Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 100(12): 5595-606, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26893142

RESUMO

The thermal hydrolysis process (THP) has been proven to be an excellent pretreatment step for an anaerobic digester (AD), increasing biogas yield and decreasing sludge disposal. The goal of this work was to optimize deammonification for efficient nitrogen removal despite the inhibition effects caused by the organics present in the THP-AD sludge filtrate (digestate). Two sequencing batch reactors were studied treating conventional digestate and THP-AD digestate, respectively. Improved process control based on higher dissolved oxygen set-point (1 mg O2/L) and longer aeration times could achieve successful treatment of THP-AD digestate. This increased set-point could overcome the inhibition effect on aerobic ammonium-oxidizing bacteria (AerAOB), potentially caused by particulate and colloidal organics. Moreover, based on the mass balance, anoxic ammonium-oxidizing bacteria (AnAOB) contribution to the total nitrogen removal decreased from 97 ± 1 % for conventional to 72 ± 5 % for THP-AD digestate treatment, but remained stable by selective AnAOB retention using a vibrating screen. Overall, similar total nitrogen removal rates of 520 ± 28 mg N/L/day at a loading rate of 600 mg N/L/day were achieved in the THP-AD reactor compared to the conventional digestate treatment operating at low dissolved oxygen (DO) (0.38 ± 0.10 mg O2/L).


Assuntos
Compostos de Amônio , Bactérias/metabolismo , Desnitrificação , Esgotos/química , Anaerobiose , Reatores Biológicos , Hidrólise , Oxigênio , Esgotos/microbiologia , Temperatura , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
2.
J Environ Manage ; 164: 196-205, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26386756

RESUMO

A two-stage Partial Nitritation (PN)/Anammox process was carried out at lab-scale conditions to treat reject water from a municipal WWTP. PN was achieved in a granular SBR obtaining an effluent with a NH4(+)-N/NO2(-)-N molar ratio around 1.0. The microbial characterization of this reactor revealed a predominance of Betaproteobacteria, with a member of Nitrosomonas as the main autotrophic ammonium oxidizing bacterium (AOB). Nitrite oxidizing bacteria (NOB) were under the detection limit of 16S rRNA gene pyrosequencing, indicating their effective inhibition. The effluent of the PN reactor was fed to an Anammox SBR where stable operation was achieved with a NH4(+)-N:NO2(-)-N:NO3(-)-N stoichiometry of 1:1.25:0.14. The deviation to the theoretical stoichiometry could be attributed to the presence of heterotrophic biomass in the Anammox reactor (mainly members of Chlorobi and Chloroflexi). Planctomycetes accounted for 7% of the global community, being members of Brocadia (1.4% of the total abundance) the main anaerobic ammonium oxidizer detected.


Assuntos
Compostos de Amônio/metabolismo , Reatores Biológicos/microbiologia , Consórcios Microbianos/fisiologia , Eliminação de Resíduos Líquidos/métodos , Processos Autotróficos , Bactérias/genética , Bactérias/metabolismo , Biomassa , Consórcios Microbianos/genética , Nitritos/metabolismo , Nitrogênio/metabolismo , RNA Ribossômico 16S/genética , Eliminação de Resíduos Líquidos/instrumentação
3.
Environ Technol ; 36(1-4): 214-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25413116

RESUMO

Robust start-up of the anaerobic ammonium oxidation (anammox) process from non-anammox-specific seeding material was achieved by using an inoculation with sludge-treating industrial [Formula: see text]-, organics- and N-rich yeast factory wastewater. N-rich reject water was treated at 20°C, which is significantly lower than optimum treatment temperature. Increasing the frequency of biomass fluidization (from 1-2 times per day to 4-5 times per day) through feeding the reactor with higher flow rate resulted in an improved total nitrogen removal rate (from 100 to 500 g m(-3)d(-1)) and increased anammox bacteria activity. As a result of polymerase chain reaction (PCR) tests, uncultured planctomycetes clone 07260064(4)-2-M13-_A01 (GenBank: JX852965) was identified from the biomass taken from the reactor. The presence of anammox bacteria after cultivation in the reactor was confirmed by quantitative PCR (qPCR); an increase in quantity up to ∼2×10(6) copies g VSS(-1) during operation could be seen in qPCR. Statistical modelling of chemical parameters revealed the roles of several optimized parameters needed for a stable process.


Assuntos
Compostos de Amônio/metabolismo , Reatores Biológicos/microbiologia , Meios de Cultura/metabolismo , Esgotos/microbiologia , Leveduras/metabolismo , Anaerobiose/fisiologia , Meios de Cultura/química
4.
Environ Technol ; 35(21-24): 2767-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25176479

RESUMO

Treating nitrogen-rich reject water from anaerobically digested sludge with deammonification has become a very beneficial side stream process. One common technique is the one-stage moving bed bioreactors (MBBRs), which in comparison with the other deammonification techniques can be started up without seeding anammox bacteria. This study investigated the impact of biofilm seeding on the start-up of one-stage deammonification MBBRs. Two lab-scale reactors were run in parallel with partial nitritation for 56 days until 11% of the carrier area in one reactor was replaced with fully developed deammonification biofilm to work as the seeding material. The seeded reactor started nitrogen reduction immediately up to a plateau of 1.3 g N m⁻² d⁻¹; after another 54 days on day 110, the reduction significantly increased. At the same time, the non-seeded reactor also started to reduce nitrogen due to deammonification. The development was followed with both nitrogen analyses and fluorescence in situ hybridization analyses. On day 134, the biofilm in both reactors contained>90% anammox bacteria and reached maximum nitrogen removal rates of 7.5 and 5.6 g N m⁻² d⁻¹ in the seeded and non-seeded reactor, respectively. Over 80% of the inorganic nitrogen was reduced. In conclusion, the seeding did not contribute to a shorter start-up time or the achieved anammox enrichment, although it did contribute to a partial, immediate nitrogen reduction. The boundary conditions are the most important factors for a successful start-up in a deammonification MBBR system.


Assuntos
Bactérias/metabolismo , Reatores Biológicos , Compostos de Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Biofilmes , Hibridização in Situ Fluorescente
5.
Sci Total Environ ; 933: 173076, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734100

RESUMO

The use of water purifiers is intensively catching up and disposing of reverse osmosis reject water is of great concern. Reject water management using conventional methods is costly and harmful to the environment. To address this issue, the present study aims to utilize reverse osmosis reject wastewater using an eco-friendly approach. Juncus rigidus was treated with reject wastewater containing different salinity levels. Wastewater-treated plant dry biomass increased with increasing reject water salinity, and 625.3 g dry biomass recovered in treatment-B (~18,520 ppm). However, ~23,220 ppm wastewater salinity was lethal to the plants. The cellulose was extracted by alkali hydrolysis. The cellulose content in the wastewater-treated biomass was significantly higher in Treatment-B compared to both the control and Treatment-A (~12,744 ppm). The water salinity enhanced the cellulose (26.49 %) production in J. rigidus. Cellulose purity was confirmed using spectroscopic and thermogravimetric means. XRD shows highest crystallinity Index (77.29) with a d-spacing of 4.7 Å and 5.7 nm crystallite size in treatment-B. FTIR results reveal well-defined relevant peaks for OH, CH, CO, CH2, C-O-C, CO groups in treatment-B cellulose. Salinity impacts carboxyl groups in treatment B cellulose with a sharper and intense peak at 1644 cm-1 responsible for water absorption. Treatment-B exhibits higher thermal stability due to increased crystallinity. DSC shows endothermic depolymerization of cellulose with distinct peaks for different treatments. Morphological traits got better with increasing salinity with no adverse effect on cellulose. Salinity moderately affected the water absorption capacity of cellulose. All cellulose samples were devoid of gram-negative bacteria known by microbial test. This pioneering work underscores the plant's remarkable capacity not only to accomplish the circular economy by the valorization of wastewater obtained from various water purifiers for Juncus cultivation for cellulose production for diverse applications but also to generate income from wastewater.


Assuntos
Biomassa , Celulose , Salinidade , Eliminação de Resíduos Líquidos , Águas Residuárias , Celulose/química , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Estresse Salino
6.
Environ Technol ; : 1-13, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023010

RESUMO

Ammonia monohydrate (NH3·H2O) is an important chemical widely used in industrial, agricultural, and pharmaceutical fields. Reject water is used as the raw material in self-built bipolar membrane electrodialysis (BMED) to produce NH3·H2O. The effects of electrode materials, membrane stack structure, and operating conditions (current density, initial concentrations of the reject water, and initial volume ratio) on the BMED process were investigated, and the economic costs were analyzed. The results showed that compared with graphite electrodes, ruthenium-iridium-titanium electrodes as electrode plates for BMED could increase current efficiency (25%) and reduce energy consumption (26%). Compared with two-compartment BMED, three-compartment BMED had a higher ammonia nitrogen conversion rate (86.6%) and lower energy consumption (3.5 kW· h/kg). Higher current density (15 mA/cm2) could achieve better current efficiency (79%). The BMED performances were improved when the initial NH4+ concentrations of the reject water increased from 500 mg NH4+/L to 1000 mg NH4+/L, but the performance decreased as the concentration increased from 1000 mg NH4+/L to 1500 mg NH4+/L. High initial volume ratio of the salt compartment and product compartment was beneficial for reducing energy consumption. Under the optimal operating conditions, only 0.13 $/kg reject water was needed to eliminate the environmental impact of reject water accumulation. This work indicates that BMED can not only achieve desalination of reject water, but also generate products that alleviate the operational pressure of factories.

7.
Water Res X ; 22: 100213, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38414757

RESUMO

High-solid anaerobic digestion (HSAD) reject water, distinguished by elevated levels of chemical oxygen demand (COD), NH4+-N and an imbalanced COD/TIN, presents a significant challenge for treatment through conventional partial nitritation/ anammox (PN/A) process. This study introduced a revised two-stage PN/A process, namely partial nitritation/denitritation-anammox (PN-DN/A) process. Its effectiveness was investigated through both pilot-scale (12 t/d) and full-scale (400 t/d) operations, showcasing stable operation with an impressive total removal rate of over 90 % for total inorganic nitrogen (TIN) and exceeding 60 % for COD. Notably, 30 % of TIN was eliminated through heterotrophic denitritation in partial nitritation-denitritation (PN-DN) stage, while approximately 55 % of TIN removal occurred in the anammox stage with anaerobic ammonium oxidizing bacteria (AnAOB) enrichment (Candidatus Kuenenia, 25.9 % and 26.6 % relative abundance for pilot and full scale). In the PN-DN stage, aerobic-anaerobic alternation promoted organics elimination (around 50 % COD) and balanced nitrogen species. Microbial and metagenomic analysis verified the coupling between autotrophic and heterotrophic denitritation and demonstrated that PN-DN stage acted as a protective buffer for anammox stage. This comprehensive study highlights the PN-DN/A process's efficacy in stably treating HSAD reject water.

8.
Membranes (Basel) ; 14(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38786937

RESUMO

Membrane contactors are among the available technologies that allow a reduction in the amount of ammoniacal nitrogen released into the environment through a process called transmembrane chemical absorption (TMCA). This process can be operated with different substances acting as trapping solutions; however, strong inorganic acids have been studied the most. The purpose of this study was to demonstrate, at laboratory scale, the performance of citric acid as a capturing solution in TMCA processes for recovering ammonia as an organic fertilizer from anaerobic digestor reject water using membrane contactors in a liquid-liquid configuration and to compare it with the most studied solution, sulfuric acid. The experiments were carried out at 22 °C and 40 °C and with a feed water pH of 10 and 10.5. When the system was operated at pH 10, the rates of recovered ammonia from the feed solution obtained with citric acid were 10.7-16.5 percentage points (pp) lower compared to sulfuric acid, and at pH 10.5, the difference decreased to 5-10 pp. Under all tested conditions, the water vapor transport in the system was lower when using citric acid as the trapping solution, and at pH 10 and 40 °C, it was 5.7 times lower. When estimating the operational costs for scaling up the system, citric acid appears to be a better option than sulfuric acid as a trapping solution, but in both cases, the process was not profitable under the studied conditions.

9.
Water Res ; 263: 122133, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088879

RESUMO

Membrane fouling remains a significant challenge in wastewater treatment, hindering both efficiency and lifespan. This study reports a distinct phenomenon of stratified membrane clogging observed in a full-scale cross-flow tubular ultrafiltration (UF) system treating sludge anaerobic digestion (AD) reject water. The distinct stratified structure, comprising inner and outer layers within the cake layer, has not been previously described. This research involved characterizing the filtration performance, analyzing membrane clog composition, and proposing a two-stage formation mechanism for the stratified clogs. It was revealed that higher inorganic and lower organic content in the outer layer compared to the inner layer. Acid and alkali treatments demonstrated the effectiveness of combined cleaning strategies. A mathematical model was developed to determine the critical conditions for stratified clog formation, influenced by membrane flux and cross-flow velocity (CFV). It is proposed that outer layer forms through long-term selective deposition, while the inner layer results from short-term dewatering within limited tubular space. High CFV (>2.5 m/s) prevents inner layer formation. Critical conditions for stratification occur at a flux of 18 L/m2/h with a CFV of 0.1 m/s or 65 L/m2/h with a CFV of 0.35 m/s. This study contributes a novel understanding of stratified membrane clogging, proposing a two-stage formation mechanism and identifying critical conditions, which provides insights for effective fouling control strategies and maintenance of operational efficiency for membrane systems.


Assuntos
Membranas Artificiais , Ultrafiltração , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Incrustação Biológica , Modelos Teóricos , Águas Residuárias/química
10.
Water Res ; 232: 119620, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780748

RESUMO

This review compiles information on sidestream characteristics that result from anaerobic digestion dewatering (conventional and preceded by a thermal hydrolysis process), biological and primary sludge thickening. The objective is to define a range of concentrations for the different characteristics found in literature and to confront them with the optimal operating conditions of sidestream processes for nutrient treatment or recovery. Each characteristic of sidestream (TSS, VSS, COD, N, P, Al3+, Ca2+, Cl-, Fe2+/3+, Mg2+, K+, Na+, SO42-, heavy metals, micro-pollutants and pathogens) is discussed according to the water resource recovery facility configuration, wastewater characteristics and implications for the recovery of nitrogen and phosphorus based on current published knowledge on the processes implemented at full-scale. The thorough analysis of sidestream characteristics shows that anaerobic digestion sidestreams have the highest ammonium content compared to biological and primary sludge sidestreams. Phosphate content in anaerobic digestion sidestreams depends on the type of applied phosphorus treatment but is also highly dependent on precipitation reactions within the digester. Thermal Hydrolysis Process (THP) mainly impacts COD, N and alkalinity content in anaerobic digestion sidestreams. Surprisingly, the concentration of phosphate is not higher compared to conventional anaerobic digestion, thus offering more attractive recovery possibilities upstream of the digester rather than in sidestreams. All sidestream processes investigated in the present study (struvite, partial nitrification/anammox, ammonia stripping, membranes, bioelectrochemical system, electrodialysis, ion exchange system and algae production) suffer from residual TSS in sidestreams. Above a certain threshold, residual COD and ions can also deteriorate the performance of the process or the purity of the final nutrient-based product. This article also provides a list of characteristics to measure to help in the choice of a specific process.


Assuntos
Esgotos , Recursos Hídricos , Esgotos/química , Águas Residuárias , Fosfatos , Fósforo , Nitrogênio , Reatores Biológicos , Anaerobiose , Eliminação de Resíduos Líquidos
11.
Chemosphere ; 340: 139843, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619758

RESUMO

The fate of glyphosate and its metabolite AminoMethylPhosponic acid (AMPA) was followed at the catchment of the Sûre river, mainly characterized by small population density and small and medium-sized wastewater treatment plants (WWTPs). A high concentration of AMPA was found in water samples collected in inlet from different wastewater streams, the industry being the main contributor, while glyphosate resulted mainly in domestic origin. The two molecules were also monitored in the anaerobic digestion as in the supernatant produced after centrifugation (reject water). A total of 0.0713 and 2.24 g/d of glyphosate and AMPA respectively were regularly returned to the activated sludge tank (AST) indicating a 20% impact of the sludge management line on the global wastewater mass balance. Finally, the use of Constructed Wetlands (CWs) in Vertical Flow (VF) configuration was tested as a suitable technology to retain both glyphosate and AMPA (90 and up to 50% elimination respectively) and minimize their discharge into surface water.


Assuntos
Esgotos , Águas Residuárias , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Água , Glifosato
12.
Sci Total Environ ; 893: 164944, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37336412

RESUMO

This study evaluated the ability to remove dissolved organic matter (DOM), particularly dissolved organic nitrogen (DON), at a molecular level using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) in a full-scale reject water treatment project comprising three steps of short-cut nitrification and denitrification, two-stage AO, and ultrafiltration membrane system. The results indicated that short-cut nitrification and denitrification were effective in reducing the DON concentration from an average of about 180 mg/L to 43 mg/L. The average molecular weight of DOM showed a decreasing trend from 238 Da to 160 Da. The percentage of nitrogen-containing organic compounds (CHON-DOM), which is the primary component of reject water DOM, increased from 65.79 % to 72.35 %, while the percentage of CHO-DOM decreased from 20.67 % to 15.24 %. The percentage of CHOS-DOM remained stable at 12.21 %-13.54 %. The percentage of protein-DOM decreased from 50.32 % to 18.40 %, while lignin-DOM increased from 36.16 % to 55.88 % and carbohydrate-DOM increased from 2.68 % to 9.74 %. The short-cut nitrification and denitrification and ultrafiltration membrane system both generated more unsaturated, highly aromatic DOM. This study provides insights into the effects of different wastewater treatment processes on the evolution of DOM/DON, which can be useful for effective DON control.

13.
3 Biotech ; 12(8): 172, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35845113

RESUMO

Microbial desalination cells (MDC) are evaluated as an environmentally friendly approach for purifying saline water by using power generated by the decomposition of organic materials in the wastewater. The present study is to evaluate the ferrocyanide-redox and biocathode approach in treating simulated saline water and subsequently recovering bio-electricity using actual domestic reverse osmosis reject water. For the desalination of simulated saline water and domestic reverse osmosis reject water, a three-chamber microbial desalination cell with graphite electrodes and anion and cation exchange membranes was constructed. When treating simulated saline water, the biocathode technique achieved a 5% improvement in salt removal and a 4.9% increase in current and power density when compared to the ferrocyanide-redox approach. When biocathode MDC was used to treat domestic reverse osmosis reject water, a maximum current and power density of 3.81 µA/cm2 and 0.337 µW/cm2, respectively, were recorded, as well as COD removal of 83.9% at the desalination chamber and ions reduction for Na, K, and Ca of up to 79%, 76.5%, and 72%, respectively, in a batch operation for 31 days with a stable pH (≈ 7). Thus, the study revealed a microbial desalination cell capable of recovering bioenergy and reducing salt from domestic reverse osmosis reject water with a consistent pH range.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35162866

RESUMO

Water after sludge dewatering, also known as reject water from anaerobic digestion, is recycled back to the main wastewater treatment inlet in the wastewater treatment plant Porsgrunn, Norway, causing periodic process disturbance due to high ammonium of 568 (±76.7) mg/L and total chemical oxygen demand (tCOD) of 2825 (±526) mg/L. The main aim of this study was the simultaneous treatment of reject water ammonium and COD using two pilot-scale sequential moving bed biofilm reactors (MBBR) implemented in the main wastewater treatment stream. The two pilot MBBRs each had a working volume of 67.4 L. The biofilm carriers used had a protected surface area of 650 m2/m3 with a 60% filling ratio. The results indicate that the combined ammonia removal efficiency (ARE) in both reactors was 65.9%, while the nitrite accumulation rate (NAR) and nitrate production rate (NPR) were 80.2 and 19.8%, respectively. Over 28% of the reject water's tCOD was removed in both reactors. The heterotrophic nitrification and oxygen tolerant aerobic denitrification were the key biological mechanisms found for the ammonium removal in both reactors. The dominant bacterial family in both reactors was Alcaligenaceae, capable of simultaneous heterotrophic nitrification and denitrification. Moreover, microbial families that were found with equal potential for application of simultaneous heterotrophic nitrification and aerobic denitrification including Cloacamonaceae, Alcaligenaceae, Comamonadaceae, Microbacteriaceae, and Anaerolinaceae.


Assuntos
Nitrificação , Esgotos , Biofilmes , Reatores Biológicos/microbiologia , Desnitrificação , Humanos , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Água
15.
Bioresour Technol ; 362: 127760, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963489

RESUMO

This work examined the short and long-term effects of different free ammonia (FA) and free nitrous acid (FNA) levels on (i) acclimatized biomass treating sludge reject water via nitrite in a sequencing batch reactor (SBR) and (ii) non-aclimatized biomass treating municipal wastewater via nitrate in the activated sludge process. In the acclimatized biomass, the threshold for the transition from nitrification to nitritation was the FA increase to 10-20 mgNH3-N/L while the SBR unit showed no inhibition on the ammonia uptake rate (AUR) at FA levels up to 65 mgNH3-N/L. Short-term exposure of the acclimatized biomass on FNA showed that AUR inhibition could be more than 50 % for FNA concentration >10 µgHNO2-N/L. The FNA inhibition results were simulated using non-competitive inhibition kinetics that showed that the inhibition constant corresponding to the FNA concentration that inhibits the process by 50 % (i.e. KiFNA) was much higher in the acclimatized biomass.


Assuntos
Ácido Nitroso , Esgotos , Amônia/análise , Biomassa , Reatores Biológicos , Nitrificação , Nitritos , Água
16.
Sci Total Environ ; 802: 149851, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464808

RESUMO

In order to meet the global demand of fertilizers for food production, there is an urgent need to recover macronutrients (such as NH4+, PO43-, Ca2+, K+, and Mg2+) from non-conventional sources (e.g., waste streams). Sludge reject water - a by-product produced during the dewatering of anaerobically-stabilized sewage sludge - is considered an ideal feedstock for bioelectrochemical nutrient recovery due to its high nutrient content. However, its low readily available organic matter and alkalinity usually limit electric current generation, resulting in low nutrient recovery. Here, we designed and operated self-powered microbial nutrient recovery cells (MNRCs) to test whether or not the addition of high-strength livestock wastewater could improve the macronutrients recovery from sludge reject water into a liquid concentrate. MNRCs fed with sludge reject water exhibited a low current density generation of 0.98 ± 0.31 A/m3 with approximately 24 ± 2% reduction in chemical oxygen demand (COD) concentration. The NH4+ removal was only 37.1 ± 11% with an up-concentration factor of ~0.43 ± 0.15. Macronutrients recovery and up-concentration were optimized by mixing sludge reject water with livestock wastewater, which its content varied from 10 to 30%. Consequently, the current output and NH4+ up-concentration factor were remarkably increased, peaking at 14.10 ± 1.14 A/m3 and 2.19 ± 0.51, respectively, for MNRCs fed with sludge reject water:livestock wastewater = 70%:30% (v:v). Detailed analysis of the liquid concentrate revealed that it could be efficiently used as a liquid fertilizer to replace chemical fertilizers with comparable agricultural productivity at a lower cost. These results suggest that the MNRC can promote self-powered, chemical-free macronutrients recovery from sludge reject water (and other low-strength wastewater, too) by controlling the availability of organic matter in waste streams.


Assuntos
Esgotos , Purificação da Água , Nutrientes , Eliminação de Resíduos Líquidos , Águas Residuárias , Água
17.
Bioresour Technol ; 341: 125762, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34450441

RESUMO

Heterotrophic bacteria (HB) are generally prevalent in anammox-based processes, but their functional and ecological roles in partial nitritation-anammox (PN/A) process treating high-organics wastewater remained unclear. This study aimed to elucidate HB activities and microbial interactions in a one-stage PN/A treating thermal hydrolysis process (THP) - anaerobic digestion (AD) reject water. The PN/A reactor achieved a satisfactory nitrogen removal rate of 0.58 ± 0.06 g N/(L·d), and around 12% of COD in the THP-AD reject water was removed. N2O emission factors of the PN/A reactor were 1.15% ± 0.18% treating synthetic wastewater, and 0.95% ± 0.06% treating reject water. A balanced symbiotic relationship was maintained between HB and functional groups (i.e., anammox bacteria and aerobic-ammonia-oxidizing bacteria) over the reactor operation. The relative abundances of Anaerolineae spp. clearly increased, while Denitratisoma, capable of denitrification, slightly decreased when treating THP-AD reject water. The preference for electron donors of heterotrophs explained discrepant growth trends.


Assuntos
Compostos de Amônio , Desnitrificação , Anaerobiose , Reatores Biológicos , Hidrólise , Nitrogênio , Oxirredução , Esgotos , Águas Residuárias , Água
18.
Environ Technol ; 42(18): 2823-2835, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31928337

RESUMO

Optimization of a single-stage, partial nitritation/anammox (PN/A) process for a reject water treatment in a continuous-flow, moving bed biofilm reactor (MBBR) was presented. Response surface method (RSM) was combined with simulation experiments conducted with the validated mathematical model of PN/A in MBBR. The total inorganic nitrogen (TIN) removal efficiency was the response parameter. Eight independent variables were taken into consideration: reject water flow rate (Q), inflow concentrations of the total ammonium nitrogen (TAN), chemical oxygen demand (COD), alkalinity (ALK), pH, temperature (T), dissolved oxygen concentration in the bulk liquid (DO) and aeration time within 60 min intermittent aeration cycle (AERON). Eleven interactions between independent variables were found as significant (p < 0.05). The interaction of AERON*DO had the highest impact on the PN/A process. Optimal values of the controlled variables were found for two cases of MBBR operation. Verification of the optimization was done by the simulation and comparison with the data from the empirical experiments. Under the conditions of the fixed hydraulic retention time of about 38 h, volumetric nitrogen loading rate of 0.48 kgN/m3d, T of 22.5°C, TAN of 750 gN/m3 and optimized values of DO = 3.0 gO2/m3, AERON = 0.54 h, pH = 7.5, ALK = 80 molHCO3/m3, COD = 775 gO2/m3, the predicted TINrem was 78% which is consistent with PN/A performance observed in the technical-scale MBBR systems.


Assuntos
Compostos de Amônio , Biofilmes , Reatores Biológicos , Nitrogênio , Oxirredução , Águas Residuárias , Água
19.
Bioresour Technol ; 321: 124432, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33260065

RESUMO

A novel internal circulation contact oxidation membrane bioreactor (ICCOMBR) was constructed to investigate a three steps startup strategy of single-stage partial nitritation-anammox (SPNA) system. A stable nitrite accumulation rate (NAR) of 86.60% was achieved with NH4+-N over 250 mg/L in nitritation process. The partial nitritation process could be effectively achieved by reducing the aeration rate (AR) by about 50% in the nitritation process, with an effluent NO2--N/NH4+-N ratio of 1.15 ± 0.04. The SPNA system was started up in 27 days following the inoculated anammox granular sludge. A total nitrogen removal efficiencies of 82% was achieved at a NLR of 0.60 gN/L/d and dissolved oxygen (DO) concentration below 0.55 mg/L. Anammox function genus (Ca.Kuenenia and Ca. Anammoximicrobium) abundance accounted for 20.77% in the biofilm, which is approximately equal to 22.2% in the suspended sludge. Nitrosomon as the dominant AOB genera, was detected in the biofilm (6.5%) and suspended sludge (13.3%).


Assuntos
Compostos de Amônio , Purificação da Água , Reatores Biológicos , Nitritos , Nitrogênio , Oxirredução , Esgotos
20.
Chemosphere ; 271: 129526, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33445025

RESUMO

The aim of this work was to study the operational performance and the microbial community dynamics during the start-up of ANITATMMox technology implemented at full-scale wastewater treatment plant in Finland to treat reject water from anaerobic digesters. The average ammonium removal in the studied setup reached around 90%, withstanding ammonium loads up to 0.13 g N m-2h-1. The nitrite concentration in the effluent did not exceed 10 mg L-1, and there was a slight accumulation of NO3--N during the operation which was controlled. Thus, the result showed a robust success to high ammonium loading in presence of organic matter. The sequencing showed a heterogeneous microbial population where Methanosaeta, WCHA1-57 genus, Sphingobacteriia, Chlorobia and diverse unknown fungi were found as dominant phylotypes. Moreover, members of the Brocadiaceae family were dominant in the adhered biomass, mostly represented by Candidatus Scalindua, rarely reported in WWTPs. Overall, the results demonstrated a drastic effect of region-specific operational conditions on carrier biofilm microbial communities as it was demonstrated by the microbial studies.


Assuntos
Microbiota , Água , Anaerobiose , Reatores Biológicos , Finlândia , Nitrogênio , Oxirredução , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa