Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Adv Funct Mater ; 34(8)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38828467

RESUMO

Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.

2.
Environ Res ; 251(Pt 2): 118663, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460667

RESUMO

Although less toxic than hexavalent chromium, Cr (Ⅲ) species still pose a threat to human health. The Cr (Ⅵ) should be converted to Cr (0) instead of Cr (Ⅲ), which is still involved in biological detoxification filed. Herein, for the first time, it was found that Cr(Ⅵ) can be reduced into Cr(0) by Bacillus cereus FNXJ1-2-3, a way to completely harmless treatment of Cr(Ⅵ). The bacterial strain exhibited excellent performance in the reduction, sorption, and accumulation of Cr(Ⅵ) and Cr (Ⅲ). XPS etching characterization inferred that the transformation of Cr(Ⅵ) into Cr(0) followed a reduction pathway of Cr(Ⅵ)→Cr (Ⅲ)→metallic Cr(0), in which at least two secretory chromium reductases (ECrⅥ→Ⅲ and ECrⅢ→0) worked. Under the optimum condition, the yield ratio of Cr(0)/Cr (Ⅲ) reached 33.90%. In addition, the interfacial interactions, ion channels, chromium reductases, and external electron donors also contributed to the Cr(Ⅵ)/Cr(0) transformation. Findings of this study indicate that Bacillus cereus FNXJ1-2-3 is a promising bioremediation agent for Cr(Ⅵ) pollution control.


Assuntos
Bacillus cereus , Biodegradação Ambiental , Cromo , Bacillus cereus/metabolismo , Cromo/metabolismo , Adsorção , Poluentes Químicos da Água/metabolismo
3.
J Environ Manage ; 359: 121011, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678907

RESUMO

This study designed a two-stage, electrode-integrated septic tank-floating wetland system and assessed their pollutant removal performances under variable operational conditions. The two-stage system achieved mean organic, nitrogen, phosphorus, and coliform removal percentages of 99, 78, 99, and 97%, respectively, throughout the experimental run. The mean metals (chromium, cadmium, nickel, copper, zinc, lead, iron, and manganese) removal percentages ranged between 81 and 98%. Accumulated sludge, filler media, and the hanging root mass contributed to pollutant removals by supporting physicochemical and biological pathways. The mean effluent organic concentration and coliform number across the two-stage system were 20 mg/L and 1682 CFU/100 mL, respectively, during the closed-circuit protocol, which was beneath the open-circuit-based performance profiles, i.e., 32 mg/L and 2860 CFU/100 mL, respectively. Effluent organic, nitrogen, phosphorus, metals, and coliform number ranges across the two-stage system were 9-17 mg/L, 13-24 mg/L, 1-1.5 mg/L, 0.001-0.2 mg/L, and 1410-2270 CFU/100 mL, respectively during intermittent and continuous aeration periods. The air supply rate differences influenced pollutant removal depending on the associated removal mechanisms. The non-aeration phase produced higher effluent pollutant concentrations than the aeration periods-based profiles. The overall mean power density production of the septic tank ranged between 107 and 596 mW/m3; 110 and 355 mW/m3 with the floating wetland. The bioenergy production capacity of the septic tank was positively correlated to external air supply rates. This study demonstrates the potential application of the novel bioenergy-producing septic tank-floating wetland system for wastewater treatment in decentralized areas.


Assuntos
Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias , Áreas Alagadas , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Esgotos
4.
World J Microbiol Biotechnol ; 37(9): 157, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34417879

RESUMO

Heavy metals and metalloids (HMMs) pose a serious threat to both environmental and human health. The unique characteristics and environmental toxicity of HMMs make their removal from the environment a major challenge. Constructed wetlands (CWs) are increasingly being used as an eco-friendly system for the removal of HMMs from aqueous environments. In this review, bibliometric analysis was performed using the Scopus database using VOSviewer software to assess the developing use of CWs in recent years. Heavy metal and metalloid (HMM) removal pathways were reviewed (such as precipitation, co-precipitation, adsorption and ion exchange, plant action and microbial action) along with the impact of key factors (pH, chemical oxygen demand, dissolved oxygen, HMM concentration, and temperature). This review aimed to establish the connections between published results, to help effectively optimize the use of CWs for the removal of HMMs and identify the most critical factors for their effective removal. Important aspects that require further research include assessing the synergistic toxicity between different pollutants and combining the use of CWs with other technologies to optimize pollutant remediation efficiency.


Assuntos
Poluentes Ambientais/química , Recuperação e Remediação Ambiental/métodos , Metaloides/química , Metais Pesados/química , Bibliometria , Recuperação e Remediação Ambiental/instrumentação , Recuperação e Remediação Ambiental/tendências , Áreas Alagadas
5.
Bioresour Technol ; 408: 131140, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39069140

RESUMO

The long acclimation period and sensitivity to environmental conditions of Anammox are the bottlenecks for its promotion and application. An innovative strategy was adopted to accelerate functional microbial enhancement and improve nitrogen removal performance by inoculating cryopreserved Anammox sludge and activated sludge with intermittent dosing of nanoscale zero-valent iron (nZVI). The acclimation time was shortened by 76 days with nitrogen removal efficiency (NRE) reaching up to 91.07 %. Anammox, NDFO (nitrate/nitrite-dependent Fe(II) oxidation), Feammox (Fe(III) reduction coupled with anaerobic ammonium oxidation) and abiotic reactions were coupled in the system with nZVI, contributing to 69.79 %, 15.14 %, 9.84 % and 0.25 % of nitrogen removal, respectively. Further microbial analysis demonstrated significant enrichment of functional microorganisms, such as Candidatus Jettenia, Acidovorax and Comamonas. High-efficient nitrogen removal was attribute to the increase of functional genes involved in Anammox, electronic transfer, heme C synthesis and iron metabolism. This work provides an inspiring idea for the mainstream Anammox application.


Assuntos
Ferro , Nitrogênio , Oxirredução , Esgotos , Ferro/química , Esgotos/microbiologia , Anaerobiose , Estudos de Viabilidade , Reatores Biológicos , Heme/análogos & derivados , Bactérias/metabolismo , Nanopartículas Metálicas/química
6.
Sci Total Environ ; 939: 173634, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38823717

RESUMO

Developing cost-efficient wastewater treatment technologies for safe reuse is essential, especially in developing countries simultaneously facing water scarcity. This study developed and evaluated a hybrid constructed wetlands (CWs) approach, incorporating tidal flow (TF) operation and utilising local Jordanian zeolite as a wetland substrate for real pharmaceutical industry wastewater treatment. Over 273 days of continuous monitoring, the results revealed that the first-stage TFCWs filled with either raw or modified zeolite performed significantly higher reductions in Chemical Oxygen Demand (COD, 58 %-60 %), Total Nitrogen (TN, 32 %-37 %), and Phosphate (PO4, 46 %-64 %) compared to TFCWs filled with normal sand. Water quality further improved after the second stage of horizontal subsurface flow CWs treatment, achieving log removals of 1.09-2.47 for total coliform and 1.89-2.09 for E. coli. With influent pharmaceutical concentrations ranging from 275 to 2000 µg/L, the zeolite-filled hybrid CWs achieved complete removal (>98 %) for ciprofloxacin, ofloxacin, erythromycin, and enrofloxacin, moderate removal (43 %-81 %) for flumequine and lincomycin, and limited removal (<8 %) for carbamazepine and diclofenac. The overall accumulation of pharmaceuticals in plant tissue and substrate adsorption accounted for only 2.3 % and 4.3 %, respectively, of the total mass removal. Biodegradation of these pharmaceuticals (up to 61 %) through microbial-mediated processes or within plant tissues was identified as the key removal pathway. For both conventional pollutants and pharmaceuticals, modified zeolite wetland media could only slightly enhance treatment without a significant difference between the two treatment groups. The final effluent from all hybrid CWs complied with Jordanian treated industry wastewater reuse standards (category III), and systems filled with raw or modified zeolite achieved over 95 % of samples meeting the highest water reuse category I. This study provides evidence of using hybrid CWs technology as a nature-based solution to address water safety and scarcity challenges.


Assuntos
Indústria Farmacêutica , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Áreas Alagadas , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Jordânia , Zeolitas/química , Análise da Demanda Biológica de Oxigênio
7.
Plants (Basel) ; 12(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375945

RESUMO

This study was conducted to identify soil cadmium (Cd) removal pathways and their contribution rates during phytoremediation by Pennisetum hybridum, as well as to comprehensively assess its phytoremediation potential. Multilayered soil column tests and farmland-simulating lysimeter tests were conducted to investigate the Cd phytoextraction and migration patterns in topsoil and subsoil simultaneously. The aboveground annual yield of P. hybridum grown in the lysimeter was 206 ton·ha-1. The total amount of Cd extracted in P. hybridum shoots was 234 g·ha-1, which was similar to that of other typical Cd-hyperaccumulating plants such as Sedum alfredii. After the test, the topsoil Cd removal rate was 21.50-35.81%, whereas the extraction efficiency in P. hybridum shoots was only 4.17-8.53%. These findings indicate that extraction by plant shoots is not the most important contributor to the decrease of Cd in the topsoil. The proportion of Cd retained by the root cell wall was approximately 50% of the total Cd in the root. Based on column test results, P. hybridum treatment led to a significant decrease in soil pH and considerably enhanced Cd migration to subsoil and groundwater. P. hybridum decreases Cd in the topsoil through multiple pathways and provides a relatively ideal material for phytoremediation of Cd-contaminated acid soils.

8.
Sci Total Environ ; 891: 164489, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279806

RESUMO

The proliferation of antibiotic-resistance genes is a result of the rise in the discharge of residual antibiotics into waterbodies from a variety of sources. Antibiotic removal by microalgae-bacteria consortium has been shown to be effective, therefore, there is a need to understand the involved microbial processes. This review summarizes the microbiological removal mechanisms of antibiotics by the microalgae-bacteria consortium, such as biosorption, bioaccumulation, and biodegradation. Factors that influence antibiotic removal are discussed. Co-metabolism of nutrients and antibiotics in the microalgae-bacteria consortium and the metabolic pathways revealed by omics technologies are also highlighted. Furthermore, the responses of microalgae and bacteria to antibiotic stress are elaborated, including reactive oxidizing species (ROS) generation and its effects on photosynthesis machinery, antibiotic stress tolerance, microbial community shift, and the emergence of antibiotic resistance genes (ARGs). Finally, we offer a prospective solutions for the optimization and applications of microalgae-bacteria symbiotic systems for antibiotic removal.


Assuntos
Antibacterianos , Microalgas , Antibacterianos/farmacologia , Estudos Prospectivos , Bactérias , Fotossíntese
9.
J Hazard Mater ; 453: 131362, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080036

RESUMO

Advanced oxidation processes based on radicals and/or non-radical catalysis are emerging as promising technologies for eliminating pharmaceuticals (PhACs) from wastewater. However, the respective contributions of different removal pathways (radicals or non-radical) for PhAC degradation still lacks quantitative investigation. Zero-valent iron and carbon nanotubes are frequently used to generate both radicals and non-radical species via the activation of persulfate (Fe0/SWCNT/PDS). Herein, the removal kinetics of 1 µM PhACs are depicted, and the corresponding synergistic mechanism of the Fe0/SWCNT/PDS process is discussed. Coupled removal pathways showed the higher degradation of PhACs than the individual pathways. Radicals quenching studies combined with electron spin resonance characterisation suggested that the radical-based removal pathway tends to attack electron-deficient organics, whereas its counterpart is more likely to work on electron-rich organics. From the perspectives of the contribution rate, the redox cycles of conjugated Fe species play a more important role in the generation of radicals than free Fe species, and the faster electron transfer in the conductive bridge offered by SWCNT is responsible for the effective corrosion of Fe0 and the decomposition of PDS. Six real wastewater samples were used to prove the generality of the above removal contribution, regardless of the wastewater samples, and the results suggested that identical attack patterns were obtained in all real wastewater samples, although coexistence matrix slightly suppressed PhAC removal. This work provides a deeper insight into the high-performance working mechanism on synergistic interactions and contaminant removal in a combined catalysis system.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Ferro , Oxirredução , Preparações Farmacêuticas
10.
Bioresour Technol ; 387: 129616, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544541

RESUMO

Integrated fixed-film activated sludge (IFAS) is a superior system for achieving simultaneous nitrification and denitrification (SND), however, the impact of dissolved oxygen (DO) has not been fully elucidated. Therefore, this study investigated the effect of DO concentration on performance and mechanism of SND in IFAS system. Results showed that IFAS outperformed control systems and achieved optimal SND performance at a DO concentration of 0.5 mg/L, with an SND efficiency of 88.51% and total nitrogen removal efficiency of 82.78%. Typical cycles analysis demonstrated limited-DO promoted SND performance. Further analysis implied biofilms exhibited high biomass and denitrification activity with decreasing DO. Microbial community analysis revealed low DO concentrations were responsible for abundant functional groups and genes associated with SND and promoted unconventional nitrogen removal pathways. Moreover, co-occurrence network analysis elucidated microbial interactions, responses to DO, and keystone genera. This study helps understanding the roles of DO for enhanced SND in IFAS.


Assuntos
Nitrificação , Esgotos , Desnitrificação , Reatores Biológicos , Nitrogênio/metabolismo , Oxigênio
11.
Bioresour Technol ; 333: 125069, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33894445

RESUMO

Veterinary antibiotics (VAs) contamination has been considered as a worldwide environmental and health concern in recent decades. This paper reviewed the variability of contents of VAs and their release from the animal breeding industry into the surrounding environment along with the performance of the manure treatment technologies. The data collected revealed that VAs were mostly excreted in animal feces and observed in manure, soil, water, and sediment. The findings illustrate the disparity of VAs in excretion rates, consumption, and their residues in the environment with relatively high distribution for tetracyclines, fluoroquinolones, and sulfonamides. Anaerobic digestion has a capacity to remove of 73% VAs while manure composting and constructed wetlands can remove 84.7%, and 90% VAs. Due to the profound effect of antibiotics on the environment, further research and intensive management strategies for livestock manure need to be designed to improve the removal efficiency and manure management technologies.


Assuntos
Compostagem , Esterco , Animais , Antibacterianos , Gado , Tetraciclinas
12.
Sci Total Environ ; 778: 146355, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030382

RESUMO

In this work, the influence of bisphenol A (BPA) on biological wastewater treatment was studied. For it, two sequencing batch reactors (SBRs) were operated for three months. Both SBRs were fed with synthetic wastewater (SW), adding 1 mg·L-1 of BPA into the feed of reactor SBR-BPA, while the other one operated without BPA as a control reactor (SBR-B). In addition, batch experiments were performed with adapted and non-adapted activated sludge, simulating the reaction step of SBR-BPA, to determine the pathways for BPA removal. Results of batch experiments showed that adsorption and biodegradation were the only significant BPA removal routes. BPA removal by biodegradation was more efficient when adapted biomass was used in the tests (32.2% and 8.2% with adapted and non-adapted biomass, respectively), while BPA adsorption removal route was similar in both types of activated sludge (around 40%). Regarding the SBRs experiments, after 16 days no BPA concentration was detected in SBR-BPA effluent. In the adaptation process, SBR-BPA biomass was more sensitive to low temperatures resulting in higher effluent turbidity, COD and soluble microbial products concentrations than in SBR-B. However, once temperature increased, adapted biomass from SBR-BPA presented higher activity than SBR-B biomass, showing higher values of sludge production, microbial hydrolytic enzymatic activities and specific dynamic respiration rate. The bacterial community study revealed the increase of abundance of Proteobacteria (especially Thiothrix species) and Actinobacteria (especially Nocardioides species) phyla at the expense of Bacteroidetes and Chloroflexi phyla in SBR-BPA during its operation.


Assuntos
Esgotos , Águas Residuárias , Compostos Benzidrílicos , Biomassa , Reatores Biológicos , Fenóis , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
13.
Bioresour Technol ; 312: 123602, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32506045

RESUMO

This work examined the phosphorus (P) removal from the synthetic pretreated swine wastewater using lab-scale horizontal sub-surface flow constructed wetlands (HSSF-CWs). White hard clam (Meretrix lyrata) shells (WHC) and Paspalum atratum were utilized as substrate and plant, respectively. The focus was placed on treatment performance, removal mechanisms and lifespan of the HSSF-CWs. Results indicated that WHC-based HSSF-CW with P. atratum exhibited a high P removal (89.9%). The mean P efluent concentration and P removal rate were 1.34 ± 0.95 mg/L and 0.32 ± 0.03 g/m2/d, respectively. The mass balance study showed that media sorption was the dominant P removal pathway (77.5%), followed by microbial assimilation (14.5%), plant uptake (5.4%), and other processes (2.6%). It was estimated the WHC-based bed could work effectively for approximately 2.84 years. This WHC-based HSSF-CWs technology will therefore pave the way for recycling Ca-rich waste materials as media in HSSF-CWs to enhance P-rich wastewater purification.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Longevidade , Fósforo , Suínos , Eliminação de Resíduos Líquidos , Águas Residuárias , Áreas Alagadas
14.
Chemosphere ; 216: 186-194, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30368083

RESUMO

Previous study has demonstrated that microaerobic process is effective in nitrogen removal from the wastewater with high ammonium and low carbon to nitrogen ratio. In the microaerobic system, synergistic action of anammox, ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and denitrifiers was the key issues to remove nitrogen from the wastewater rich in ammonium. Temperature has a significant effect on specific growth rate and activity of various nitrogen removal functional bacteria. In this study, the effect of temperature (35 °C-15 °C) on nitrogen removal were investigated in an up-flow microaerobic sludge reactor (UMSR) at the HRT of 8 h and reflux ratio of 45. Above 71.2% of total nitrogen (TN) and 80.7% of NH4+ removal efficiencies were observed at the temperature no less than 17 °C. With the temperature further decreasing to 15 °C, denitrifiers still dominant the UMSR, but AOB, NOB and Candidatus Brocadia as the predominant anammox bacteria were inhibited revealed by high throughput sequencing, resulting in the decrease of TN and NH4+ removal to 39.7% and 61.8%, respectively. Fortunately, when the temperature rebounded to 20 °C, a higher TN and NH4+ removal of 81.2% and 97.3% were obtained again in the UMSR.


Assuntos
Compostos de Amônio/química , Reatores Biológicos/microbiologia , Carbono/química , Nitrogênio/isolamento & purificação , Temperatura , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Bactérias , Desnitrificação , Nitrogênio/análise
15.
Bioresour Technol ; 285: 121304, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31022575

RESUMO

A novel falling water aeration-external reflux upflow microaerobic sludge reactor (UMSR) was designed to treat wastewater with the low chemical oxygen demand (COD) to total nitrogen (TN) ratio. The result showed the concentration of dissolved oxygen (DO) in the reactor could be accurately controlled by adjusting the reflux ratio of oxygenated water. The higher aeration efficiency in pollutant removal could be obtained by the reoxygenation mode of the small height falling water. At the reflux ratio of 5:1, the ammonium, nitrite and nitrate nitrogen concentrations in the effluent of UMSR were 6.0, 0.4 and 6.1 mg/L on average, respectively. The removal efficiency of ammonium nitrogen and total nitrogen reached 90.53% and 80.77%, respectively with the influent COD/TN as being 1.0. The structure of the microbial community confirmed the existence of partial-denitrification/anaerobic ammonium oxidation (anammox) bacteria, autotrophic and heterotrophic denitrifiers contributed to nitrogen and carbon removal in UMSR.


Assuntos
Esgotos , Águas Residuárias , Reatores Biológicos , Carbono , Desnitrificação , Nitrogênio , Eliminação de Resíduos Líquidos , Água
16.
Chemosphere ; 217: 364-373, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30419390

RESUMO

Dispersed swine wastewater has increasingly aggravated water pollution in China. Anaerobically digested dispersed swine wastewater was targeted and treated by a pilot-scale zoning tidal flow constructed wetland (TFCW) with a bottom wastewater saturation layer. The long-term application of in-situ biological regeneration of biozeolite, nitrogen removal performance, nitrogen removal pathways and microbial community of TFCW were investigated. Results showed that with the surface loads of 0.079, 0.022 and 0.024 kg/(m2·d), TFCW could decrease COD, NH4N and TN by 84.75%, 74.13% and 67.13% respectively. Influent COD, NH4N, TN and nitrates/nitrites produced by bioregeneration of NH4N were mostly removed in zeolite layer and the remaining nitrates/nitrites could be further denitrified in bottom saturation layer. Theory of dynamic process of rapid-adsorption and bioregeneration for NH4N removal was proposed. When this process reached dynamic equilibrium, the mass of adsorbed NH4N onto zeolites remained relatively stable. When ambient temperature decreased to 16 °C, TFCW could still remove COD, NH4N and TN by 73.79%, 72.99% and 70.71% with the surface loads of 0.103, 0.056 and 0.054 kg/(m2·d) respectively. Nitrification-denitrification which accounted for 80.32% of TN removal was the main nitrogen removal pathway. Dominant nitrifiers (Nitrosospira and Rhizomicrobium) and denitrifiers (Ottowia, Thauera and Rhodanobacteria) in biozeolite layer verified the existence of simultaneous nitrification and denitrification.


Assuntos
Nitrogênio/química , Águas Residuárias/química , Áreas Alagadas , Zeolitas/química , Animais , China , Desnitrificação , Nitrificação , Nitrogênio/isolamento & purificação , Projetos Piloto , Suínos
17.
Bioresour Technol ; 280: 51-58, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30754005

RESUMO

Simultaneous nitrification and denitrification (SND) is an energy-saving wastewater treatment process, however, the nitrogen removal pathways are not clear. An enhanced SND sequencing batch biofilm reactor with a SND ratio above 97.3% was built to treat low carbon to nitrogen ratio wastewater. When traditional nitrification was inhibited, ammonia removal efficiency still reached 45% in 8 h while the NO3- and NO2- concentration was less than 3 mg/L and 0.01 mg/L during the complete process, respectively. The pathways that could not be suppressed by the inhibitors (ATU and ClO3-) were stimulated by heterotrophic nitrifiers and aerobic denitrifiers with periplasmic nitrate reductase and contributed 55% of the total removed NH4+ and produced 51% of the emitted N2O. The contributions of different nitrogen removal pathways indicate that the unconventional pathways are important in wastewater treatment system and inhibitors should be carefully used in nitrogen removal pathway assays.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Amônia/metabolismo , Desnitrificação , Processos Heterotróficos , Nitrificação , Águas Residuárias
18.
Environ Sci Pollut Res Int ; 25(32): 32591-32602, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30242653

RESUMO

An efficient gamma radiolytic decomposition of one of the extensively used pharmaceutical ornidazole (ORZ) was explored under different experimental conditions by varying initial concentrations, solution pHs, and doses and concentrations of inorganic ([Formula: see text]) and organic (t-BuOH) additives. The results showed that low ORZ concentrations could be efficiently decomposed using gamma irradiation. The decomposition was followed by pseudo first-order reaction kinetics with rate constant values of 2.34, 1.48, 1.11, and 0.80 kGy-1 for the following initial concentrations: 25, 50, 75, and 100 mg L-1 with their corresponding (G(-ORZ)) values of 1.004, 1.683, 2.237, and 2.273, respectively. Decomposition rate of ORZ was remarkably improved under acidic condition when compared to neutral or alkaline medium. It was also observed that the decomposition was primarily caused by the reaction of ORZ with radiolytically generated reactive HO• radicals. The addition of H2O2 had a synergistic effect on the decomposition and mineralization extent of ORZ. However, the removal of total organic carbon (TOC) was not as effective as the decomposition of ORZ. Finally, the quantum chemical calculations were employed to optimize the geometry structure of ORZ and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) was used to identify the decomposition intermediates. On the basis of Gaussian calculations and analysis of LC-QTOF-MS, it can be inferred that ORZ radiolytic decomposition was mainly attributed to oxidative HO• radicals and the direct cleavage of ORZ molecules. Possible pathways for ORZ decomposition using gamma irradiation in aqueous medium were proposed.


Assuntos
Antibacterianos/química , Ornidazol/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cromatografia Líquida , Raios gama , Peróxido de Hidrogênio/química , Cinética , Oxirredução/efeitos da radiação , Purificação da Água/instrumentação
19.
Environ Technol ; 39(13): 1682-1696, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28562229

RESUMO

The frequent appearance of Cr(VI) significantly impacts the microbial metabolism in wastewater. In this study, long-term effects of Cr(VI) on microbial community, nitrogen removal pathways and mechanism of aerobic granular sludge (AGS) were investigated. AGS had strong resistance ability to 1.0 mg/L Cr(VI). 3.0 mg/L Cr(VI) increased the heterotrophic-specific ammonia uptake rate (HSAUR) and heterotrophic-specific nitrate uptake rate (HSNUR) transiently, whereas 5.0 mg/L Cr(VI) sharply decreased the specific ammonia uptake rate (SAUR), specific nitrate uptake rate (SNUR) and simultaneous nitrification denitrification rate (SNDR). It was found that Cr (VI) has a greater inhibitory effect on autotrophic nitrification (ASAUR), and the maximal inhibition rate (IR) was 139.19%. Besides, the inhibition of Cr (VI) on nitrogen removal process belongs to non-competitive inhibition. Cr(VI) had a weaker negative impact on heterotrophic bacteria compared with that on autotrophic bacteria. Denaturing gradient gel electrophoresis analyses suggest that Acidovorax sp., flavobacterium sp., uncultured soil bacterium, uncultured nitrosospira sp., uncultured prokaryote, uncultured ß-proteobacterium and uncultured pseudomonas sp. were the dominant species. The inhibition of Cr(VI) on nitrite-oxidizing bacteria was the strongest, followed by ammonia-oxidizing bacteria and denitrifying bacteria. Linear correlations between bacterial count and biomass-specific uptake rate were observed when the Cr(VI) concentration exceeded 3 mg/L. This study revealed the effect of Cr(VI) on nitrification is more serious than that on denitrification. Autotrophic and heterotrophic nitrification, heterotrophic denitrification and simultaneous nitrification denitrification played a significant role on nitrogen removal under Cr(VI) stress.


Assuntos
Cromo/farmacologia , Desnitrificação/efeitos dos fármacos , Esgotos/microbiologia , Aerobiose , Bactérias/metabolismo , Reatores Biológicos , Nitrificação , Nitrogênio
20.
Water Res ; 124: 244-250, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763640

RESUMO

Natural estrogens (NEs) discharged from wastewater treatment plants (WWTPs) have drawn great attention because of their potential risks to aquatic ecosystems. However, neglect of the conjugated natural estrogens (C-NEs) has caused large discrepancies among different studies on the removal of NEs in WWTPs. The present work investigated the transformation and fate of three NEs and six corresponding C-NEs along wastewater treatment processes. The removal efficiencies of the target estrogens (i.e., NEs and C-NEs) and their correlations with the operational parameters were determined over a twelve-month monitoring period at a typical WWTP adopting a combined bio-treatment process (i.e., anaerobic/anoxic/oxic process followed by a moving-bed biofilm reactor). The concentration variations of the target estrogens along the treatment processes were examined to differentiate the transformation and fate of NEs and C-NEs. Moreover, lab-scale experiments were conducted to clarify the removal pathways of C-NEs in the bio-treatment process. Results indicate that both NEs and C-NEs could pass through the treatment processes, thus being frequently detected in the effluent and excess sludge. The aqueous removal efficiencies of NEs and C-NEs were significantly correlated with the sludge retention time and temperature, respectively. C-NEs were more persistent than NEs, so considerably high conjugated ratios (13.5-100.0%) were detected in the effluent. Sulfate conjugates presented a lower adsorption affinity to sludge and a slower hydrolysis rate than glucuronide conjugates, which makes the former more recalcitrant to biodegradation. This study highlights the challenge on the elimination of NEs, particularly their conjugates, by wastewater treatment processes.


Assuntos
Estrogênios/análise , Águas Residuárias , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Estrogênios/química , Esgotos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa