Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Biochem Biophys Res Commun ; 735: 150795, 2024 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-39393312

RESUMO

Dehydrocoelenterazine (dCTZ) is a dehydrogenated form of coelenterazine (CTZ), which is well-known as the luciferin responsible for the bioluminescence reaction in marine organisms. In this report, we demonstrate for the first time that dCTZ is readily reduced to CTZ in mammalian cells. Using an FDSS®/µCell functional drug screening system, the conversion of dCTZ to CTZ in cells was identified through the luciferin (CTZ)-luciferase reaction in Chinese hamster ovary K1 (CHO-K1) cell lines, which stably expressed CTZ-utilizing luciferases of Renilla luciferase (RLase) or QL-nanoKAZ (a mutant of the 19 kDa protein of Oplophorus luciferase). After loading dCTZ into CHO-K1 cells expressing RLase or QL-nanoKAZ, the luminescence from both cells was detected within 10 s and continued for over 30 min. Thus, dCTZ permeates mammalian cells and is immediately converted to CTZ. This suggests that dCTZ could potentially be used as a substitute for CTZ in in vivo assays of the CTZ-dependent luminescence systems.


Assuntos
Cricetulus , Imidazóis , Pirazinas , Animais , Células CHO , Pirazinas/metabolismo , Imidazóis/metabolismo , Cricetinae , Luciferases/metabolismo , Luciferases/genética , Medições Luminescentes/métodos , Substâncias Luminescentes/metabolismo , Substâncias Luminescentes/química
2.
Anal Biochem ; 692: 115558, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38735426

RESUMO

Commercially available glow luciferase assay kits are widely popular and convenient to use. However, concerning high-throughput screening, commercial kits are limited by huge running costs. As an alternative to commercial luciferase assay kits, this study presents a cost-effective and efficient methodology of performing a simple and rapid laboratory flash luciferase assay. The proposed luciferase assay method has a versatile use ranging from screening lysates in a microplate reader for quantitative assay as well as screening live cells qualitatively or quantitatively under an imaging system.


Assuntos
Luciferases , Luciferases/metabolismo , Luciferases/química , Luciferases/genética , Humanos , Medições Luminescentes/métodos , Reprodutibilidade dos Testes , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/economia , Ensaios Enzimáticos/métodos
3.
Biochem Biophys Res Commun ; 665: 133-140, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37163933

RESUMO

Coelenterazine (CTZ) is known as a light-emitting source for the bioluminescence reaction in marine organisms. CTZ has two phenolic hydroxy groups at the C2-benzyl and C6-phenyl positions, and a keto-enol type hydroxy group at the C3-position in the core structure of imidazopyrazinone (= 3,7-dihydroimidazopyrazin-3-one). These hydroxy groups in CTZ could be sulfated by sulfotransferase(s), and the sulfates of Watasenia luciferin (CTZ disulfate at the C2- and C6-positions) and Renilla pre-luciferin (CTZ 3-enol sulfate) have been identified in marine organisms. To characterize the sulfation process of CTZ, human cytosolic aryl sulfotransferase SULT1A1 (SUTase) was used as a model enzyme. The sulfated products catalyzed by SUTase with 3'-phosphoadenosine 5'-phosphosulfate (PAPS) were analyzed by LC/ESI-TOF-MS. The product was the monosulfate of CTZ and identified as the C2-benzyl sulfate of CTZ (CTZ C2-benzyl monosulfate), but CTZ disulfate, CTZ 3-enol sulfate, and CTZ C6-phenyl monosulfate were not detected. The non-enzymatic oxidation products of dehydrocoelenterazine (dCTZ, dehydrogenated derivative of CTZ), coelenteramide (CTMD), and coelenteramine (CTM) from CTZ were also identified as their monosulfates.


Assuntos
Arilsulfotransferase , Imidazóis , Humanos , Imidazóis/química , Sulfotransferases , Luciferinas , Sulfatos
4.
Sensors (Basel) ; 23(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050557

RESUMO

Imaging protein-protein interactions (PPIs) is a hot topic in molecular medicine in the postgenomic sequencing era. In the present study, we report bright and highly sensitive single-chain molecular strain probe templates which embed full-length Renilla luciferase 8.6-535SG (RLuc86SG) or Artificial luciferase 49 (ALuc49) as reporters. These reporters were deployed between FKBP-rapamycin binding domain (FRB) and FK506-binding protein (FKBP) as a PPI model. This unique molecular design was conceptualized to exploit molecular strains of the sandwiched reporters appended by rapamycin-triggered intramolecular PPIs. The ligand-sensing properties of the templates were maximized by interface truncations and substrate modulation. The highest fold intensities, 9.4 and 16.6, of the templates were accomplished with RLuc86SG and ALuc49, respectively. The spectra of the templates, according to substrates, revealed that the colors are tunable to blue, green, and yellow. The putative substrate-binding chemistry and the working mechanisms of the probes were computationally modeled in the presence or absence of rapamycin. Considering that the molecular strain probe templates are applicable to other PPI models, the present approach would broaden the scope of the bioassay toolbox, which harnesses the privilege of luciferase reporters and the unique concept of the molecular strain probes into bioassays and molecular imaging.


Assuntos
Sondas Moleculares , Proteínas de Ligação a Tacrolimo , Ligação Proteica , Luciferases/genética , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo , Sirolimo/química , Sirolimo/metabolismo
5.
Biochem Biophys Res Commun ; 587: 24-28, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34864391

RESUMO

Coelenterazine (CTZ) is known as luciferin (a substrate) for the luminescence reaction with luciferase (an enzyme) in marine organisms and is unstable in aqueous solutions. The dehydrogenated form of CTZ (dehydrocoelenterazine, dCTZ) is stable and thought to be a storage form of CTZ and a recycling intermediate from the condensation reaction of coelenteramine and 4-hydroxyphenylpyruvic acid to CTZ. In this study, the enzymatic conversion of dCTZ to CTZ was successfully achieved using NAD(P)H:FMN oxidoreductase from the bioluminescent bacterium Vibrio fischeri ATCC 7744 (FRase) in the presence of NADH (the FRase-NADH reaction). CTZ reduced from dCTZ in the FRase-NADH reaction was identified by HPLC and LC/ESI-TOF-MS analyses. Thus, dCTZ can be enzymatically converted to CTZ in vitro. Furthermore, the concentration of dCTZ could be determined by the luminescence activity using the CTZ-utilizing luciferases (Gaussia luciferase or Renilla luciferase) coupled with the FRase-NADH reaction.


Assuntos
Aliivibrio fischeri/enzimologia , Proteínas de Bactérias/metabolismo , Imidazóis/metabolismo , Luciferases/metabolismo , NADH NADPH Oxirredutases/metabolismo , Pirazinas/metabolismo , Renilla/enzimologia , Aliivibrio fischeri/genética , Animais , Proteínas de Bactérias/genética , Biocatálise , Biotransformação , Cromatografia Líquida de Alta Pressão , Mononucleotídeo de Flavina/metabolismo , Expressão Gênica , Cinética , Luciferases/genética , Luminescência , Medições Luminescentes , NADH NADPH Oxirredutases/genética , Ácidos Fenilpirúvicos/metabolismo , Renilla/genética
6.
RNA Biol ; 19(1): 1050-1058, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093925

RESUMO

Delicate variances in the translational machinery affect how efficiently different organisms approach protein synthesis. Determining the scale of this effect, however, requires knowledge on the differences of mistranslation levels. Here, we used a dual-luciferase reporter assay cloned into a broad host range plasmid to reveal the translational fidelity profiles of Pseudomonas putida, Pseudomonas aeruginosa and Escherichia coli. We observed that these profiles are surprisingly different, whereas species more prone to translational frameshifting are not necessarily more prone to stop codon readthrough. As tRNA modifications are among the factors that have been implicated to affect translation accuracy, we also show that translational fidelity is context-specifically influenced by pseudouridines in the anticodon stem-loop of tRNA, but the effect is not uniform between species.


Assuntos
Anticódon , Pseudouridina , Anticódon/genética , Códon , Escherichia coli/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética
7.
Arch Toxicol ; 96(9): 2501-2510, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678845

RESUMO

The activity of nuclear receptors (e.g., pregnane x receptor, PXR) can be assessed by luminescence-based dual reporter gene assays. Under most conditions, receptor-activated firefly luminescence is normalized to Renilla luminescence, which is triggered by a constitutively active promoter. Simultaneous damage to the cells can however disrupt these signals and thus impair the interpretation of the data. Consequently, this study addressed three important aspects: First, idealized models were described, each highlighting crucial characteristics and important pitfalls of dual PXR reporter gene assays used to evaluate PXR activation or inhibition. Second, these models were supported by experimental data obtained with a strong PXR activator (rifampicin) with low cytotoxicity, a PXR activator with high cytotoxicity (dovitinib), a proposed PXR inhibitor that reportedly has no toxic effects (triptolide), and a cytotoxic control (oxaliplatin). Data were evaluated for relative PXR activity data, individual firefly or Renilla luminescence, and anti-proliferative effects of the compounds (assessed by crystal violet staining). Finally, a step-by-step guide is proposed to avoid misleading set-up of the assay or misinterpretation of the data obtained. Key considerations here include (1) omission of drug concentrations beyond 10-20% proliferation inhibition; (2) observation of Renilla luminescence, because this tends to indicate 'false PXR activation' when it inexplicably decreases; (3) parallel decrease of relative PXR activity and proliferation below baseline levels in conjunction with a sharp decrease in Renilla luminescence indicates 'false PXR antagonism'; (4) non-sigmoidal relationships suggest the absence of concentration dependency.


Assuntos
Receptores de Esteroides , Citocromo P-450 CYP3A/genética , Genes Reporter , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/genética , Rifampina/farmacologia
8.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203212

RESUMO

Firefly luciferase is susceptible to inhibition and stabilization by compounds under investigation for biological activity and toxicity. This can lead to false-positive results in in vitro cell-based assays. However, firefly luciferase remains one of the most commonly used reporter genes. Here, we evaluated isoflavonoids for inhibition of firefly luciferase. These natural compounds are often studied using luciferase reporter-gene assays. We used a quantitative structure-activity relationship (QSAR) model to compare the results of in silico predictions with a newly developed in vitro assay that enables concomitant detection of inhibition of firefly and Renilla luciferases. The QSAR model predicted a moderate to high likelihood of firefly luciferase inhibition for all of the 11 isoflavonoids investigated, and the in vitro assays confirmed this for seven of them: daidzein, genistein, glycitein, prunetin, biochanin A, calycosin, and formononetin. In contrast, none of the 11 isoflavonoids inhibited Renilla luciferase. Molecular docking calculations indicated that isoflavonoids interact favorably with the D-luciferin binding pocket of firefly luciferase. These data demonstrate the importance of reporter-enzyme inhibition when studying the effects of such compounds and suggest that this in vitro assay can be used to exclude false-positives due to firefly or Renilla luciferase inhibition, and to thus define the most appropriate reporter gene.


Assuntos
Genes Reporter/fisiologia , Isoflavonas/metabolismo , Luciferases de Renilla/metabolismo , Animais , Vaga-Lumes , Genes Reporter/genética , Isoflavonas/química , Luciferases de Renilla/química , Estrutura Secundária de Proteína
9.
Biochem Biophys Res Commun ; 521(3): 674-680, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31685208

RESUMO

Galectin-3 (Gal-3) is a multifunctional glycan-binding protein that participates in many pathophysiological events and has been described as a biomarker and potential therapeutic target for severe disorders, such as cancer. Several probes for Gal-3 or its ligands have been developed, however both the pathophysiological mechanisms and potential biomedical applications of Gal-3 remain not fully assessed. Molecular imaging using bioluminescent probes provides great sensitivity for in vivo and in vitro analysis for both cellular and whole multicellular organism tracking and target detection. Here, we engineered a chimeric molecule consisting of Renilla luciferase fused with mouse Gal-3 (RLuc-mGal-3). RLuc-mGal-3 preparation was highly homogenous, soluble, active, and has molecular mass of 65,870.95 Da. This molecule was able to bind to MKN45 cell surface, property which was inhibited by the reduction of Gal-3 ligands on the cell surface by the overexpression of ST6GalNAc-I. In order to obtain an efficient and stable delivery system, RLuc-mGal-3 was adsorbed to poly-lactic acid nanoparticles, which increased binding to MKN45 cells in vitro. Furthermore, bioluminescence imaging showed that RLuc-mGal-3 was able to indicate the presence of implanted tumor in mice, event drastically inhibited by the presence of lactose. This novel bioluminescent chimeric molecule offers a safe and highly sensitive alternative to fluorescent and radiolabeled probes with potential application in biomedical research for a better understanding of the distribution and fate of Gal-3 and its ligands in vitro and in vivo.


Assuntos
Galectina 3/metabolismo , Luciferases de Renilla/metabolismo , Substâncias Luminescentes/metabolismo , Neoplasias/diagnóstico por imagem , Polissacarídeos/metabolismo , Animais , Linhagem Celular Tumoral , Galectina 3/análise , Galectina 3/genética , Humanos , Luciferases de Renilla/análise , Luciferases de Renilla/genética , Substâncias Luminescentes/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Imagem Óptica , Polissacarídeos/análise , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
J Cell Biochem ; 119(2): 1780-1790, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28796298

RESUMO

Renilla Luciferase (RLuc) is a blue light emitter protein which can be applied as a valuable tool in medical diagnosis. But due to lack of the crystal structure of RLuc-ligand complex, the functional motions and catalytic mechanism of this enzyme remain largely unknown. In the present study, the active site properties and the ligand-receptor interactions of the native RLuc and its red-shifted light emitting variant (Super RLuc 8) were investigated using molecular docking approach, molecular dynamics (MD) analysis, and MM-PBSA method. The detailed analysis of the main clusters led to identifying a lid-like structure and its functional motions. Furthermore, an induced-fit mechanism is proposed where ligand-binding induces conformational changes of the active site. Our findings give an insight into the deeper understanding of RLuc conformational changes during binding steps and ligand-receptor pattern. Moreover, our work broaden our understanding of how active site geometry is adjusted to support the catalytic activity and red-shifted light emission in Super RLuc 8.


Assuntos
Luciferases de Renilla/química , Luciferases de Renilla/metabolismo , Mutagênese Sítio-Dirigida , Domínio Catalítico , Ligantes , Luciferases de Renilla/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
11.
Biochem Biophys Res Commun ; 506(4): 1032-1039, 2018 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-30409426

RESUMO

Biosensors and whole cell biosensors consisting of biological molecules and living cells can sense a special stimulus on a living system and convert it to a measurable signal. A major group of them are the bioluminescent sensors derived from luciferases. This type of biosensors has a broad application in molecular biology and imaging systems. In this project, a luciferase-based biosensor for detecting and measuring caspase-9 activity is designed and constructed using the circular permutation strategy. The spectroscopic method results reveal changes in the biosensor structure. Additionally, its activity is examined in a cell-free coupled assay system. Afterward, the biosensor is utilized for measuring the cellular caspase-9 activity upon apoptosis induction in a cancer cell line. In following the gene of biosensor is sub-cloned into a eukaryotic vector and transfected to HEK293T cell line and then its activity is measured upon apoptosis induction in the presence and absence of a caspase-9 inhibitor. The obtained results show that the designed biosensor detects the caspase-9 activity in the cell-free and cell-based systems.


Assuntos
Técnicas Biossensoriais/instrumentação , Caspase 9/metabolismo , Luciferases de Renilla/metabolismo , Medições Luminescentes/instrumentação , Proteínas Mutantes/metabolismo , Sequência de Aminoácidos , Apoptose , Sistema Livre de Células , Células HEK293 , Humanos , Luciferases de Renilla/química , Células MCF-7
12.
Protein Expr Purif ; 145: 39-44, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29288731

RESUMO

Luciferase from Renilla reniformis (RLuc) is a good research tool as a reporter protein and bioimaging probes, yielding blue light using the substrate coelenterazine. However, the applications are limited since RLuc is unstable under various conditions. Therefore, an attempt was made to increase RLuc thermostability. In this study, 5 mutations reported previously [1] and one mutation obtained using site-directed mutagenesis were combined. As a result of this combination, the thermostability effect increased, with the mutant showing approximately 10 °C higher stability. Furthermore, the mutant simultaneously improved a tolerance for protease digestion, e.g. trypsin and proteinase K, and for organic solvent. Residual activity of the mutant after treatment with 10% 2-propanol, 10% DMF and 20% DMSO at 35 °C for 1 h was 29.4, 24.8 and 91.3%, respectively, whereas that of the wild type was 0.4, 0.1 and 24.3%, respectively.


Assuntos
Temperatura Alta , Luciferases de Renilla/metabolismo , Mutagênese Sítio-Dirigida , Renilla/enzimologia , Animais , Estabilidade Enzimática , Luciferases de Renilla/química , Luciferases de Renilla/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Biochim Biophys Acta Proteins Proteom ; 1865(2): 252-259, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27863256

RESUMO

Renilla luciferase (RLuc), also known as Renilla-luciferin 2-monooxygenase, is a light producing enzyme used in many biotechnological applications such as bioreporters. However, its kinetics stability -especially at higher temperatures- is a limiting factor for developing thermostable bioreporters. The aim of this study was to improve the stability of super Renilla luciferase 8 (SRLuc 8) which is a red-emitter variety of RLuc at higher temperatures, by introduction of a disulfide bridge into its structure. In this study, the choice of the proper disulfide bond formation was based on computational methods and enzyme functionality (active site position) which is called geometric-functional method. N45 and A71 at the N-terminal of the enzyme were selected for directed evolution. The engineered luciferase was called C-SRLuc 8 and its activity and stability were assayed. The results indicated that the kinetic stability of C-SRLuc 8 increased significantly at 60°C to 70°C as compared to SRLuc 8; the residual activity of C-SRLuc 8 was approximately 20% after incubation at 65°C for 5min. Moreover, the enzyme activity decreased compared with SRLuc 8. The molecular basis of the structural changes was considered using molecular dynamics simulations and the results indicated that the N45C/A71C crosslink was involved in a hotspot foldon which seemed to be the rate-limiting step of conformational collapse at higher temperatures. The present study may provide an opportunity for the development of the next-generation of thermostable RLuc-based biosensors.


Assuntos
Dissulfetos/química , Dissulfetos/metabolismo , Luciferases de Renilla/química , Luciferases de Renilla/metabolismo , Biotecnologia/métodos , Domínio Catalítico/fisiologia , Estabilidade Enzimática/fisiologia , Temperatura Alta , Cinética , Luz , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida/métodos , Temperatura
14.
Mol Cell Biochem ; 430(1-2): 139-147, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28210900

RESUMO

Renilla luciferase reporter is a widely used internal control in dual luciferase reporter assay system, where its transcription is driven by a constitutively active promoter. However, the authenticity of the Renilla luciferase response in some experimental settings has recently been questioned. Testicular receptor 4 (TR4, also known as NR2C2) belongs to the subfamily 2 of nuclear receptors. TR4 binds to a direct repeat regulatory element in the promoter of a variety of target genes and plays a key role in tumorigenesis, lipoprotein regulation, and central nervous system development. In our experimental system using murine pituitary corticotroph tumor AtT20 cells to investigate TR4 actions on POMC transcription, we found that overexpression of TR4 resulted in reduced Renilla luciferase expression whereas knockdown TR4 increased Renilla luciferase expression. The TR4 inhibitory effect was mediated by the TR4 DNA-binding domain and behaved similarly to the GR and its agonist, Dexamethasone. We further demonstrated that the chimeric intron, commonly present in various Renilla plasmid backbones such as pRL-Null, pRL-SV40, and pRL-TK, was responsible for TR4's inhibitory effect. The results suggest that an intron-free Renilla luciferase reporter may provide a satisfactory internal control for TR4 at certain dose range. Our findings advocate caution on the use of Renilla luciferase as an internal control in TR4-directed studies to avoid misleading data interpretation.


Assuntos
Dexametasona/farmacologia , Genes Reporter , Luciferases de Renilla/biossíntese , Proteínas de Neoplasias/metabolismo , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Neoplasias Hipofisárias/metabolismo , Animais , Linhagem Celular Tumoral , Reações Falso-Positivas , Luciferases de Renilla/genética , Camundongos , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/genética , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/agonistas , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/genética , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Pró-Opiomelanocortina/biossíntese , Pró-Opiomelanocortina/genética
15.
Biotechnol Appl Biochem ; 64(2): 244-250, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25923846

RESUMO

MicroRNAs are small noncoding RNAs that regulate gene expression by repressing translation of target cellular transcripts. Increasing evidences indicate that miRNAs have different expression profiles and play crucial roles in numerous cellular processes. Delivery and expression of transgenes for cancer therapy must be specific for tumors to avoid killing of healthy tissues. Many investigators have shown that transgene expression can be suppressed in normal cells using vectors that are responsive to microRNA regulation. To overcome this problem, miR-145 that exhibits downregulation in many types of cancer cells was chosen for posttranscriptional regulatory systems mediated by microRNAs. In this study, a psiCHECK-145T vector carrying four tandem copies of target sequences of miR-145 into 3'-UTR of the Renilla luciferase gene was constructed. Renilla luciferase activity from the psiCHECK-145T vector was 57% lower in MCF10A cells with high miR-145 expression as compared to a control condition. Additionally, overexpression of miR-145 in MCF-7 cells with low expression level of miR-145 showed more than 76% reduction in the Renilla luciferase activity from the psiCHECK-145T vector. Inclusion of miR-145 target sequences into the 3'-UTR of the Renilla luciferase gene is a feasible strategy for restricting transgene expression in a breast cancer cell line while sparing a breast normal cell line.


Assuntos
Neoplasias da Mama/genética , Terapia Genética , Luciferases de Renilla/genética , MicroRNAs/biossíntese , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos , Humanos , Luciferases de Renilla/biossíntese , Células MCF-7 , MicroRNAs/genética , Transgenes
16.
Anal Biochem ; 498: 1-7, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26772160

RESUMO

Here we describe the design and construction of an imaging construct with high bioluminescent resonance energy transfer (BRET) efficiency that is composed of multiple quantum dots (QDs; λem = 655 nm) self-assembled onto a bioluminescent protein, Renilla luciferase (Rluc). This is facilitated by the streptavidin-biotin interaction, allowing the facile formation of a hybrid-imaging construct (HIC) comprising up to six QDs (acceptor) grafted onto a light-emitting Rluc (donor) core. The resulting assembly of multiple acceptors surrounding a donor permits this construct to exhibit high resonance energy transfer efficiency (∼64.8%). The HIC was characterized using fluorescence excitation anisotropy measurements and high-resolution transmission electron microscopy. To demonstrate the application of our construct, a generation-5 (G5) polyamidoamine dendrimer (PAMAM) nanocarrier was loaded with our HIC for in vitro and in vivo imaging. We envision that this design of multiple acceptors and bioluminescent donor will lead to the development of new BRET-based systems useful in sensing, imaging, and other bioanalytical applications.


Assuntos
Dendrímeros/química , Desenho de Fármacos , Transferência de Energia , Luciferases de Renilla/química , Medições Luminescentes , Nanoestruturas/química , Pontos Quânticos , Dendrímeros/síntese química , Luciferases de Renilla/metabolismo
17.
Int J Hyperthermia ; 32(6): 666-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27362775

RESUMO

PURPOSE: Thermal ablation has been used to manage liver malignancy. This study aimed to assess histological changes in rat liver after microwave ablation (MWA) and to investigate whether thermal damage caused by MWA on surrounding liver tissue enhances the efficiency of liver gene transfer. METHODS: MWA was applied to rat liver, and the pathological tissue and ultrastructural changes were evaluated. Green fluorescent protein (GFP) and Renilla luciferase-expressing plasmids were administered to liver tissues by direct injection. GFP expression in liver tissue was analysed in frozen sections using an inverted fluorescence microscope, and Renilla luciferase expression in target tissue was determined using a luminometer. RESULTS: Tissue demarcations were observed in liver tissue after ablation, and a transition zone with morphological changes was present between necrotic and normal tissue. Hepatocytes in the transition zone showed decreased numbers of microvilli on cell surfaces and increased extracellular space. GFP expression was observed in the transition zone after MWA and plasmid injection and lasted up to 7 days post-ablation. Both the fluorescence and luminescence levels in the transition zone of the liver tissue were significantly higher than those in the untreated tissue (P < 0.001). CONCLUSIONS: Direct plasmid injection to the liver tissue of the transition zone after MWA can achieve effective gene transfection. These findings provide an experimental basis for exploring MWA-assisted target gene transfer for cancer gene therapy.


Assuntos
Técnicas de Ablação , Fígado/cirurgia , Micro-Ondas , Transfecção/métodos , Animais , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Fígado/metabolismo , Fígado/patologia , Fígado/ultraestrutura , Luciferases de Renilla/genética , Masculino , Microscopia Eletrônica de Varredura , Plasmídeos , Ratos Sprague-Dawley
18.
Acta Virol ; 60(1): 62-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26982469

RESUMO

Protein-protein interactions can regulate different cellular processes, such as transcription, translation, and oncogenic transformation. The split Renilla luciferase complementation assay (SRLCA) is one of the techniques that detect protein-protein interactions. The SRLCA is based on the complementation of the LN and LC non-functional halves of Renilla luciferase fused to possibly interacting proteins which after interaction form a functional enzyme and emit luminescence. The BGLF4 of Epstein-Barr virus (EBV) is a viral protein kinase that is expressed during the early and late stages of lytic cycles, which can regulate multiple cellular and viral substrates to optimize the DNA replication environment. The heat shock protein Hsp90 is a molecular chaperone that maintains the integrity of structure and function of various interacting proteins, which can form a complex with BGLF4 and stabilize its expression in cells. The interaction between BGLF4 and Hsp90 could be specifically detected through the SRLCA. The region of aa 250-295 of BGLF4 is essential for the BGLF4/Hsp90 interaction and the mutation of Phe-254, Leu-266, and Leu-267 can disrupt this interaction. These results suggest that the SRLCA can specifically detect the BGLF4/Hsp90 interaction and provide a reference to develop inhibitors that disrupt the BGLF4/Hsp90 interaction.


Assuntos
Infecções por Vírus Epstein-Barr/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Herpesvirus Humano 4/metabolismo , Luciferases de Renilla/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Humanos , Luciferases de Renilla/química , Luciferases de Renilla/genética , Ligação Proteica , Mapeamento de Interação de Proteínas/instrumentação , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/genética
19.
Biochem Biophys Res Commun ; 458(3): 543-548, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25677617

RESUMO

Luciferase assay has become an increasingly important technique to monitor a wide range of biological processes. However, the mainstay protocols require a luminometer to acquire and process the data, therefore limiting its application to specialized research labs. To overcome this limitation, we have developed an alternative protocol that utilizes a commonly available cooled charge-coupled device (CCCD), instead of a luminometer for data acquiring and processing. By measuring activities of different luciferases, we characterized their substrate specificity, assay linearity, signal-to-noise levels, and fold-changes via CCCD. Next, we defined the assay parameters that are critical for appropriate use of CCCD for different luciferases. To demonstrate the usefulness in cultured mammalian cells, we conducted a case study to examine NFκB gene activation in response to inflammatory signals in human embryonic kidney cells (HEK293 cells). We found that data collected by CCCD camera was equivalent to those acquired by luminometer, thus validating the assay protocol. In comparison, The CCCD-based protocol is readily amenable to live-cell and high-throughput applications, offering fast simultaneous data acquisition and visual and quantitative data presentation. In conclusion, the CCCD-based protocol provides a useful alternative for monitoring luciferase reporters. The wide availability of CCCD will enable more researchers to use luciferases to monitor and quantify biological processes.


Assuntos
Luciferases de Vaga-Lume/análise , Luciferases de Renilla/análise , Substâncias Luminescentes/análise , Medições Luminescentes/instrumentação , Animais , Vaga-Lumes/enzimologia , Genes Reporter , Células HEK293 , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Luciferases de Vaga-Lume/genética , Luciferases de Renilla/genética , Substâncias Luminescentes/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Renilla/enzimologia , Transfecção
20.
J Exp Bot ; 66(1): 85-97, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326916

RESUMO

A growing body of evidence suggests that protein-protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. We tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. Our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta.


Assuntos
Glucanos/biossíntese , Luciferases de Renilla/metabolismo , Nicotiana/genética , Proteínas de Plantas/genética , Mapeamento de Interação de Proteínas/métodos , Xilanos/biossíntese , Agrobacterium tumefaciens/genética , Engenharia Genética , Complexo de Golgi/metabolismo , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa