RESUMO
PURPOSE: Little is known about the impact of co-morbidities on health-related quality of life (HRQoL) for people with idiopathic pulmonary fibrosis (IPF). We aimed to investigate the relative contribution of co-morbidities to HRQoL of people with IPF. METHODS: N = 157 participants were recruited from the Australian IPF Registry (AIPFR). Health state utilities (HSUs), and the super-dimensions of physical and psychosocial scores were measured using the Assessment of Quality of Life-8-Dimensions (AQoL-8D). The impact of co-morbidities on HRQoL was investigated using linear regression and general dominance analyses. RESULTS: A higher number of co-morbidities was associated with lower HSUs (p trend = 0.002). Co-morbidities explained 9.1% of the variance of HSUs, 16.0% of physical super-dimensional scores, and 4.2% of psychosocial super-dimensional scores. Arthritis was associated with a significant reduction on HSUs (ß = - 0.09, 95% confidence interval [CI] - 0.16 to - 0.02), largely driven by reduced scores on the physical super-dimension (ß = - 0.13, 95% CI - 0.20 to - 0.06). Heart diseases were associated with a significant reduction on HSUs (ß = - 0.09, 95% CI - 0.16 to - 0.02), driven by reduced scores on physical (ß = - 0.09, 95% CI - 0.16 to - 0.02) and psychosocial (ß = -0.10, 95% CI - 0.17 to - 0.02) super-dimensions. CONCLUSIONS: Co-morbidities significantly impact HRQoL of people with IPF, with markedly negative impacts on their HSUs and physical health. A more holistic approach to the care of people with IPF is important as better management of these co-morbidities could lead to improved HRQoL in people with IPF.
Assuntos
Fibrose Pulmonar Idiopática , Qualidade de Vida , Humanos , Qualidade de Vida/psicologia , Inquéritos e Questionários , Austrália , MorbidadeRESUMO
Warming strongly stimulates soil nitrous oxide (N2O) emission, contributing to the global warming trend. Submerged paddy soils exhibit huge N2O emission potential; however, the N2O emission pathway and underlying mechanisms for warming are not clearly understood. We conducted an incubation experiment using 15N to investigate the dynamics of N2O emission at controlled temperatures (5, 15, 25, and 35°C) in 125% water-filled pore space. The community structures of nitrifiers and denitrifiers were determined via high-throughput sequencing of functional genes. Our results showed that elevated temperature sharply enhanced soil N2O emission from submerged paddy soil. Denitrification was the main contributor, accounting for more than 90% of total N2O emission at all treatment temperatures. N2O flux was coordinatively regulated by nirK-, nirS-, and nosZ-containing denitrifiers but not ammonia-oxidizing archaea or ammonia-oxidizing bacteria. The nirS-containing denitrifiers were more sensitive to temperature shifts, especially at a lower temperature range (5 to 25°C), and showed a stronger correlation with N2O flux than that of nirK-containing denitrifiers. In contrast, nosZ-containing denitrifiers exhibited substantial variation at higher temperatures (15 to 35°C), thereby playing an important role in N2O consumption. Certain taxa of nirS- and nosZ-containing denitrifiers regulated N2O flux, including nirS-containing denitrifiers affiliated with Rhodanobacter and Cupriavidus as well as nosZ-containing denitrifiers affiliated with Azoarcus and Azospirillum. Together, these findings suggest that elevated temperature can significantly increase N2O emission from denitrification in submerged paddy soils by shifting the overall community structures and enriching some indigenous taxa of nirS- and nosZ-containing denitrifiers. IMPORTANCE The interdependence between global warming and greenhouse gas N2O has always been the hot spot. However, information on factors contributing to N2O and temperature-dependent community structure changes is scarce. This study demonstrated high-temperature-induced N2O emission from submerged paddy soils, mainly via stimulating denitrification. Further, we speculate that key functional denitrifiers drive N2O emission. This study showed that denitrifiers were more sensitive to temperature rise than nitrifiers, and the temperature sensitivity differed among denitrifier communities. N2O-consuming denitrifiers (nosZ-containing denitrifiers) were more sensitive at a higher temperature range than N2O-producing denitrifiers (nirS-containing denitrifiers). This study's findings help predict N2O fluxes under different degrees of warming and develop strategies to mitigate N2O emissions from paddy fields based on microbial community regulation.
Assuntos
Poluentes Atmosféricos/análise , Desnitrificação , Óxido Nitroso/análise , Microbiologia do Solo , Poluentes do Solo/análise , Aquecimento Global , Concentração de Íons de Hidrogênio , Nitrificação , Oryza , Solo/química , TemperaturaRESUMO
Zika virus disease is a viral disease primarily transmitted to humans through the bite of infected female mosquitoes. Recent evidence indicates that the virus can also be sexually transmitted in hosts and vertically transmitted in vectors. In this paper, we propose a Zika model with three transmission routes, that is, vector-borne transmission between humans and mosquitoes, sexual transmission within humans and vertical transmission within mosquitoes. The basic reproduction number [Formula: see text] is computed and shown to be a sharp threshold quantity. Namely, the disease-free equilibrium is globally asymptotically stable as [Formula: see text], whereas there exists a unique endemic equilibrium which is globally asymptotically stable as [Formula: see text]. The relative contributions of each transmission route on the reproduction number, and the short- and long-term host infections are analyzed. Numerical simulations confirm that vectorial transmission contributes the most to the initial and subsequent transmission. The role of sexual transmission in the early phase of a Zika outbreak is greater than the long term, while vertical transmission is the opposite. Reducing mosquito bites is the most effective measure in lowering the risk of Zika virus infection.
Assuntos
Infecção por Zika virus , Zika virus , Animais , Número Básico de Reprodução , Feminino , Humanos , Conceitos Matemáticos , Modelos Biológicos , Mosquitos Vetores , Infecção por Zika virus/epidemiologiaRESUMO
Forested catchments provide critically important water resources. Due to dramatic global forest change over the past decades, the importance of including forest or vegetation change in the assessment of water resources under climate change has been highly recognized by Intergovernmental Panel on Climate Change (IPCC); however, this importance has not yet been examined quantitatively across the globe. Here, we used four remote sensing-based indices to represent changes in vegetation cover in forest-dominated regions, and then applied them to widely used models: the Fuh model and the Choudhury-Yang model to assess relative contributions of vegetation and climate change to annual runoff variations from 2000 to 2011 in forested landscape (forest coverage >30%) across the globe. Our simulations show that the global average variation in annual runoff due to change in vegetation cover is 30.7% ± 22.5% with the rest attributed to climate change. Large annual runoff variation in response to vegetation change is found in tropical and boreal forests due to greater forest losses. Our simulations also demonstrate both offsetting and additive effects of vegetation cover and climate in determining water resource change. We conclude that vegetation cover change must be included in any global models for assessing global water resource change under climate change in forest-dominant areas.
Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Florestas , Recursos Hídricos , TaigaRESUMO
Metal-based engineered nanomaterials (ENMs) are known to affect bacterial processes and metabolic activities. While testing their negative effects on biological components, studies traditionally rely on initial exposure concentrations and thereby do not take into consideration the dynamic behavior of ENMs that ultimately determines exposure and toxicity (e.g. ion release). Moreover, functional responses of soil microbial communities to ENMs exposure can be caused by both the particulate forms and the ionic forms, yet their relative contributions remain poorly understood. Therefore, we investigated the dynamic changes of exposure concentrations of three different types of ENMs (nano-ZnO, -Cu and -Pb) and submicron particles (SMPs) in relation to their impact on the capacity of soil bacterial communities to utilize carbon substrates. The different ENMs were chosen to differ in dissolution potential. The dynamic exposures of ENMs were considered using a time weighted average (TWA) approach. The joint toxicity of the particulate forms and the ionic forms of ENMs was evaluated using a response addition model. Our results showed that the effect concentrations of spherical nano-ZnO, -Cu and SMPs, and Pb-based perovskites expressed as TWA were lower than expressed as initial concentrations. Both particulate forms and ionic forms of spherical 18nm, 43nm nano-ZnO and 50nm, 100nm nano-Cu contribute to the overall response at the EC50 levels. The particulate forms for 150nm, 200nm and 900nm ZnO SMPs and rod-shaped 78nm nano-Cu mainly affected the soil microbial metabolic potential, while the Cu ions released from spherical 25nm nano-Cu, 500nm Cu SMPs and Pb ions released from perovskites mainly described the effects to bacterial communities. Our results indicate that the dynamic exposure of ENMs and relative contributions of particles and ions require consideration in order to pursue a naturally realistic assessment of environmental risks of metal-based ENMs.
Assuntos
Cobre/análise , Chumbo/análise , Nanopartículas/análise , Microbiologia do Solo , Poluentes do Solo/análise , Óxido de Zinco/análise , Compostos de Cálcio/química , Carbono/metabolismo , Cobre/toxicidade , Íons , Chumbo/toxicidade , Consórcios Microbianos/efeitos dos fármacos , Nanopartículas/toxicidade , Países Baixos , Óxidos/química , Tamanho da Partícula , Solo/química , Poluentes do Solo/toxicidade , Titânio/química , Óxido de Zinco/toxicidadeRESUMO
Testosterone deficiency and metabolism syndrome (MetS) are universal among ageing males, and they have been suggested responsible for poorer quality of life (QoL). We aimed to evaluate the relative contributions of reproductive hormones and components of MetS at the risk of reduced QoL among Chinese mid-aged and elderly men. A cross-sectional study recruited 2,364 males aged 40-79 years, and 2,165 was included for analysis eventually. The Chinese version of ageing male symptoms scale, 36-item Short Form and Beck Depression Inventory were applied to assess QoL. Bivariate correlation analysis and multiple linear regression analysis were used to assess the relative contributions of reproductive hormones and components of MetS at the risk of reduced QoL. Testosterone deficiency and MetS contributed to poorer QoL, of which higher fasting blood glucose made the primary contribution, lower total testosterone mainly contributed to poorer physical functioning.
Assuntos
Síndrome Metabólica/complicações , Qualidade de Vida , Testosterona/deficiência , Adulto , Idoso , Povo Asiático , Estudos Transversais , Humanos , Masculino , Síndrome Metabólica/psicologia , Pessoa de Meia-IdadeRESUMO
The endocrine disruptor phthalates (PAEs) are widely used as important chemical additives in a variety of areas around the globe. PAEs are toxic to reproduction and development and may adversely affect the health of adolescents. Risk assessments of exposure to PAEs from different sources are more reflective of actual exposure than single-source assessments. We used personal exposure parameters to estimate the dose of PAEs to 107 university students from six media (including dormitory dust, dormitory air, clothing, food, disposable food containers, and personal care products (PCPs)) and three exposure routes (including ingestion, inhalation, and dermal absorption). Individual factors and lifestyles may affect PAE exposure to varying degrees. Based on a positive matrix factorization (PMF) model, the results indicated that the main sources of PAEs in dust were indoor building materials and plastics, while PCPs and adhesives were the major sources of airborne PAEs. The relative contribution of each source to PAE exposure showed that food and air were the primary sources of dimethyl phthalate (DMP) and dibutyl phthalate (DBP). Air source contributed the most to diethyl phthalate (DEP) exposure, followed by PCPs. Food was the most significant source of diisobutyl phthalate (DiBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) exposure. Additionally, the exposure of DEHP to dust was not negligible. The ingestion pathway was the most dominant among the three exposure pathways, followed by dermal absorption. The non-carcinogenic risk of PAEs from the six sources was within acceptable limits. DEHP exhibits a low carcinogenic risk. We suggest university students maintain good hygienic and living habits to minimize exposure to PAEs.
Assuntos
Dietilexilftalato , Ácidos Ftálicos , Adolescente , Humanos , Universidades , Ácidos Ftálicos/análise , Dibutilftalato , Poeira/análise , China , Ésteres/análise , EstudantesRESUMO
The response of vegetation to climate change and human activities has attracted considerable attention. However, quantitative studies on the effects of climate change and human activities on dryland vegetation in different seasons remain unclear. This study investigated the impacts of precipitation, temperature, soil water storage (SWS) (top [0-7 cm], shallow [7-28 cm], and middle [28-100 cm] layers), vapor pressure deficit (VPD), and afforestation on vegetation as well as their relative contribution rates during the rainy season ([RS], June to September), dry season ([DS], November to April), transition season ([TS], May and October), and all year period (AY) in China's drylands from 2001 to 2020 using the first-difference method. Areas with precipitation and SWS showing significant positive correlation with dryland vegetation (p < 0.05) were found to be larger in RS than in DS and TS, and the positive effect of SWS increased with soil depth in the 0-28 cm interval. Increasing VPD induced a significant negative effect on vgetation during RS but it was not predominant in DS and TS. Afforestation showed an extremely significant positive correlated with dryland vegetation across >60 % of China's dryland areas (p < 0.01), but this improvement was found to be limited to regions with the highest afforestation area. Moreover, dryland vegetation dynamics were driven by afforestation in all seasons, with contribution rates of 64.23 %-71.46 %. The effects of SWS and VPD on vegetation driven by precipitation and temperature exceeded the direct effects of precipitation and temperature. Among climatic factors, VPD showed a major regulating effect on dryland vegetation at the top and shallow soil layers in almost all seasons, whereas the relative contribution rate of SWS increased with soil layer. The findings can provide a scientific reference for the sustainable development and protection of drylands under global warming.
Assuntos
Mudança Climática , Ecossistema , Humanos , Solo , Chuva , ChinaRESUMO
Global carbon emissions have exacerbated the greenhouse effect, exerting a profound impact on ecosystems worldwide. Gaining an understanding of the fluctuations in vegetation net primary productivity (NPP) is pivotal in the assessment of environmental quality, estimation of carbon source/sink potential, and facilitation of ecological restoration. Employing MODIS and meteorological data, we conducted a comprehensive analysis of NPP evolution in Chinese vegetation ecosystems (VESs), employing Theil-Sen median trend analysis and the Mann-Kendall test. Furthermore, utilizing scenario-based analysis, we quantitatively determined the respective contributions of climate change and land use change to NPP variations across various scales. The overall NPP exhibited a discernible upward trend from 2000 to 2020, with a growth rate of 5.83 gC·m-2·year-1. Forestland ecosystem (FES) displayed the highest rate of increase (9.40 gC·m-2·year-1), followed by cropland ecosystem (CES) (4.00 gC·m-2·year-1) and grassland ecosystem (GES) (3.40 gC·m-2·year-1). Geographically, NPP exhibited a spatial pattern characterized by elevated values in the southeast and diminished values in the northwest. In addition, climate change had elevated 76.39 % of CES NPP, 90.62 % of FES NPP, and 71.78 % of GES NPP. At the national level, climate change accounted for 83.14 % of the NPP changes, while land use change contributed 14.14 %. Notably, climate change emerged as the primary driving force behind NPP variations across all VEGs, with land use change exerting the most pronounced influence on CES. At the grid scale (2 km × 2 km), land use change played a substantial role in all VEGs, contributing 60.01 % in CES, 54.20 % in FES, and 55.61 % in GES of the NPP variations.
RESUMO
Rivers are undergoing significant changes under the pressures of natural processes and human activities. However, characterizing and understanding these changes over the long term and from a spatial perspective have proven challenging. This paper presents a novel framework featuring twelve indicators that combine geometric and spatial structures for evaluating changes in river network patterns. Through global principal component analysis, these indicators were integrated into a comprehensive river network pattern index (RNP). Employing Pearson correlation analysis, geographically weighted regression, geographic detector models, and the Shapley Value, the study quantitatively analyzed various stressors' impacts and relative contributions on river network changes from the 1960s to 2015s. The results showed a clear trend of degradation over time, particularly with frequency and density declining by 57 % and 48 %, respectively. The changes across subbasins varied temporally and spatially, with the 1980s emerging as a significant temporal hotspot and six spatial hotspots identified among twenty subbasins. The analysis showed that agriculture was significantly negatively associated with RNP, while the relationship between urbanization and RNP was inverted N-shaped. To address the negative effects of human activities, a shift from uniform management approaches is crucial. In agricultural areas, adopting more intensive farming practices could help mitigate negative impacts on RNP. For highly urbanized regions, city planning should consider the interactions between urbanization and other factors affecting RNP. Overall, incorporating an understanding of RNP's spatial-temporal dynamics and driving factors into spatial planning is critical for creating effective and sustainable management strategies for human-river interactions.
Assuntos
Monitoramento Ambiental , Atividades Humanas , Rios , Urbanização , Rios/química , China , Humanos , AgriculturaRESUMO
Wetland degradation can induce alterations in plant biomass, soil properties, and soil ecoenzyme activities, consequently influencing soil organic carbon components. Despite extensive investigations into the relationships among plant characteristics, soil properties, and soil organic carbon components, the enzymatic mechanisms underlying changes in soil organic carbon components, particularly the impact and contribution of ecoenzyme activities, remain poorly understood. This study compared the soil organic carbon components at a depth of 0-20 cm in wetlands in the semi-arid western Songnen Plain under different degradation levels and explored plant biomass, soil properties, and soil ecoenzyme activities. The results showed that the soil total organic carbon, labile organic carbon, and recalcitrant organic carbon contents in the degraded wetlands were generally lower than those in the non-degraded wetlands. Furthermore, the soil nutrient contents and soil ß-1,4-glucosidase, L-leucine aminopeptidase, and acid phosphatase activities were also lower in the degraded wetlands than in the non-degraded wetlands. Vector analysis of enzymatic stoichiometry revealed that wetland degradation did not increase microbial carbon limitation. The soil organic carbon components showed significant positive correlations with plant biomass, soil water content, soil total nitrogen, soil total phosphorus, as well as soil ecoenzyme activities. Variation partitioning analysis revealed that plant biomass, soil properties, soil ecoenzyme activities collectively accounted for 78.5 % variation in soil organic carbon components, among which plant biomass, soil properties, soil ecoenzyme activities, and their interactions explaining 4.2 %, 8.0 %, 7.9 %, and 24.5 % of the variation, respectively. Therefore, the impact of soil ecoenzyme activities and soil properties on soil organic carbon component changes was greater than that of plant biomass, with the interaction of these three factors playing a crucial role in soil organic carbon formation. This study provides a theoretical basis for scientifically evaluating the carbon sink function of degraded wetland soil and preserving the wetland soil carbon pool.
Assuntos
Solo , Áreas Alagadas , Biomassa , Carbono/análise , Plantas , Nitrogênio/análise , Microbiologia do Solo , ChinaRESUMO
Aggregates are the basic structural units of soils and play a crucial role in metal migration and transformation. Combined contamination of lead (Pb) and cadmium (Cd) is common in site soils, and the two metals may compete for the same adsorption sites and affect their environmental behavior. Herein, the adsorption behavior of Pb and Cd on aggregates of two soils and contributions of soil components in single and competitive systems were studied by combining cultivation experiments, batch adsorption, multi-surface models (MSMs), and spectroscopic techniques. The results demonstrated that < 2 µm size aggregate was the dominant sink for Pb and Cd competitive adsorption in both soils. Compared with Pb, the adsorption capacity and behavior of Cd were affected greatly under competition. MSMs prediction revealed that soil organic matter (SOM) contributed the most to Cd and Pb adsorption on aggregates (> 68.4%), but the dominant competitive effect occurred on different sites for Cd adsorption (primarily on SOM) and Pb adsorption (primarily on clay minerals). Further, 2 mM Pb coexistence caused 5.9 - 9.8% of soil Cd conversion to unstable species (Cd(OH)2). Thus, the competitive effect of Pb on Cd adsorption cannot be ignored in soils with high content of SOM and fine aggregates.
RESUMO
Constructed wetlands (CWs) have been widely used for ecological remediation of micro-polluted source water. Nitrous oxide (N2O) from CWs has caused great concern as a greenhouse gas. However, the contribution of ammonia oxidation driven by ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) to N2O emission, especially at low temperature, was unknown. This study aimed to quantify the contributions of AOA and AOB to N2O through lab-scale subsurface CWs. The N2O emission flux of CW at 8 °C was 1.23 mg m-2·h-1, significantly lower than that at 25 °C (1.92 mg m-2·h-1). The contribution of ammonia oxidation to N2O at 8 °C (33.04%) was significantly higher than that at 25 °C (24.17%). The N2O production from AOA increased from 1.91 ng N·g-1 at 25 °C to 4.11 ng N·g-1 soil at 8 °C and its contribution increased from 23.38% to 30.18% (P < 0.05). Low temperature impaired functional gene groups and inhibited the activity of AOB, resulting in its declined contribution. Based on the transcriptional analysis, AOA was less affected by low temperature, thus stably contributing to N2O. Moreover, community diversity and relationships of AOA were enhanced at 8 °C, while AOB declined. The results confirmed the significant contribution of AOA and demonstrated molecular mechanisms (higher activity and community stability) of the increased contribution of AOA to N2O at low temperature.
Assuntos
Archaea , Óxido Nitroso , Archaea/genética , Amônia , Áreas Alagadas , Temperatura , Nitrificação , Oxirredução , Microbiologia do Solo , Bactérias/genética , FilogeniaRESUMO
Runoff from the Qinghai-Tibetan Plateau, a major global water tower, is crucial to regional hydrological processes and the availability of water for a large population living downstream. Climate change, especially changes in precipitation and temperature, directly impacts hydrological processes and exacerbates shifts in the cryosphere, such as glacier and snow melt, leading to changes in runoff. Although there is a consensus on increased runoff due to climate change, it is still unclear to what extent precipitation and temperature contribute to runoff variations. This lack of understanding is one of the primary sources of uncertainty when assessing the hydrological impacts of climate change. In this study, a large-scale, high-resolution, and well-calibrated distributed hydrological model was employed to quantify the long-term runoff of the Qinghai-Tibetan Plateau, and the changes in runoff and runoff coefficient were analyzed. Furthermore, the impacts of precipitation and temperature on runoff variation were quantitatively estimated. The results found that runoff and runoff coefficient decreased from southeast to northwest, with mean values of 184.77 mm and 0.37, respectively. Notably, the runoff coefficient exhibited a significant increasing trend of 1.27 %/10 yr (P < 0.001), while the southeastern and northern regions of the plateau showed a declining tendency. We further showed that the warming and humidification of the Qinghai-Tibetan Plateau led to an increase in the runoff by 9.13 mm/10 yr (P < 0.001). And precipitation is a more important contributor than temperature across the plateau, contributing 72.08 % and 27.92 % to the runoff increase, respectively. At the basin scale, the influence of precipitation and temperature on runoff varies among basins, with the Daduhe basin and the Inner basin being the most and least influenced by precipitation, respectively. This research analyses historical runoff changes on the Qinghai-Tibetan Plateau and provides insights into the contributions of climate change to runoff.
RESUMO
Due to the interaction between upstream discharge and astronomical tides in tidal reaches, the typhoon-induced storm surge processes are quite different from that in other coastal regions. Investigating the contributions of driving factors is essential to deepen the understanding of storm surges in tidal reaches. In this study, a coupled hydrological-hydrodynamic storm surge model is first developed to explore the main driving factors of storm surges in Makou-Dahengqin tidal reach during the three most influential typhoon events (Hagupit, Hato and Mangkhut). After that, the machine learning method is integrated to assess the water level in response to storm surges. The driving factors of storm surge are decomposed into remote forcing (upstream discharge, astronomical tide) and direct local forcing (wind stress, atmospheric pressure). The relative contributions of remote forcing are the highest near the estuary mouth. The relative contributions of local forcing to water levels are higher in the sections 40-80 km away from the estuary mouth. The most impacting period of the local forcing is about 48 h, while the relative contributions of remote forcing increase before and after the period. The local forcing-induced surges are highest at the upper reach during Hagupit, while it causes extreme surges at the estuary mouth during more powerful typhoons (Hato, Mangkhut). The maximum water levels and remote forcing-induced maximum surges invariably appear at the upper reach. However, when local and remote forcings are in the same phase, the maximum storm surge appears in the lower reaches during Hato. If local and remote forcings are in the same phase, the peak water levels would be amplified by up to 15.04 %, 36.23 % and 40.68 % during Hagupit, Hato and Mangkhut, respectively. Moreover, Remote forcing contributes more to the amplification of peak water levels than local forcing does, accounting for 68.5 % to 100 %.
RESUMO
In the context of increasing atmospheric particles pollution, wheat cadmium (Cd) pollution caused by atmospheric deposition in agro-ecosystems has attracted increasing attention. However, the relative contribution of different wheat leaves-to-grain Cd accumulation is still unclear. We assessed the roles of different wheat leaves on grain Cd accumulation with field-comparative experiments during the filling stage. Results show that wheat leaves can direct uptake atmospheric Cd through stomata, and the flag leaf exhibited a higher Cd concentration compared to other leaves. The relative contribution of the leaves-to-grain Cd accumulation decreased gradually during the grain-filling period, from 34.44% reaching 14.48%, indicating that the early grain-filling period is the critical period for leaf Cd contributions. Moreover, the relative contribution of flag leaves (7.27%) to grain Cd accumulation was larger than that of the sum of other leaves (7.21%) at maturity. Therefore, the flag leaf is the key leaf involved in grain Cd accumulation, and controlling the transport of Cd from leaves to grains at the early filling period, particularly flag leaf, could help to ensure wheat grain safety, thus ensuring the safety of food production.
RESUMO
Genetic and exposomal factors contribute to the development of human aging. For example, genetic polymorphisms and exposure to environmental factors (air pollution, tobacco smoke, etc.) influence lung and skin aging traits. For prevention purposes it is highly desirable to know the extent to which each category of the exposome and genetic factors contribute to their development. Estimating such extents, however, is methodologically challenging, mainly because the predictors are often highly correlated. Tackling this challenge, this article proposes to use weighted risk scores to assess combined effects of categories of such predictors, and a measure of relative importance to quantify their relative contribution. The risk score weights are determined via regularized regression and the relative contributions are estimated by the proportion of explained variance in linear regression. This approach is applied to data from a cohort of elderly Caucasian women investigated in 2007-2010 by estimating the relative contribution of genetic and exposomal factors to skin and lung aging. Overall, the models explain 17% (95% CI: [9%, 28%]) of the outcome's variance for skin aging and 23% ([11%, 34%]) for lung function parameters. For both aging traits, genetic factors make up the largest contribution. The proposed approach enables us to quantify and rank contributions of categories of exposomal and genetic factors to human aging traits and facilitates risk assessment related to common human diseases in general. Obtained rankings can aid political decision making, for example, by prioritizing protective measures such as limit values for certain exposures.
Assuntos
Envelhecimento , Exposição Ambiental , Expossoma , Idoso , Feminino , Humanos , Envelhecimento/genética , Exposição Ambiental/efeitos adversos , Medição de Risco , Fatores de RiscoRESUMO
Vegetation dynamics are sensitive to climate change. Wind is an important climate factor that can affect carbon fluxes by altering carbon uptake and emission rates; however, the impact of wind has not been fully considered in previous studies; therefore, exploring the characteristics of vegetation responses to wind speed is crucial to sustainable natural resource utilization and ecological restoration. In this study, the global leaf area index (LAI) from 1984 to 2013 was used to investigate the vegetation spatial heterogeneities, change processes, and relative contributions of climate change. The differences in vegetation responses to climate factors, such as precipitation (PRE), temperature (TEM), and wind speed (WD), were compared by considering the effects of wind. The results revealed that (1) the global vegetation (86.24%) exhibited a greening trend, among which evergreen broad-leaved forests (0.0052 a-1) changed the most. (2) The wind speed explained 31.54% of the vegetation variations, which is higher than the contribution of other factors. (3) Reduction of wind speed had a positive impact on vegetation changes. The contribution of climate to vegetation growth increased by 8.14% when considering the effects wind speed, particularly in India and South America. Wind speed effects were essential for enhancing the vegetation dynamics assessment and improving the prediction accuracy of the model.
Assuntos
Ecossistema , Vento , Carbono , Mudança Climática , FlorestasRESUMO
Mechanisms such as conspecific negative density dependence (CNDD) and niche partitioning have been proposed to explain species coexistence and community diversity. However, as a potentially important axis of niche partitioning, the role of interannual climate variability in driving local community dynamics remains largely unknown. Here we used a 15-year monitoring data set of more than 53,000 seedlings in a temperate forest to examine (1) what are the relative effects of interannual climate variability, biotic interactions, and habitat conditions on seedling survival; (2) how the effects of biotic interactions change with interannual climate variability, and habitat conditions; and (3) whether the impacts of interannual climate variability, biotic interactions, and habitat conditions differ with plant traits. Interannual climate variability accounted for the most variation in seedling survival at the community level, followed by biotic interactions, and habitat conditions. Increased snowpack and decreased minimum temperature during the non-growing season had positive effects on seedling survival. Effects of conspecific neighbor density were weakened in higher snowpack, effective accumulated temperature, elevation, and soil-resource gradient, but were intensified with increased ultraviolet radiation, maximum precipitation, minimum temperature, and soil moisture. In addition, the relative importance of interannual climate variability versus biotic interactions differed depending on species-trait groups. Specifically, biotic interactions for gravity-dispersed species had a larger effect size in affecting seedling survival than other trait groups. Also, gravity-dispersed species experienced a stronger CNDD than wind-dispersed, probably because wind-dispersed seedlings rarely had adult conspecifics nearby. We found that interannual climate variability was most strongly associated with seedling survival, but the magnitude of climatic effects varied among species-trait groups. Interannual climate variability may act as an inhibitor or accelerator to density-dependent interactions and should be accounted for in future studies, as both a potential direct and indirect factor in understanding the diversity of forest communities.
Assuntos
Plântula , Árvores , Ecossistema , Florestas , Raios UltravioletaRESUMO
Net primary production (NPP) is an essential component of the terrestrial carbon cycle and an essential factor of ecological processes. In global change research, it was the core content to study the driving forces of NPP change. In this paper, we focused on the Southwest Karst area of China and analyzed the response mechanisms of NPP to topography, land-use types, climatic change, and human activities. Our results showed that (1) changes in elevation and slope lead to significant differences in the spatial distribution of NPP. With the increase of elevation and slope, NPP first increased and then decreased, their critical values were 2000 m and 15°, respectively. (2) NPP varied significantly among different land-use types. The average NPP of the forest was the highest, and the average NPP of cultivated land increased fastest. (3) Temperature and precipitation had the most substantial influence on NPP, both of them promoted the increase of NPP, and the effect of temperature was more obvious in the Southwest Karst area. (4) Ecological engineering significantly promoted the change of NPP, while animal husbandry significantly inhibited the change of NPP. (5) There were significant spatial differences in the driving effects and corresponding contributions of climatic change and human activities; both of them promoted the increase of NPP in the Southwest Karst area of China. Under climatic change and human activities, NPP increased by 1.24 gC·m-2·year-1 and 2.29 gC·m-2·year-1, respectively. The contributions rates of climatic change and human activities separately accounted for 35% and 65%. The contribution of human activities on NPP was much higher than that of climatic change in the Southwest Karst area, and the results suggested that we should focus on the role of human activities on NPP change.