Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Reprod Biol Endocrinol ; 22(1): 16, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297297

RESUMO

During embryo implantation, blastocyst interacts with the receptivity endometrium and the endometrial epithelium secretes nurturing fluid to support embryonic development. Interferon-λ (IFN-λ) is a novel, non-redundant regulator that participates in the fetal-maternal interaction; however, the precise molecular mechanism underlying its impact on uterine receptivity remains elusive. Here, microarray profiling revealed that 149 specific miRNAs were differentially expressed in the human endometrial cells following IFN-λ treatment. In particular, miR-124-3p expression was significantly reduced after IFN-λ treatment (p < 0.05). An in vivo mouse pregnancy model showed that miR-124-3p overexpression notably decreased embryo implantation rate and led to an aberrant epithelial phenotype. Furthermore, miR-124-3p negatively impacted the migration and proliferation of endometrial cells, and hindered embryonic developmental competence in terms of blastocyst formation and global DNA re-methylation. Downstream analysis showed that LIF, MUC1 and BCL2 are potential target genes for miR-124-3p, which was confirmed using western blotting and immunofluorescence assays. In conclusion, IFN-λ-driven downregulation of miR-124-3p during embryo implantation modulates uterine receptivity. The dual functional role of miR-124-3p suggests a cross-talk model wherein, maternal endometrial miRNA acts as a transcriptomic modifier of the peri-implantation endometrium and embryo development.


Assuntos
Interferon lambda , MicroRNAs , Gravidez , Feminino , Humanos , Camundongos , Animais , Implantação do Embrião/genética , Útero/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Endométrio/metabolismo , Desenvolvimento Embrionário/genética
2.
J Inherit Metab Dis ; 45(4): 848-861, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460084

RESUMO

MTHFR deficiency is a severe inborn error of metabolism leading to impairment of the remethylation of homocysteine to methionine. Neonatal and early-onset patients mostly exhibit a life-threatening acute neurologic deterioration. Furthermore, data on early-onset patients' long-term outcomes are scarce. The aims of this study were (1) to study and describe the clinical and laboratory parameters of early-onset MTHFR-deficient patients (i.e., ≤3 months of age) and (2) to identify predictive factors for severe neurodevelopmental outcomes in a cohort with early and late onset MTHFR-deficient patients. To this end, we conducted a retrospective, multicentric, international cohort study on 72 patients with MTHFR deficiency from 32 international metabolic centres. Characteristics of the 32 patients with early-onset MTHFR deficiency were described at time of diagnosis and at the last follow-up visit. Logistic regression analysis was used to identify predictive factors of severe neurodevelopmental outcome in a broader set of patients with early and non-early-onset MTHFR deficiency. The majority of early-onset MTHFR-deficient patients (n = 32) exhibited neurologic symptoms (76%) and feeding difficulties (70%) at time of diagnosis. At the last follow-up visit (median follow-up time of 8.1 years), 76% of treated early-onset patients (n = 29) exhibited a severe neurodevelopmental outcome. Among the whole study population of 64 patients, pre-symptomatic diagnosis was independently associated with a significantly better neurodevelopmental outcome (adjusted OR 0.004, [0.002-0.232]; p = 0.003). This study provides evidence for benefits of pre-symptomatic diagnosis and appropriate therapeutic management, highlighting the need for systematic newborn screening for MTHFR deficiency and pre-symptomatic treatment that may improve outcome.


Assuntos
Homocistinúria , Estudos de Coortes , Homocisteína , Homocistinúria/diagnóstico , Homocistinúria/tratamento farmacológico , Humanos , Recém-Nascido , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Espasticidade Muscular/diagnóstico , Transtornos Psicóticos , Estudos Retrospectivos
3.
J Inherit Metab Dis ; 45(2): 157-168, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34625984

RESUMO

Methionine synthase deficiency (cblG complementation group) is a rare inborn error of metabolism affecting the homocysteine re-methylation pathway. It leads to a biochemical phenotype of hyperhomocysteinemia and hypomethioninemia. The clinical presentation of cblG is variable, ranging from seizures, encephalopathy, macrocytic anemia, hypotonia, and feeding difficulties in the neonatal period to onset of psychiatric symptoms or acute neurologic changes in adolescence or adulthood. Given the variable and nonspecific symptoms seen in cblG, the diagnosis of affected patients is often delayed. Medical management of cblG includes the use of hydroxocobalamin, betaine, folinic acid, and in some cases methionine supplementation. Treatment has been shown to lead to improvement in the biochemical profile of affected patients, with lowering of total homocysteine levels and increasing methionine levels. However, the published literature contains differing conclusions on whether treatment is effective in changing the natural history of the disease. Herein, we present five patients with cblG who have shown substantial clinical benefit from treatment with objective improvement in their neurologic outcomes. We demonstrate more favorable outcomes in our patients who were treated early in life, especially those who were treated before neurologic symptoms manifested. Given improved outcomes from treatment of presymptomatic patients, cblG warrants inclusion in newborn screening.


Assuntos
Metionina , Vitamina B 12 , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/deficiência , Adulto , Erros Inatos do Metabolismo dos Aminoácidos , Diagnóstico Precoce , Homocisteína , Humanos , Erros Inatos do Metabolismo , Vitamina B 12/metabolismo
4.
BMC Neurol ; 22(1): 180, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578252

RESUMO

BACKGROUND: Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases characterized by lower-limb spastic paraplegia with highly genetic and clinical heterogeneity. However, the clinical sign of spastic paraplegia can also be seen in a variety of hereditary neurologic diseases with bilateral corticospinal tract impairment. The purpose of this study is to identify the disease spectrum of spastic paraplegia, and to broaden the coverage of genetic testing and recognize clinical, laboratorial, electrophysiological and radiological characteristics to increase the positive rate of diagnosis. METHODS: Twenty-seven cases were screened out to have definite or suspected pathogenic variants from clinically suspected HSP pedigrees through HSP-associated sequencing and/or expanded genetic testing. One case was performed for enzyme detection of leukodystrophy without next-generation sequencing. In addition, detailed clinical, laboratorial, electrophysiological and radiological characteristics of the 28 patients were presented. RESULTS: A total of five types of hereditary neurological disorders were identified in 28 patients, including HSP (15/28), leukodystrophy (5/28), hereditary ataxia (2/28), methylmalonic acidemia/methylenetetrahydrofolate reductase deficiency (5/28), and Charcot-Marie-tooth atrophy (1/28). Patients in the HSP group had chronic courses, most of whom were lower limbs spasticity, mainly with axonal neuropathy, and thinning corpus callosum, white matter lesions and cerebellar atrophy in brain MRI. In the non-HSP groups, upper and lower limbs both involvement was more common. Patients with homocysteine remethylation disorders or Krabbe's disease or autosomal recessive spastic ataxia of Charlevoix-Saguenay had diagnostic results in laboratory or imaging examination. A total of 12 new variants were obtained. CONCLUSIONS: HSP had widespread clinical and genetic heterogeneity, and leukodystrophy, hereditary ataxia, Charcot-Marie-Tooth atrophy and homocysteine remethylation disorders accounted for a significant proportion of the proposed HSP. These diseases had different characteristics in clinical, laboratorial, electrophysiological, and radiological aspects, which could help differential diagnosis. Genetic analysis could ultimately provide a clear diagnosis, and broadening the scope of genetic testing could improve the positive rate of diagnosis.


Assuntos
Doença de Charcot-Marie-Tooth , Paraplegia Espástica Hereditária , Ataxias Espinocerebelares , Atrofia , Homocisteína , Humanos , Mutação/genética , Paraplegia/genética , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética
5.
Doc Ophthalmol ; 144(1): 53-65, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34491492

RESUMO

INTRODUCTION: Transcobalamin (TC) transports cobalamin (vitamin B12) from plasma into cells. Its congenital deficiency is a rare autosomal recessive disorder due to mutations in the TCN2 gene. It causes intracellular cobalamin depletion with early onset in the first months of life, failure to thrive with pallor due to megaloblastic anemia. It can be associated with pancytopenia, gastrointestinal symptoms with vomiting, diarrhea, and neurological complications with myelopathy. Aggressive vitamin B12 parenteral therapy must be instituted early and continuously. Retinopathy and maculopathy are rarely associated with this condition. SUBJECT: We report the electrophysiological results of one TC-deficient patient diagnosed at the age of 4 months immediately and continuosly treated by hydroxocobalamin IM. Her visual function was followed by eight ophthalmological assessments, eight flash-ERG, six EOG, one mf-ERG, and seven P-ERG recordings over a 10-year period, between the age of 2y 9 m and 12y 6 m. RESULTS: Her ophthalmological assessment including visual acuity, fundi, optical coherent tomography (OCT), and retinal nerve fiber layer (RNFL) remained normal. From the age of 2y 9 m to 5y, dark-adapted and light-adapted flash-ERGs, EOGs and pattern-ERG were normal. From the age of 6y 4 m to 12y 6 m, dark-adapted flash-ERGs and EOGs remained normal. Cone a-wave amplitudes remained normal, whereas cone b-wave and flicker-response amplitudes were decreased. At the age of 12y 6 m, mf-ERG N1P1 amplitudes on the central 30° were decreased. From the age of 7y 4 m to 12y 6 m, P-ERG P50 amplitudes were decreased with no N95. COMMENTS: While clinical and anatomical assessments remained normal over a 10-year period, patient's electrophysiological results suggested the progressive onset of a subclinical retinopathy of inner-cone dystrophy type, and a subclinical maculopathy on the central 30° including the ganglion cell layer deficiency on the central 15°, despite continuous intramuscular treatment, RPE and scotopic system remaining normal. The origins of such subclinical retinopathy and maculopathy are unknown and independent of early disease identification and aggressive intramuscular hydroxocobalamin therapy.


Assuntos
Degeneração Macular , Doenças Retinianas , Criança , Pré-Escolar , Eletrorretinografia , Feminino , Seguimentos , Humanos , Hidroxocobalamina/uso terapêutico , Lactente , Doenças Retinianas/diagnóstico , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/etiologia , Transcobalaminas/genética , Vitamina B 12
6.
Neurol Sci ; 42(5): 1987-1993, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33000330

RESUMO

Homocysteine remethylation disorders are rare inherited disorders caused by a deficient activity of the enzymes involved in the remethylation of homocysteine to methionine. The adolescent/adult-onset remethylation disorders are rarely reported. We analyzed the clinical and genetic characteristics of seven cases with adolescent/adult remethylation disorders, including 5 cases of the cobalamin C disease (cblC) and 2 cases of the methylenetetrahydrofolate reductase deficiency. The average onset age was 21.1 (range 14 to 40) years. All patients complained of gait disturbances. Other common symptoms included psychiatric symptoms (5/7) and cognitive decline (4/7). Acute encephalopathy, dysarthria, anorexia, vomiting, ketoacidosis, anemia, cataract, and hand tremor were also observed. The mean total homocysteine in serum when the patients were diagnosed was 94.6 (range 53.1-154.5) mol/L. Electrophysiological studies revealed neuropathy in the lower limbs (6/7). The brain MRI showed reversible altered signal from the dorsal portions of the cerebellar hemispheres (1/7), periventricular hyperintensity (2/7), and delayed/impaired myelination (2/7). The sural nerve biopsy performed in one case showed a modest loss of myelinated fibers. Five patients showed heterozygous mutations of the MMACHC gene, including c.482G>A (5/5), c.609G>A (2/5), and c.658-660delAAG (3/5). Two patients showed heterozygous mutations of the MTHFR gene, including c.698C>A (2/2), c.698C>G (1/2), and c.236+1G>A (1/2). The patients responded well to the treatments with significant improvements. Adolescent/adult-onset remethylation disorders are easily misdiagnosed. We recommend testing the serum homocysteine concentrations in young/adult patients with unexplained neuro-psychotic symptoms. Furthermore, individuals with significantly elevated serum homocysteine concentrations should be further tested by organic acid screening and genetic analysis.


Assuntos
Disfunção Cognitiva , Transtornos Neurológicos da Marcha , Homocistinúria , Deficiência de Vitamina B 12 , Adolescente , Adulto , Homocisteína , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Oxirredutases , Vitamina B 12 , Adulto Jovem
7.
J Nutr ; 150(Suppl 1): 2506S-2517S, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000152

RESUMO

The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 µmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine ß-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Cisteína/metabolismo , Homocisteína/metabolismo , Doenças Metabólicas/genética , Metionina/metabolismo , Compostos de Enxofre/metabolismo , Enxofre/metabolismo , Animais , Encefalopatias/etiologia , Encefalopatias/metabolismo , Glutationa/metabolismo , Homocistinúria/etiologia , Homocistinúria/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Fígado/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Doenças Metabólicas/terapia , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/terapia , Metionina Adenosiltransferase/metabolismo , Metilação , S-Adenosilmetionina/metabolismo , Sulfitos/metabolismo
8.
Pol Merkur Lekarski ; 48(283): 55-59, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218408

RESUMO

Hyperhomocysteinemia is a risk factor for endothelial dysfunction and, consequently, for cardiovascular disease and multiple other conditions. Impairment of homocysteine metabolism is known to occur in thyroid dysfunction. In particular, patients with hypothyroidism have significantly higher homocysteine levels than healthy people. Metabolism of homocysteine occurs in methylation cycle (whose normal functioning is dependent on tissue pools of vitamins B9, B12 and betaine), and also in reactions of trans-sulfonation, where pyridoxal phosphate (a pyridoxine derivative) acts as a coenzyme. AIM: The aim of this study was to perform an experimental feasibility assessment of using pyridoxine, betaine, folic acid and cyanocobalamin to correct the methionine and homocysteine metabolism impaired by hyper- and hypothyroidism. MATERIALS AND METHODS: Prolonged hyperthyroidism and hypothyroidism were modeled in experimental rats by dosing the animals with L-thyroxine and thiamazole, respectively, for 21 days. RESULTS: Prolonged hyper- and hypothyroidism was found to cause oppositely directional changes in homocysteine metabolism. Hyperthyroidism was causing a significant increase in activity of S-adenosyl-methionine synthase, betaine-homocysteine methyltransferase and S-adenosylhomocysteine hydrolase in the liver and kidneys compared to control group of animals. Such directionality of changes in activities of above mentioned enzymes has led to a reduction in serum homocysteine levels. Hypothyroidism inhibited the activity of S-adenosyl-methionine synthase, betainehomocysteine methyltransferase and S-adenosylhomocysteine hydrolase in the liver and in the kidneys of rats compared to controls. Betaine partially prevented impaired betaine-homocysteine methyltransferase activity in hyper- and hypothyroidism. Folic acid, cyanocobalamin and pyridoxine significantly reduced homocysteine levels in the blood of animals with hypothyroidism. CONCLUSIONS: A conclusion was made that the above agents could be effective factors to prevent endothelial dysfunction in hypothyroidism.


Assuntos
Hipotireoidismo , Complexo Vitamínico B , Animais , Homocisteína , Humanos , Fígado , Metilação , Ratos , S-Adenosilmetionina
9.
J Nutr ; 149(3): 432-440, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30770540

RESUMO

BACKGROUND: DL-2-hydroxy-4-methylthiobutyric acid (DL-HMTBA), an L-methionine (L-Met) hydroxyl analogue, has been suggested to be a dietary L-Met source. How dietary DL-HMTBA compared with L-Met affects whole-body L-Met kinetics in growing individuals is unknown. OBJECTIVES: We determined to what extent DL-HMTBA supplementation of an L-Met-deficient diet affects whole-body L-Met and L-cysteine (L-Cys) kinetics, protein synthesis (PS), and the L-Met incorporation rate in liver protein (L-MetInc) compared with L-Met and DL-Met supplementation in a piglet model. METHODS: Forty-five, 28-d-old weaned piglets (male, German Landrace) were allocated to 4 dietary groups: L-Met-deficient diet [Control: 69% of recommended L-Met plus L-Cys supply; 0.22% standardized ileal digestible (SID) L-Met; 0.27% SID L-Cys; n = 12] and Control diet supplemented equimolarly to 100% of recommended intake with either L-Met (n = 12; LMET), DL-Met (n = 11; DLMET), or DL-HMTBA (n = 10; DLHMTBA). At 47 d of age, the piglets were infused with L-[1-13C; methyl-2H3]-Met and [3,3-2H2]-Cys to determine the kinetics and PS rates. Plasma amino acid (AA) concentrations, hepatic mRNA abundances of L-Met cycle and transsulfuration (TS) enzymes, and L-MetInc were measured. RESULTS: During feed deprivation, L-Met kinetics did not differ between groups, and were ≤3 times higher in the fed state (P < 0.01). Remethylation (RM) was 31% and 45% higher in DLHMTBA than in DLMET and Control pigs, respectively, and the RM:transmethylation (TM) ratio was 50% higher in DLHMTBA than in LMET (P < 0.05). Furthermore, TS and the TS:TM ratio were 32% lower in DLHMTBA than in LMET (P < 0.05). L-MetInc was 42% lower in DLMET and DLHMTBA than in L-Met-deficient Control pigs, whereas plasma AA and hepatic mRNA abundances were similar among DL-HMTBA-, L-Met-, and DL-Met-supplemented pigs. CONCLUSIONS: In piglets, DL-HMTBA compared with L-Met and DL-Met supplementation increases RM and reduces the TS rate to conserve L-Met, but all 3 Met isomers support growth at a comparable rate.


Assuntos
Proteínas Alimentares/metabolismo , Metionina/análogos & derivados , Metionina/metabolismo , Suínos/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Cisteína/administração & dosagem , Cisteína/química , Cisteína/metabolismo , Dieta/veterinária , Proteínas Alimentares/química , Metionina/administração & dosagem , Metionina/química , Distribuição Aleatória
10.
J Anim Physiol Anim Nutr (Berl) ; 102(1): e468-e475, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28984387

RESUMO

This study examined the molecular mechanisms of methionine pathways in meat-type chickens where birds were provided with a diet deficient in methionine from 3 to 5 weeks of age. The birds on the deficient diet were then provided with a diet supplemented with either D,L-methionine or D,L-HMTBA from 5 to 7 weeks. The diet of the control birds was supplemented with L-methionine from hatch till 7 weeks of age. We studied the mRNA expression of methionine adenosyltransferase 1, alpha, methionine adenosyltransferase 1, beta, 5-methyltetrahydrofolate-homocysteine methyltransferase, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase, betaine-homocysteine S-methyltransferase, glycine N-methyltransferase, S-adenosyl-L-homocysteine hydrolase and cystathionine beta synthase genes in the liver, duodenum, Pectoralis (P.) major and the gastrocnemius muscle at 5 and 7 weeks. Feeding a diet deficient in dietary methionine affected body composition. Birds that were fed a methionine-deficient diet expressed genes that indicated that remethylation occurred via the one-carbon pathway in the liver and duodenum; however, in the P. major and the gastrocnemius muscles, gene expression levels suggested that homocysteine received methyl from both folate and betaine for remethylation. Birds who were switched from a methionine deficiency diet to one supplemented with either D,L-methionine or D,L-HMTBA showed a downregulation of all the genes studied in the liver. However, depending on the tissue or methionine form, either folate or betaine was elicited for remethylation. Thus, mRNA expressions show that genes in the remethylation and transsulphuration pathways were regulated according to tissue need, and there were some differences in the methionine form.


Assuntos
Galinhas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metionina/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Metionina/análogos & derivados , Metionina/metabolismo , Aumento de Peso
11.
J Pak Med Assoc ; 68(4): 510-514, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29808036

RESUMO

OBJECTIVE: To determine the frequency of disorders leading to methylmalonic acidurias. METHODS: This cross-sectional study was conducted from January 2013 to April 2016 at the Aga Khan University Hospital, Karachi, and comprised patients diagnosed with methylmalonic acidurias based on urine organic acid analysis. Clinical history and biochemical data was collected from the biochemical genetics laboratory requisition forms. Organic acid chromatograms of all the subjects were critically reviewed by a biochemical pathologist and a metabolic physician. For assessing the clinical outcome, medical charts of the patients were reviewed. SPSS 19 was used for data analysis. RESULTS: Of the 1,778 patients 50(2.81%) were detected with methylmalonic acidurias. After excluding patients with non-significant peaks of methylmalonic acidemia, 41(2.31%) were included in the final analysis. Of these, 20(48.7%) were females, while the overall median age was 11.5 months (interquartile range: 6-41.5). On stratification by type of disorders leading to methylmalonic acidurias, 9(22%) had methylmalonic acidemia, 12(29%) had Cobalamin-related remethylation disorders, nonspecific methylmalonic acidurias in 16(39%), while 2(5%) each had succinyl coenzyme A synthetase and Vitamin B12 deficiency. respectively. CONCLUSIONS: Screening tests, including urine organic acid, provided valuable clues to the aetiology of methylmalonic acidurias.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/etiologia , Doenças Mitocondriais/complicações , Deficiência de Vitamina B 12/complicações , Alanina/sangue , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Erros Inatos do Metabolismo dos Aminoácidos/urina , Pré-Escolar , Citratos/urina , Estudos Transversais , Feminino , Glicina/análogos & derivados , Glicina/sangue , Glicina/urina , Humanos , Lactente , Ácido Láctico/análogos & derivados , Ácido Láctico/urina , Masculino , Metionina/sangue , Paquistão , Centros de Atenção Terciária , Urinálise/métodos , Valeratos/urina
12.
Hum Mutat ; 37(5): 427-38, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26872964

RESUMO

Severe 5,10-methylenetetrahydrofolate reductase (MTHFR) deficiency is caused by mutations in the MTHFR gene and results in hyperhomocysteinemia and varying severity of disease, ranging from neonatal lethal to adult onset. Including those described here, 109 MTHFR mutations have been reported in 171 families, consisting of 70 missense mutations, 17 that primarily affect splicing, 11 nonsense mutations, seven small deletions, two no-stop mutations, one small duplication, and one large duplication. Only 36% of mutations recur in unrelated families, indicating that most are "private." The most common mutation is c.1530A>G (numbered from NM_005957.4, p.Lys510 = ) causing a splicing defect, found in 13 families; the most common missense mutation is c.1129C>T (p.Arg377Cys) identified in 10 families. To increase disease understanding, we report enzymatic activity, detected mutations, and clinical onset information (early, <1 year; or late, >1 year) for all published patients available, demonstrating that patients with early onset have less residual enzyme activity than those presenting later. We also review animal models, diagnostic approaches, clinical presentations, and treatment options. This is the first large review of mutations in MTHFR, highlighting the wide spectrum of disease-causing mutations.


Assuntos
Homocistinúria/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Espasticidade Muscular/genética , Mutação , Idade de Início , Animais , Domínio Catalítico , Bases de Dados Genéticas , Modelos Animais de Doenças , Humanos , Recém-Nascido , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Triagem Neonatal , Transtornos Psicóticos/genética
13.
J Nutr ; 146(10): 2007-2012, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27581577

RESUMO

BACKGROUND: The neonatal methionine requirement must consider not only the high demand for rapid tissue protein expansion but also the demands as the precursor for a suite of critical transmethylation reactions. However, methionine metabolism is inherently complex because upon transferring its methyl group during transmethylation, methionine can be reformed by the dietary methyl donors choline (via betaine) and folate. OBJECTIVE: We sought to determine whether dietary methyl donors contribute to methionine availability for protein synthesis in neonatal piglets. METHODS: Yucatan miniature piglets aged 4-8 d were fed a diet that provided 38 µg folate/(kg·d), 60 mg choline/(kg·d), and 238 mg betaine/(kg·d) [methyl-sufficient (MS); n = 8] or a diet devoid of these methyl precursors [methyl-deficient (MD); n = 8]. After 5 d, dietary methionine was reduced from 0.30 to 0.20 g/(kg·d) in both groups. On day 6, piglets received a constant [1-13C]phenylalanine infusion to measure whole-body protein kinetics, and on day 8 they received a constant [3H-methyl]methionine infusion to measure tissue-specific protein synthesis in skeletal muscle, the liver, and the jejunum. RESULTS: Whole-body phenylalanine flux, protein synthesis, and protein breakdown were 13%, 12%, and 22% lower, respectively, in the MD group than in the MS group (P < 0.05). Reduced whole-body protein synthesis in the MD piglets was attributed to 50% lower protein synthesis in skeletal muscle and the jejunum than in the MS piglets (P < 0.05). Furthermore, methionine availability in skeletal muscle was halved in piglets fed the MD diet (P < 0.05), and the specific radioactivity of methionine was doubled in the jejunum of MD piglets (P < 0.05), suggesting lower intestinal remethylation. Liver protein synthesis did not significantly differ between the groups, but secreted proteins were not measured. CONCLUSIONS: Dietary methyl donors can affect whole-body and tissue-specific protein synthesis in neonatal piglets and should be considered when determining the methionine requirement.


Assuntos
Dieta , Jejuno/metabolismo , Metionina/análogos & derivados , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Animais , Animais Recém-Nascidos , Betaína/administração & dosagem , Colina/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Ácido Fólico/administração & dosagem , Masculino , Metionina/administração & dosagem , Fenilalanina/administração & dosagem , Suínos
14.
Amino Acids ; 48(12): 2821-2830, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27562792

RESUMO

Methionine metabolism is critical during development with significant requirements for protein synthesis and transmethylation reactions. However, separate requirements of methionine for protein synthesis and transmethylation are difficult to define because after transmethylation, demethylated methionine is either irreversibly oxidized to cysteine during transsulfuration, or methionine is regenerated by the dietary methyl donors, choline (via betaine) or folate during remethylation. We hypothesized that remethylation contributes significantly to methionine availability and affects partitioning between protein and transmethylation. 4-8-day-old neonatal piglets were fed a diet devoid (MD-) (n = 8) or replete (MS+) (n = 8) of folate, choline and betaine to limit remethylation. After 5 days, dietary methionine was reduced to 80 % of requirement in both groups of piglets to ensure methionine availability was limited. On day 7, an intragastric infusion of [13C1]methionine and [2H3-methyl]methionine was administered to measure methionine cycle flux. In MD- piglets, in vivo remethylation was 60 % lower despite 23-fold greater conversion of choline to betaine (P < 0.05) and transmethylation was 56 % lower (P < 0.05), suggesting dietary methyl donors spared 425 µmol methyl/day for transmethylation. The priority of protein synthesis versus transmethylation was clear during MD- feeding (P < 0.05), as an additional 6 % of methionine flux was for protein synthesis in those piglets (P < 0.05). However, whole body transsulfuration was unaffected in vivo despite reduced in vitro cystathionine-ß-synthase capacity in MD- piglets (P < 0.05). Our data show that remethylation contributes significantly to methionine availability and that transmethylation is sacrificed to maintain protein synthesis when methionine is limiting in neonates, which should be considered when determining the methionine requirement.


Assuntos
Cisteína/metabolismo , Dieta , Metionina/metabolismo , Biossíntese de Proteínas , Animais , Betaína/metabolismo , Colina/metabolismo , Cisteína/química , Comportamento Alimentar , Ácido Fólico/metabolismo , Metionina/administração & dosagem , Metionina/análogos & derivados , Metionina/química , Metilação , Suínos
15.
Nitric Oxide ; 46: 102-13, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25461272

RESUMO

CD44 expressed in cancer cells was shown to stabilize cystine transporter (xCT) that uptakes cystine and excretes glutamate to supply cysteine as a substrate for reduced glutathione (GSH) for survival. While targeting CD44 serves as a potentially therapeutic stratagem to attack cancer growth and chemoresistance, the impact of CD44 targeting in cancer cells on metabolic systems of tumors and host tissues in vivo remains to be fully determined. This study aimed to reveal effects of CD44 silencing on alterations in energy metabolism and sulfur-containing metabolites in vitro and in vivo using capillary electrophoresis-mass spectrometry and quantitative imaging mass spectrometry (Q-IMS), respectively. In an experimental model of xenograft transplantation of human colon cancer HCT116 cells in superimmunodeficient NOG mice, snap-frozen liver tissues containing metastatic tumors were examined by Q-IMS. As reported previously, short hairpin CD44 RNA interference (shCD44) in cancer cells caused significant regression of tumor growth in the host liver. Under these circumstances, the CD44 knockdown suppressed polyamines, GSH and energy charges not only in metastatic tumors but also in the host liver. In culture, HCT116 cells treated with shCD44 decreased total amounts of methionine-pool metabolites including spermidine and spermine, and reactive cysteine persulfides, suggesting roles of these metabolites for cancer growth. Collectively, these results suggest that CD44 expressed in cancer accounts for a key regulator of metabolic interplay between tumor and the host tissue.


Assuntos
Cisteína/metabolismo , Receptores de Hialuronatos/metabolismo , Metaboloma/fisiologia , Neoplasias/metabolismo , Animais , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Receptores de Hialuronatos/genética , Fígado/química , Fígado/metabolismo , Masculino , Espectrometria de Massas , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Metabolômica , Camundongos , Neoplasias/genética , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Transplante Heterólogo
16.
Brain Sci ; 14(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39061365

RESUMO

AIM: Remethylation disorders such as 5,10-methylenetetrahydrofolate reductase (MTHFR) deficiency reduce the remethylation of homocysteine to methionine. The resulting hyperhomocysteinemia can lead to serious neurological consequences and multisystem toxicity. The role of MTHFR genotypes has not been investigated in patients with Rett Syndrome (RTT). In this study, we sought to assess the impact of co-occurring MTHFR genotypes on symptom profiles in RTT. METHOD: Using pharmacogenomic (PGx) testing, the MTHFR genetic polymorphisms rs1801133 (c.665C>T mutation) and rs1801131 (c.1286A>C mutation) were determined in 65 patients (18.7 years ± 12.1 [mean ± standard deviation]) with RTT as part of routine clinical care within the Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, a National and Specialist Child and Adolescent Mental Health Service (CAMHS) in the UK. The clinical severity of patients was assessed using the RTT-anchored Clinical Global Impression Scale (RTT-CGI). RESULTS: The clinical severity symptom distribution varied between the homozygous and heterozygous MTHFR rs1801133 and rs1801131 genotypes. Those with the homozygous genotype had a narrower spread of severity scores across several domains (language and communication, ambulation, hand-use and eye contact clinical domains). Patients with the homozygous genotype had statistically significantly greater CGI-Severity scores than individuals with a non-homozygous MTHFR genotype (Z = -2.44, p = 0.015). When comparing the ratings of moderately impaired (4), markedly impaired (5), severely impaired (6) and extremely impaired (7), individuals with the homozygous MTHFR genotype were more impaired than those with the non-homozygous MTHFR genotype (Z = -2.06, p = 0.039). There was no statistically significant difference in the number of prescribed anti-epileptic drugs between the genotypes. CONCLUSIONS: Our findings show that in those with a pathogenic RTT genetic variant, co-occurring homozygotic MTHFR rs1801133 and rs1801131 polymorphisms may act as associative genetic modifiers of clinical severity in a subset of patients. Profiling of rs1801133 and rs1801131 in RTT may therefore be useful, especially for high-risk patients who may be at the most risk from symptom deterioration.

17.
JIMD Rep ; 65(3): 163-170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38736634

RESUMO

Methionine synthase reductase deficiency (cblE) is a rare autosomal recessive inborn error of cobalamin metabolism caused by pathogenic variants in the methionine synthase reductase gene (MTRR). Patients usually exhibit early-onset bone marrow failure with pancytopenia including megaloblastic anemia. The latter can remain isolated or patients may present developmental delay and rarely macular dysfunction. Treatment mostly includes parenteral hydroxocobalamin to maximize the residual enzyme function and betaine to increase methionine concentrations and decrease homocysteine accumulation. We report herein 2 cblE siblings diagnosed in the neonatal period with isolated pancytopenia who, despite treatment, exhibited in adulthood hemolytic anemia (LDH >11 000 U/L, undetectable haptoglobin, elevated unconjugated bilirubin) which could finally be successfully treated by hydroxocobalamin dose escalation. There was no obvious trigger apart from a parvovirus B19 infection in one of the patients. This is the first report of such complications in adulthood. The use of LDH for disease monitoring could possibly be an additional useful biomarker to adjust hydroxocobalamin dosage. Bone marrow infection with parvovirus B19 can complicate this genetic disease with erythroblastopenia even in the absence of an immunocompromised status, as in other congenital hemolytic anemias. The observation of novel hemolytic features in this rare disease should raise awareness about specific complications in remethylation disorders and plea for hydroxocobalamin dose escalation.

18.
Rev Neurosci ; 34(8): 915-932, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37409540

RESUMO

The transsulfuration pathway (TSP) is a metabolic pathway involving sulfur transfer from homocysteine to cysteine. Transsulfuration pathway leads to many sulfur metabolites, principally glutathione, H2S, taurine, and cysteine. Key enzymes of the TSP, such as cystathionine ß-synthase and cystathionine γ-lyase, are essential regulators at multiple levels in this pathway. TSP metabolites are implicated in many physiological processes in the central nervous system and other tissues. TSP is important in controlling sulfur balance and optimal cellular functions such as glutathione synthesis. Alterations in the TSP and related pathways (transmethylation and remethylation) are altered in several neurodegenerative diseases, including Parkinson's disease, suggesting their participation in the pathophysiology and progression of these diseases. In Parkinson's disease many cellular processes are comprised mainly those that regulate redox homeostasis, inflammation, reticulum endoplasmic stress, mitochondrial function, oxidative stress, and sulfur content metabolites of TSP are involved in these damage processes. Current research on the transsulfuration pathway in Parkinson's disease has primarily focused on the synthesis and function of certain metabolites, particularly glutathione. However, our understanding of the regulation of other metabolites of the transsulfuration pathway, as well as their relationships with other metabolites, and their synthesis regulation in Parkinson´s disease remain limited. Thus, this paper highlights the importance of studying the molecular dynamics in different metabolites and enzymes that affect the transsulfuration in Parkinson's disease.


Assuntos
Cisteína , Doença de Parkinson , Humanos , Cisteína/metabolismo , Enxofre/metabolismo , Cistationina beta-Sintase/metabolismo , Glutationa/metabolismo
19.
Nutrients ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571294

RESUMO

Newborn screening (NBS) programs are effective measures of secondary prevention and have been successively extended. We aimed to evaluate NBS for methylmalonic acidurias, propionic acidemia, homocystinuria, remethylation disorders and neonatal vitamin B12 deficiency, and report on the identification of cofactor-responsive disease variants. This evaluation of the previously established combined multiple-tier NBS algorithm is part of the prospective pilot study "NGS2025" from August 2016 to September 2022. In 548,707 newborns, the combined algorithm was applied and led to positive NBS results in 458 of them. Overall, 166 newborns (prevalence 1: 3305) were confirmed (positive predictive value: 0.36); specifically, methylmalonic acidurias (N = 5), propionic acidemia (N = 4), remethylation disorders (N = 4), cystathionine beta-synthase (CBS) deficiency (N = 1) and neonatal vitamin B12 deficiency (N = 153). The majority of the identified newborns were asymptomatic at the time of the first NBS report (total: 161/166, inherited metabolic diseases: 9/14, vitamin B12 deficiency: 153/153). Three individuals were cofactor-responsive (methylmalonic acidurias: 2, CBS deficiency: 1), and could be treated by vitamin B12, vitamin B6 respectively, only. In conclusion, the combined NBS algorithm is technically feasible, allows the identification of attenuated and severe disease courses and can be considered to be evaluated for inclusion in national NBS panels.


Assuntos
Homocistinúria , Acidemia Propiônica , Deficiência de Vitamina B 12 , Humanos , Recém-Nascido , Homocistinúria/diagnóstico , Estudos Prospectivos , Triagem Neonatal/métodos , Projetos Piloto , Vitamina B 12 , Deficiência de Vitamina B 12/diagnóstico , Fenótipo , Ácido Metilmalônico/metabolismo , Vitaminas
20.
JIMD Rep ; 64(4): 274-281, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404677

RESUMO

Isolated remethylation defects are rare inherited diseases caused by a defective remethylation of homocysteine to methionine, preventing various essential methylation reactions to occur. Patients present with a systemic phenotype, which can especially affect the central and peripheral nervous systems leading to epileptic encephalopathy, developmental delay and peripheral neuropathy. Respiratory failure has been described in some cases, caused by both central and peripheral neurological involvement. In published cases, the genetic diagnosis and initiation of appropriate therapy were rapidly performed following respiratory failure and led to a rapid recovery of respiratory insufficiency within days. Here, we present two infantile-onset cases of isolated remethylation defects, cobalamine (Cbl)G and methylenetetrahydrofolate reductase (MTHFR) deficiencies, which were diagnosed after several months of respiratory failure. Disease modifying therapy based on hydroxocobalamin and betaine was initiated and shows a progressive improvement and enabled weaning off respiratory support after 21 and 17 months in CblG and MTHFR patients respectively. We show that prolonged respiratory failure responds to conventional therapy in isolated remethylation defects, but can require a sustained period of time before observing a full response to therapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa