation of new variants through mutation and the retention of ancestral genetic variation, both of which appear to be important in this radiation.
Assuntos
Adaptação Biológica/fisiologia , Peixes/genética , Adaptação Biológica/genética , Alelos , Animais , Evolução Biológica , Região do Caribe , Recifes de Corais , Ecossistema , Meio Ambiente , Peixes/metabolismo , Especiação Genética , Genoma , Filogenia , Pigmentação da Pele/genéticaRESUMO
Ecological regime shifts are expected to increase this century as climate change propagates cascading effects across ecosystems with coupled elements. Here, we demonstrate that the climate-driven salt marsh-to-mangrove transition does not occur in isolation but is linked to lesser-known oyster reef-to-mangrove regime shifts through the provision of mangrove propagules. Using aerial imagery spanning 82 y, we found that 83% of oyster reefs without any initial mangrove cover fully converted to mangrove islands and that mean (± SD) time to conversion was 29.1 ± 9.6 y. In situ assessments of mangrove islands suggest substantial changes in ecosystem structure during conversion, while radiocarbon dates of underlying reef formation indicate that such transitions are abrupt relative to centuries-old reefs. Rapid transition occurred following release from freezes below the red mangrove (Rhizophora mangle) physiological tolerance limit (-7.3 °C) and after adjacent marsh-to-mangrove conversion. Additional nonclimate-mediated drivers of ecosystem change were also identified, including oyster reef exposure to wind-driven waves. Coupling of regime shifts arises from the growing supply of mangrove propagules from preceding and adjacent marsh-to-mangrove conversion. Climate projections near the mangrove range limit on the Gulf coast of Florida suggest that regime shifts will begin to transform subtropical estuaries by 2070 if propagule supply keeps pace with predicted warming. Although it will become increasingly difficult to maintain extant oyster habitat with tropicalization, restoring oyster reefs in high-exposure settings or active removal of mangrove seedlings could slow the coupled impacts of climate change shown here.
Assuntos
Mudança Climática , Ecossistema , Estuários , Animais , Temperatura Baixa , Ostreidae , Rhizophoraceae/fisiologia , Plântula , Áreas AlagadasRESUMO
Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts' microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.
Assuntos
Ecossistema , Microbiota , Plantas , Animais , Bactérias , Plantas/microbiologiaRESUMO
Extracellular chemical cues constitute much of the language of life among marine organisms, from microbes to mammals. Changes in this chemical pool serve as invisible signals of overall ecosystem health and disruption to this finely tuned equilibrium. In coral reefs, the scope and magnitude of the chemicals involved in maintaining reef equilibria are largely unknown. Processes involving small, polar molecules, which form the majority components of labile dissolved organic carbon, are often poorly captured using traditional techniques. We employed chemical derivatization with mass spectrometry-based targeted exometabolomics to quantify polar dissolved phase metabolites on five coral reefs in the U.S. Virgin Islands. We quantified 45 polar exometabolites, demonstrated their spatial variability, and contextualized these findings in terms of geographic and benthic cover differences. By comparing our results to previously published coral reef exometabolomes, we show the novel quantification of 23 metabolites, including central carbon metabolism compounds (e.g., glutamate) and novel metabolites such as homoserine betaine. We highlight the immense potential of chemical derivatization-based exometabolomics for quantifying labile chemical cues on coral reefs and measuring molecular level responses to environmental stressors. Overall, improving our understanding of the composition and dynamics of reef exometabolites is vital for effective ecosystem monitoring and management strategies.
Assuntos
Recifes de Corais , Metabolômica , Animais , Metabolômica/métodos , Metaboloma , Ilhas Virgens Americanas , Antozoários/metabolismo , Antozoários/química , Espectrometria de Massas/métodos , Ecossistema , Carbono/metabolismo , Carbono/químicaRESUMO
Ecosystem recovery from human-induced disturbances, whether through natural processes or restoration, is occurring worldwide. Yet, recovery dynamics, and their implications for broader ecosystem management, remain unclear. We explored recovery dynamics using coral reefs as a case study. We tracked the fate of 809 individual coral recruits that settled after a severe bleaching event at Lizard Island, Great Barrier Reef. Recruited Acropora corals, first detected in 2020, grew to coral cover levels that were equivalent to global average coral cover within just 2 years. Furthermore, we found that just 11.5 Acropora recruits per square meter were sufficient to reach this cover within 2 years. However, wave exposure, growth form and colony density had a marked effect on recovery rates. Our results underscore the importance of considering natural recovery in management and restoration and highlight how lessons learnt from reef recovery can inform our understanding of recovery dynamics in high-diversity climate-disturbed ecosystems.
Assuntos
Antozoários , Animais , Humanos , Ecossistema , Recifes de Corais , ClimaRESUMO
Coral bleaching, the stress-induced breakdown of coral-algal symbiosis, threatens reefs globally. Paradoxically, despite adverse fitness effects, corals bleach annually, even outside of abnormal temperatures. This generally occurs shortly after the once-per-year mass coral spawning. Here, we propose a hypothesis linking annual coral bleaching and the transmission of symbionts to the next generation of coral hosts. We developed a dynamic model with two symbiont growth strategies, and found that high sexual recruitment and low adult coral survivorship and growth favour bleaching susceptibility, while the reverse promotes bleaching resilience. Otherwise, unexplained trends in the Indo-Pacific align with our hypothesis, where reefs and coral taxa exhibiting higher recruitment are more bleaching susceptible. The results from our model caution against interpreting potential shifts towards more bleaching-resistant symbionts as evidence of climate adaptation-we predict such a shift could also occur in declining systems experiencing low recruitment rates, a common scenario on today's reefs.
Assuntos
Antozoários , Branqueamento de Corais , Recifes de Corais , Simbiose , Animais , Antozoários/fisiologia , Antozoários/microbiologia , Modelos BiológicosRESUMO
Species-to-species and species-to-environment interactions are key drivers of community dynamics. Disentangling these drivers in species-rich assemblages is challenging due to the high number of potentially interacting species (the 'curse of dimensionality'). We develop a process-based model that quantifies how intraspecific and interspecific interactions, and species' covarying responses to environmental fluctuations, jointly drive community dynamics. We fit the model to reef fish abundance time series from 41 reefs of Australia's Great Barrier Reef. We found that fluctuating relative abundances are driven by species' heterogenous responses to environmental fluctuations, whereas interspecific interactions are negligible. Species differences in long-term average abundances are driven by interspecific variation in the magnitudes of both conspecific density-dependence and density-independent growth rates. This study introduces a novel approach to overcoming the curse of dimensionality, which reveals highly individualistic dynamics in coral reef fish communities that imply a high level of niche structure.
Assuntos
Antozoários , Recifes de Corais , Animais , Peixes/fisiologia , Especificidade da Espécie , Fatores de Tempo , Antozoários/fisiologia , BiodiversidadeRESUMO
Reef stonefish (Synanceia verrucosa) is one of the most venomous fishes, but its biomedical study has been restricted to molecular cloning and purification of its toxins, instead of high-throughput genetic research on related toxin genes. In this study, we constructed a chromosome-level haplotypic genome assembly for the reef stonefish. The genome was assembled into 24 pseudo-chromosomes, and the length totaled 689.74 Mb, reaching a contig N50 of 11.97 Mb and containing 97.8% of complete BUSCOs. A total of 24,050 protein-coding genes were annotated, of which metalloproteinases, C-type lectins, and stonustoxins (sntx) were the most abundant putative toxin genes. Multitissue transcriptomic and venom proteomic data showed that sntx genes, especially those clustered within a 50-kb region on the chromosome 2, had higher transcription levels than other types of toxins as well as those sntx genes scatteringly distributed on other chromosomes. Further comparative genomic analysis predicted an expansion of sntx-like genes in the Percomorpha lineage including nonvenomous fishes, but Scorpaenoidei species experienced extra independent sntx duplication events, marking the clear-cut origin of authentic toxic stonustoxins. In summary, this high-quality genome assembly and related comparative analysis of toxin genes highlight valuable genetic differences for potential involvement in the evolution of venoms among Scorpaeniformes fishes.
Assuntos
Venenos de Peixe , Perciformes , Animais , Proteômica , Venenos de Peixe/genética , Venenos de Peixe/toxicidade , Peixes/genética , Perciformes/genética , Cromossomos/genéticaRESUMO
Reef-building coral populations are at serious risk of collapse due to the combined effects of ocean warming and acidification. Nonetheless, many corals show potential to adapt to the changing ocean conditions. Here we examine the broad sense heritability (H2) of coral calcification rates across an ecologically and phylogenetically diverse sampling of eight of the primary reef-building corals across the Indo-Pacific. We show that all eight species exhibit relatively high heritability of calcification rates under combined warming and acidification (0.23-0.56). Furthermore, tolerance to each factor is positively correlated and the two factors do not interact in most of the species, contrary to the idea of trade-offs between temperature and pH sensitivity, and all eight species can co-evolve tolerance to elevated temperature and reduced pH. Using these values together with historical data, we estimate potential increases in thermal tolerance of 1.0-1.7°C over the next 50 years, depending on species. None of these species are probably capable of keeping up with a high global change scenario and climate change mitigation is essential if reefs are to persist. Such estimates are critical for our understanding of how corals may respond to global change, accurately parametrizing modelled responses, and predicting rapid evolution.
Assuntos
Antozoários , Mudança Climática , Recifes de Corais , Água do Mar , Antozoários/fisiologia , Animais , Concentração de Íons de Hidrogênio , Água do Mar/química , Aquecimento Global , Calcificação Fisiológica , Adaptação Fisiológica , Oceanos e Mares , Temperatura , Oceano ÍndicoRESUMO
Climate-driven species redistributions are facilitated by niche modifications that increase a species's chances of establishment in novel communities. It is well understood how range-extending species adjust individual niche traits when entering novel environments, yet whether modification of ecological niche traits collectively alters the pace of range extensions or contractions remains unknown. We quantified habitat niche, abundance, physiological performance and cellular defence/damage of range-extending coral reef fishes and coexisting local temperate fishes along a 2000 km latitudinal gradient. We also assessed their dietary and behavioural niches, and establishment potential, to understand whether ecological generalism facilitates successful range extension of coral reef fishes. The coral reef fish that increased all ecological niches, showed stronger establishment, increased physiological performance and cellular damage, but decreased cellular defence at their cold-range edge, whereas tropical species that showed unmodified ecological niches showed lower establishment. One temperate species showed decreased abundance, habitat niche width and body condition, but increased cellular defence, cellular damage and energy reserves at their warm-trailing range, while other temperate species showed contrasting responses. Therefore, ecological generalists might be more successful than ecological specialists during the initial stages of climate change, with increasing future warming strengthening this pattern by physiologically benefitting tropical generalists but disadvantaging temperate specialists.
Assuntos
Antozoários , Ecossistema , Animais , Recifes de Corais , Peixes/fisiologia , Mudança Climática , Oceanos e MaresRESUMO
Coral reefs rank among the most diverse species assemblages on Earth. A particularly striking aspect of coral reef communities is the variety of colour patterns displayed by reef fishes. Colour pattern is known to play a central role in the ecology and evolution of reef fishes through, for example, signalling or camouflage. Nevertheless, colour pattern is a complex trait in reef fishes-actually a collection of traits-that is difficult to analyse in a quantitative and standardized way. This is the challenge that we address in this study using the hamlets (Hypoplectrus spp., Serranidae) as a model system. Our approach involves a custom underwater camera system to take orientation- and size-standardized photographs in situ, colour correction, alignment of the fish images with a combination of landmarks and Bézier curves, and principal component analysis on the colour value of each pixel of each aligned fish. This approach identifies the major colour pattern elements that contribute to phenotypic variation in the group. Furthermore, we complement the image analysis with whole-genome sequencing to run a multivariate genome-wide association study for colour pattern variation. This second layer of analysis reveals sharp association peaks along the hamlet genome for each colour pattern element and allows to characterize the phenotypic effect of the single nucleotide polymorphisms that are most strongly associated with colour pattern variation at each association peak. Our results suggest that the diversity of colour patterns displayed by the hamlets is generated by a modular genomic and phenotypic architecture.
Assuntos
Peixes , Estudo de Associação Genômica Ampla , Animais , Cor , Peixes/genética , Recifes de Corais , GenômicaRESUMO
The environment experienced by one generation has the potential to affect the subsequent one through non-genetic inheritance of parental effects. Since both mothers and fathers can influence their offspring, questions arise regarding how the maternal, paternal and offspring experiences integrate into the resulting phenotype. We aimed to disentangle the maternal and paternal contributions to transgenerational thermal acclimation in a reef fish, Acanthochromis polyacanthus, by exposing two generations to elevated temperature (+1.5°C) in a fully factorial design and analysing the F2 hepatic gene expression. Paternal and maternal effects showed not only common but also parent-specific components, with the father having the largest influence in shaping the offspring's transcriptomic profile. Fathers contributed to transcriptional transgenerational response to warming through transfer of epigenetically controlled stress-response mechanisms while mothers influenced increased gene expression associated with lipid metabolism regulation. However, the key to acclimation potential was matching thermal experiences of the parents. When both parents were exposed to the same condition, offspring showed increased expression of genes related to structural RNA production and transcriptional regulation, whereas environmental mismatch in parents resulted in maladaptive parental condition transfer, revealed by translation suppression and endoplasmic reticulum stress. Interestingly, the offspring's own environmental experience had the smallest influence on their hepatic transcription profiles. Taken together, our results show the complex nature of the interplay among paternal, maternal and offspring cue integration, and reveal that acclimation potential to ocean warming might depend not only on maternal and paternal contributions but importantly on congruent parental thermal experiences.
RESUMO
As the balance between erosional and constructive processes on coral reefs tilts in favor of framework loss under human-induced local and global change, many reef habitats worldwide degrade and flatten. The resultant generation of coral rubble and the beds they form can have lasting effects on reef communities and structural complexity, threatening the continuity of reef ecological functions and the services they provide. To comprehensively capture changing framework processes and predict their evolution in the context of climate change, heavily colonized rubble fragments were exposed to ocean acidification (OA) conditions for 55 days. Controlled diurnal pH oscillations were incorporated in the treatments to account for the known impact of diel carbonate chemistry fluctuations on calcification and dissolution response to OA. Scenarios included contemporary pH (8.05 ± 0.025 diel fluctuation), elevated OA (7.90 ± 0.025), and high OA (7.70 ± 0.025). We used a multifaceted approach, combining chemical flux analyses, mass alteration measurements, and computed tomography scanning images to measure total and chemical bioerosion, as well as chemically driven secondary calcification. Rates of net carbonate loss measured in the contemporary conditions (1.36 kg m-2 year-1) were high compared to literature and increased in OA scenarios (elevated: 1.84 kg m-2 year-1 and high: 1.59 kg m-2 year-1). The acceleration of these rates was driven by enhanced chemical dissolution and reduced secondary calcification. Further analysis revealed that the extent of these changes was contingent on the density of the coral skeleton, in which the micro- and macroborer communities reside. Findings indicated that increased mechanical bioerosion rates occurred in rubble with lower skeletal density, which is of note considering that corals form lower-density skeletons under OA. These direct and indirect effects of OA on chemical and mechanical framework-altering processes will influence the permanence of this crucial habitat, carrying implications for biodiversity and reef ecosystem function.
Assuntos
Antozoários , Mudança Climática , Recifes de Corais , Água do Mar , Antozoários/fisiologia , Antozoários/química , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Calcificação Fisiológica , Carbonatos/química , Carbonatos/análise , Oceanos e Mares , Acidificação dos OceanosRESUMO
Climate change is the most significant threat to natural World Heritage (WH) sites, especially in the oceans. Warming has devastated marine faunas, including reef corals, kelp, and seagrass. Here, we project future declines in species and ecosystem functions across Australia's four WH coral reef regions. Model simulations estimating species-level abundances and probabilities of ecological persistence were combined with trait space reconstructions at "present," 2050 (+1.5°C of warming), and 2100 (+2°C) to explore biogeographical overlaps and identify key functional differences and forecast changes in function through time. Future climates varied by region, with Shark Bay projected to warm the most (>1.29°C), followed by Lord Howe, when standardized to marine park size. By 2050, ~40% of the Great Barrier Reef will exceed critical thresholds set by the warmest summer month (mean monthly maximum [MMM]), triggering mortality. Functional diversity was greatest at Ningaloo. At +1.5°C of warming, species and regions varied drastically in their functional responses, declined 20.2% in species richness (~70 extinctions) and lost functions across all reefs. At +2°C, models predicted a complete collapse of functions, consistent with IPCC forecasts. This variability suggests a bespoke management approach is needed for each region and is critical for understanding WH vulnerability to climate change, identifying thresholds, and quantifying uncertainty of impacts. This knowledge will aid in focusing management, policy and conservation actions to direct resources, rapid action, and set biodiversity targets for these reefs of global priority. As reefs reassemble into novel or different configurations, determining the winners and losers of functional space will be critical for meeting global landmark biodiversity goals.
Assuntos
Biodiversidade , Mudança Climática , Recifes de Corais , Austrália , Animais , Antozoários/fisiologiaRESUMO
Countries are expanding marine protected area (MPA) networks to mitigate fisheries declines and support marine biodiversity. However, MPA impact evaluations typically assess total fish biomass. Here, we examine how fish biomass disaggregated by adult and juvenile life stages responds to environmental drivers, including sea surface temperature (SST) anomalies and human footprint, and multiple management types at 139 reef sites in the Mesoamerican Reef (MAR) region. We found that total fish biomass generally appears stable across the region from 2006 to 2018, with limited rebuilding of fish stocks in MPAs. However, the metric of total fish biomass masked changes in fish community structure, with lower adult than juvenile fish biomass at northern sites, and adult:juvenile ratios closer to 1:1 at southern sites. These shifts were associated with different responses of juvenile and adult fish to environmental drivers and management. Juvenile fish biomass increased at sites with high larval connectivity and coral cover, whereas adult fish biomass decreased at sites with greater human footprint and SST anomalies. Adult fish biomass decreased primarily in Honduran general use zones, which suggests insufficient protection for adult fish in the southern MAR. There was a north-south gradient in management and environmental drivers, with lower coverage of fully protected areas and higher SST anomalies and coastal development in the south that together may undermine the maintenance of adult fish biomass in the southern MAR. Accounting for the interplay between environmental drivers and management in the design of MPAs is critical for increasing fish biomass across life history stages.
Los países están ampliando las redes de áreas marinas protegidas (AMP) para mitigar la disminución de las pesquerías y apoyar la biodiversidad marina. Sin embargo, las evaluaciones de impacto de las AMP típicamente estudian la biomasa total de peces. Aquí, examinamos cómo la biomasa de peces desagregada por etapas de vida adultas y juveniles responde a factores ambientales como anomalías de la temperatura superficial del mar (SST) e impacto humano, y múltiples tipos de manejo en 139 sitios de arrecifes en el sistema arrecifal mesoamericano (SAM). Encontramos que la biomasa total de peces en general parece estable en toda la región entre 2006 y 2018, con una recuperación limitada de las poblaciones de peces en las AMP. Sin embargo, la métrica de biomasa total de peces enmascaró los cambios en la estructura de la comunidad de peces, con una biomasa de peces adultos más baja que juveniles en los sitios del norte, y proporciones adulto:juvenil más cercana a 1:1 en los sitios del sur. Estos cambios fueron asociados con diferentes respuestas de peces juveniles y adultos a variables ambientales y de manejo. La biomasa de peces juveniles aumentó en sitios con alta conectividad larvaria y cobertura coralina, mientras que la biomasa de peces adultos disminuyó en sitios con mayor impacto humano y anomalías en la SST. La biomasa de peces adultos disminuyó principalmente en las zonas de uso general (GUZ) hondureñas, lo cual sugiere una protección insuficiente para peces adultos en el sur del SAM. Hubo un gradiente nortesur en el manejo y los factores ambientales, con menor cobertura de áreas totalmente protegidas y mayores anomalías de SST y desarrollo costero en el sur. En conjunto esto puede degradar el mantenimiento de la biomasa de peces adultos en el sur del SAM. La interacción entre factores ambientales y el manejo en el diseño de las AMP es fundamental para aumentar la biomasa de peces en todas las etapas del ciclo de vida.