Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Methods ; 226: 49-53, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621436

RESUMO

Epigenetic proteins (EP) play a role in the progression of a wide range of diseases, including autoimmune disorders, neurological disorders, and cancer. Recognizing their different functions has prompted researchers to investigate them as potential therapeutic targets and pharmacological targets. This paper proposes a novel deep learning-based model that accurately predicts EP. This study introduces a novel deep learning-based model that accurately predicts EP. Our approach entails generating two distinct datasets for training and evaluating the model. We then use three distinct strategies to transform protein sequences to numerical representations: Dipeptide Deviation from Expected Mean (DDE), Dipeptide Composition (DPC), and Group Amino Acid (GAAC). Following that, we train and compare the performance of four advanced deep learning models algorithms: Ensemble Residual Convolutional Neural Network (ERCNN), Generative Adversarial Network (GAN), Convolutional Neural Network (CNN), and Gated Recurrent Unit (GRU). The DDE encoding combined with the ERCNN model demonstrates the best performance on both datasets. This study demonstrates deep learning's potential for precisely predicting EP, which can considerably accelerate research and streamline drug discovery efforts. This analytical method has the potential to find new therapeutic targets and advance our understanding of EP activities in disease.


Assuntos
Aprendizado Profundo , Descoberta de Drogas , Redes Neurais de Computação , Descoberta de Drogas/métodos , Humanos , Epigênese Genética/efeitos dos fármacos , Algoritmos , Proteínas/química
2.
Sensors (Basel) ; 23(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37050458

RESUMO

This study proposes a sound event localization and detection (SELD) method using imbalanced real and synthetic data via a multi-generator. The proposed method is based on a residual convolutional neural network (RCNN) and a transformer encoder for real spatial sound scenes. SELD aims to classify the sound event, detect the onset and offset of the classified event, and estimate the direction of the sound event. In Detection and Classification of Acoustic Scenes and Events (DCASE) 2022 Task 3, SELD is performed with a few real spatial sound scene data and a relatively large number of synthetic data. When a model is trained using imbalanced data, it can proceed by focusing only on a larger number of data. Thus, a multi-generator that samples real and synthetic data at a specific rate in one batch is proposed to prevent this problem. We applied the data augmentation technique SpecAugment and used time-frequency masking to the dataset. Furthermore, we propose a neural network architecture to apply the RCNN and transformer encoder. Several models were trained with various structures and hyperparameters, and several ensemble models were obtained by "cherry-picking" specific models. Based on the experiment, the single model of the proposed method and the model applied with the ensemble exhibited improved performance compared with the baseline model.

3.
Sensors (Basel) ; 22(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35214561

RESUMO

In this paper, an effective electrocardiogram (ECG) recurrence plot (RP)-based arrhythmia classification algorithm that can be implemented in portable devices is presented. Public databases from PhysioNet were used to conduct this study including the MIT-BIH Atrial Fibrillation Database, the MIT-BIH Arrhythmia Database, the MIT-BIH Malignant Ventricular Ectopy Database, and the Creighton University Ventricular Tachyarrhythmia Database. ECG time series were segmented and converted using an RP, and two-dimensional images were used as inputs to the CNN classifiers. In this study, two-stage classification is proposed to improve the accuracy. The ResNet-18 architecture was applied to detect ventricular fibrillation (VF) and noise during the first stage, whereas normal, atrial fibrillation, premature atrial contraction, and premature ventricular contractions were detected using ResNet-50 in the second stage. The method was evaluated using 5-fold cross-validation which improved the results when compared to previous studies, achieving first and second stage average accuracies of 97.21% and 98.36%, sensitivities of 96.49% and 97.92%, positive predictive values of 95.54% and 98.20%, and F1-scores of 95.96% and 98.05%, respectively. Furthermore, a 5-fold improvement in the memory requirement was achieved when compared with a previous study, making this classifier feasible for use in resource-constricted environments such as portable devices. Even though the method is successful, first stage training requires combining four different arrhythmia types into one label (other), which generates more data for the other category than for VF and noise, thus creating a data imbalance that affects the first stage performance.


Assuntos
Taquicardia Ventricular , Complexos Ventriculares Prematuros , Algoritmos , Eletrocardiografia/métodos , Humanos , Processamento de Sinais Assistido por Computador , Taquicardia Ventricular/diagnóstico , Fibrilação Ventricular/diagnóstico , Complexos Ventriculares Prematuros/diagnóstico
4.
Sensors (Basel) ; 23(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616823

RESUMO

In the contemporary world, emotion detection of humans is procuring huge scope in extensive dimensions such as bio-metric security, HCI (human-computer interaction), etc. Such emotions could be detected from various means, such as information integration from facial expressions, gestures, speech, etc. Though such physical depictions contribute to emotion detection, EEG (electroencephalogram) signals have gained significant focus in emotion detection due to their sensitivity to alterations in emotional states. Hence, such signals could explore significant emotional state features. However, manual detection from EEG signals is a time-consuming process. With the evolution of artificial intelligence, researchers have attempted to use different data mining algorithms for emotion detection from EEG signals. Nevertheless, they have shown ineffective accuracy. To resolve this, the present study proposes a DNA-RCNN (Deep Normalized Attention-based Residual Convolutional Neural Network) to extract the appropriate features based on the discriminative representation of features. The proposed NN also explores alluring features with the proposed attention modules leading to consistent performance. Finally, classification is performed by the proposed M-RF (modified-random forest) with an empirical loss function. In this process, the learning weights on the data subset alleviate loss amongst the predicted value and ground truth, which assists in precise classification. Performance and comparative analysis are considered to explore the better performance of the proposed system in detecting emotions from EEG signals that confirms its effectiveness.


Assuntos
Inteligência Artificial , Algoritmo Florestas Aleatórias , Humanos , Emoções , Redes Neurais de Computação , Algoritmos , Eletroencefalografia/métodos
5.
J Xray Sci Technol ; 30(6): 1229-1242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36214031

RESUMO

BACKGROUND: Low-dose computed tomography (LDCT) is an effective method for reducing radiation exposure. However, reducing radiation dose leads to considerable noise in the reconstructed image that can affect doctor's judgment. OBJECTIVE: To solve this problem, this study proposes a local total variation and improved wavelet residual convolutional neural network (LTV-WRCNN) denoising model. METHODS: The model first introduces local total variation (LTV) to decompose the LDCT image into cartoon and texture image. Next, the texture image is filtered using the non-local mean (NLM). Then, the cartoon image is added to the filtered texture image to obtain the preprocessing image. Finally, the pre-processed image is fed into the improved wavelet residual neural network (WRCNN) to obtain an improved image. Additionally, we also introduce a compound loss in wavelet domain that combines mean squared error loss and directional regularization loss to separate the structural details from noise more thoroughly. RESULTS: Compared with state-of-the-art methods, the peak-signal-to-noise ratio (PSNR) value and the structure similarity (SSIM) value of the processed CT images using the new proposed model are 33.4229 dB and 0.9158. Study also shows that applying new model obtains better results visually and numerically, especially in terms of the preservation of structural details. CONCLUSIONS: The proposed new model is feasible and effective in improving the quality of LDCT images.


Assuntos
Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Humanos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos , Progressão da Doença , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
6.
Anal Biochem ; 618: 114120, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535061

RESUMO

Enhancers are non-coding DNA sequences bound by proteins called transcription factors. They function as distant regulators of gene transcription and participate in the development and maintenance of cell types and tissues. Since experimental validation of enhancers is expensive and time-consuming, many computational methods have been developed to predict enhancers and their strength. However, most of these methods still lack good performance in the prediction of enhancer strength. Here, we present a method to predict Enhancers Strength (i.e., strong and weak) by using Augmented data and Residual Convolutional Neural Network (ES-ARCNN). To train ES-ARCNN, we used two data augmentation tricks (i.e., reverse complement and shift) to previously identified enhancers for enlarging a previously identified dataset of enhancers. We further employed a residual convolutional neural network and trained it using the augmented dataset. Compared with other state-of-the-art methods in the 10-fold cross-validation (CV) test, ES-ARCNN has the best performance with the accuracy of 66.17%, and the tricks of data augmentation can effectively improve the prediction performance. We further tested ES-ARCNN on an independent dataset and obtained 65.5% accuracy, which has more than 4% improvement over the other three existing methods. The results in 10CV and independent tests show that ES-ARCNN can effectively predict the enhancer strength. The transcription factor binding sites (TFBSs) enrichment analysis shows that from the mechanistic perspective, enhancer strength is associated with a higher density of important TFBSs in a tissue. A user-friendly web-application is also provided at http://compgenomics.utsa.edu/ES-ARCNN/.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Elementos Facilitadores Genéticos , Modelos Genéticos , Redes Neurais de Computação , Fatores de Transcrição/metabolismo , Humanos
7.
J Magn Reson Imaging ; 52(5): 1542-1549, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32222054

RESUMO

Pretreatment determination of renal cell carcinoma aggressiveness may help to guide clinical decision-making. PURPOSE: To evaluate the efficacy of residual convolutional neural network using routine MRI in differentiating low-grade (grade I-II) from high-grade (grade III-IV) in stage I and II renal cell carcinoma. STUDY TYPE: Retrospective. POPULATION: In all, 376 patients with 430 renal cell carcinoma lesions from 2008-2019 in a multicenter cohort were acquired. The 353 Fuhrman-graded renal cell carcinomas were divided into a training, validation, and test set with a 7:2:1 split. The 77 WHO/ISUP graded renal cell carcinomas were used as a separate WHO/ISUP test set. FIELD STRENGTH/SEQUENCE: 1.5T and 3.0T/T2 -weighted and T1 contrast-enhanced sequences. ASSESSMENT: The accuracy, sensitivity, and specificity of the final model were assessed. The receiver operating characteristic (ROC) curve and precision-recall curve were plotted to measure the performance of the binary classifier. A confusion matrix was drawn to show the true positive, true negative, false positive, and false negative of the model. STATISTICAL TESTS: Mann-Whitney U-test for continuous data and the chi-square test or Fisher's exact test for categorical data were used to compare the difference of clinicopathologic characteristics between the low- and high-grade groups. The adjusted Wald method was used to calculate the 95% confidence interval (CI) of accuracy, sensitivity, and specificity. RESULTS: The final deep-learning model achieved a test accuracy of 0.88 (95% CI: 0.73-0.96), sensitivity of 0.89 (95% CI: 0.74-0.96), and specificity of 0.88 (95% CI: 0.73-0.96) in the Fuhrman test set and a test accuracy of 0.83 (95% CI: 0.73-0.90), sensitivity of 0.92 (95% CI: 0.84-0.97), and specificity of 0.78 (95% CI: 0.68-0.86) in the WHO/ISUP test set. DATA CONCLUSION: Deep learning can noninvasively predict the histological grade of stage I and II renal cell carcinoma using conventional MRI in a multiinstitutional dataset with high accuracy. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Carcinoma de Células Renais , Aprendizado Profundo , Neoplasias Renais , Carcinoma de Células Renais/diagnóstico por imagem , Diferenciação Celular , Humanos , Neoplasias Renais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos
8.
J Electrocardiol ; 58: 105-112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31812617

RESUMO

BACKGROUND: The electrocardiogram (ECG) has been widely used in the diagnosis of heart disease such as arrhythmia due to its simplicity and non-invasive nature. Arrhythmia can be classified into many types, including life-threatening and non-life-threatening. Accurate detection of arrhythmic types can effectively prevent heart disease and reduce mortality. METHODS: In this study, a novel deep learning method for classification of cardiac arrhythmia according to deep residual network (ResNet) is presented. We developed a 31-layer one-dimensional (1D) residual convolutional neural network. The algorithm includes four residual blocks, each of which consists of three 1D convolution layers, three batch normalization (BP) layers, three rectified linear unit (ReLU) layers, and an "identity shortcut connections" structure. In addition, we propose to use 2-lead ECG signals in combination with deep learning methods to automatically identify five different types of heartbeats. RESULTS: We have obtained an average accuracy, sensitivity and positive predictivity of 99.06%, 93.21% and 96.76% respectively for single-lead ECG heartbeats. In the 2-lead datasets, the results show that the deep ResNet model has high classification performance, achieving an accuracy of 99.38%, sensitivity of 94.54%, and specificity of 98.14%. CONCLUSION: The proposed method can be used as an adjunct tool to assist clinicians in their diagnosis.


Assuntos
Eletrocardiografia , Redes Neurais de Computação , Algoritmos , Arritmias Cardíacas/diagnóstico , Frequência Cardíaca , Humanos
9.
Sensors (Basel) ; 20(10)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429401

RESUMO

Computer-aided algorithm plays an important role in disease diagnosis through medical images. As one of the major cancers, lung cancer is commonly detected by computer tomography. To increase the survival rate of lung cancer patients, an early-stage diagnosis is necessary. In this paper, we propose a new structure, multi-level cross residual convolutional neural network (ML-xResNet), to classify the different types of lung nodule malignancies. ML-xResNet is constructed by three-level parallel ResNets with different convolution kernel sizes to extract multi-scale features of the inputs. Moreover, the residuals are connected not only with the current level but also with other levels in a crossover manner. To illustrate the performance of ML-xResNet, we apply the model to process ternary classification (benign, indeterminate, and malignant lung nodules) and binary classification (benign and malignant lung nodules) of lung nodules, respectively. Based on the experiment results, the proposed ML-xResNet achieves the best results of 85.88% accuracy for ternary classification and 92.19% accuracy for binary classification, without any additional handcrafted preprocessing algorithm.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Algoritmos , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X
10.
ISPRS J Photogramm Remote Sens ; 154: 151-162, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31417230

RESUMO

The local climate zone (LCZ) scheme was originally proposed to provide an interdisciplinary taxonomy for urban heat island (UHI) studies. In recent years, the scheme has also become a starting point for the development of higher-level products, as the LCZ classes can help provide a generalized understanding of urban structures and land uses. LCZ mapping can therefore theoretically aid in fostering a better understanding of spatio-temporal dynamics of cities on a global scale. However, reliable LCZ maps are not yet available globally. As a first step toward automatic LCZ mapping, this work focuses on LCZ-derived land cover classification, using multi-seasonal Sentinel-2 images. We propose a recurrent residual network (Re-ResNet) architecture that is capable of learning a joint spectral-spatial-temporal feature representation within a unitized framework. To this end, a residual convolutional neural network (ResNet) and a recurrent neural network (RNN) are combined into one end-to-end architecture. The ResNet is able to learn rich spectral-spatial feature representations from single-seasonal imagery, while the RNN can effectively analyze temporal dependencies of multi-seasonal imagery. Cross validations were carried out on a diverse dataset covering seven distinct European cities, and a quantitative analysis of the experimental results revealed that the combined use of the multi-temporal information and Re-ResNet results in an improvement of approximately 7 percent points in overall accuracy. The proposed framework has the potential to produce consistent-quality urban land cover and LCZ maps on a large scale, to support scientific progress in fields such as urban geography and urban climatology.

11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 36(2): 189-198, 2019 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-31016934

RESUMO

Electrocardiogram (ECG) signals are easily disturbed by internal and external noise, and its morphological characteristics show significant variations for different patients. Even for the same patient, its characteristics are variable under different temporal and physical conditions. Therefore, ECG signal detection and recognition for the heart disease real-time monitoring and diagnosis are still difficult. Based on this, a wavelet self-adaptive threshold denoising combined with deep residual convolutional neural network algorithm was proposed for multiclass arrhythmias recognition. ECG signal filtering was implemented using wavelet adaptive threshold technology. A 20-layer convolutional neural network (CNN) containing multiple residual blocks, namely deep residual convolutional neural network (DR-CNN), was designed for recognition of five types of arrhythmia signals. The DR-CNN constructed by residual block local neural network units alleviated the difficulty of deep network convergence, the difficulty in tuning and so on. It also overcame the degradation problem of the traditional CNN when the network depth was increasing. Furthermore, the batch normalization of each convolution layer improved its convergence. Following the recommendations of the Association for the Advancements of Medical Instrumentation (AAMI), experimental results based on 94 091 2-lead heart beats from the MIT-BIH arrhythmia benchmark database demonstrated that our proposed method achieved the average detection accuracy of 99.034 9%, 99.498 0% and 99.334 7% for multiclass classification, ventricular ectopic beat (Veb) and supra-Veb (Sveb) recognition, respectively. Using the same platform and database, experimental results showed that under the comparable network complexity, our proposed method significantly improved the recognition accuracy, sensitivity and specificity compared to the traditional deep learning networks, such as deep Multilayer Perceptron (MLP), CNN, etc. The DR-CNN algorithm improves the accuracy of the arrhythmia intelligent diagnosis. If it is combined with wearable equipment, internet of things and wireless communication technology, the prevention, monitoring and diagnosis of heart disease can be extended to out-of-hospital scenarios, such as families and nursing homes. Therefore, it will improve the cure rate, and effectively save the medical resources.


Assuntos
Arritmias Cardíacas/diagnóstico , Eletrocardiografia , Redes Neurais de Computação , Algoritmos , Frequência Cardíaca , Humanos , Sensibilidade e Especificidade
12.
Sensors (Basel) ; 17(7)2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665361

RESUMO

The necessity for the classification of open and closed eyes is increasing in various fields, including analysis of eye fatigue in 3D TVs, analysis of the psychological states of test subjects, and eye status tracking-based driver drowsiness detection. Previous studies have used various methods to distinguish between open and closed eyes, such as classifiers based on the features obtained from image binarization, edge operators, or texture analysis. However, when it comes to eye images with different lighting conditions and resolutions, it can be difficult to find an optimal threshold for image binarization or optimal filters for edge and texture extraction. In order to address this issue, we propose a method to classify open and closed eye images with different conditions, acquired by a visible light camera, using a deep residual convolutional neural network. After conducting performance analysis on both self-collected and open databases, we have determined that the classification accuracy of the proposed method is superior to that of existing methods.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39049553

RESUMO

Myocardial Infarction (MI) refers to damage to the heart tissue caused by an inadequate blood supply to the heart muscle due to a sudden blockage in the coronary arteries. This blockage is often a result of the accumulation of fat (cholesterol) forming plaques (atherosclerosis) in the arteries. Over time, these plaques can crack, leading to the formation of a clot (thrombus), which can block the artery and cause a heart attack. Risk factors for a heart attack include smoking, hypertension, diabetes, high cholesterol, metabolic syndrome, and genetic predisposition. Early diagnosis of MI is crucial. Thus, detecting and classifying MI is essential. This paper introduces a new hybrid approach for MI Classification using Spectrogram and Bayesian Optimization (MI-CSBO) for Electrocardiogram (ECG). First, ECG signals from the PTB Database (PTBDB) were converted from the time domain to the frequency domain using the spectrogram method. Then, a deep residual CNN was applied to the test and train datasets of ECG imaging data. The ECG dataset trained using the Deep Residual model was then acquired. Finally, the Bayesian approach, NCA feature selection, and various machine learning algorithms (k-NN, SVM, Tree, Bagged, Naïve Bayes, Ensemble) were used to derive performance measures. The MI-CSBO method achieved a 100% correct diagnosis rate, as detailed in the Experimental Results section.

14.
Math Biosci Eng ; 21(4): 5007-5031, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38872524

RESUMO

In demanding application scenarios such as clinical psychotherapy and criminal interrogation, the accurate recognition of micro-expressions is of utmost importance but poses significant challenges. One of the main difficulties lies in effectively capturing weak and fleeting facial features and improving recognition performance. To address this fundamental issue, this paper proposed a novel architecture based on a multi-scale 3D residual convolutional neural network. The algorithm leveraged a deep 3D-ResNet50 as the skeleton model and utilized the micro-expression optical flow feature map as the input for the network model. Drawing upon the complex spatial and temporal features inherent in micro-expressions, the network incorporated multi-scale convolutional modules of varying sizes to integrate both global and local information. Furthermore, an attention mechanism feature fusion module was introduced to enhance the model's contextual awareness. Finally, to optimize the model's prediction of the optimal solution, a discriminative network structure with multiple output channels was constructed. The algorithm's performance was evaluated using the public datasets SMIC, SAMM, and CASME Ⅱ. The experimental results demonstrated that the proposed algorithm achieves recognition accuracies of 74.6, 84.77 and 91.35% on these datasets, respectively. This substantial improvement in efficiency compared to existing mainstream methods for extracting micro-expression subtle features effectively enhanced micro-expression recognition performance and increased the accuracy of high-precision micro-expression recognition. Consequently, this paper served as an important reference for researchers working on high-precision micro-expression recognition.


Assuntos
Algoritmos , Expressão Facial , Redes Neurais de Computação , Humanos , Imageamento Tridimensional/métodos , Face , Bases de Dados Factuais , Reconhecimento Automatizado de Padrão/métodos , Processamento de Imagem Assistida por Computador/métodos
15.
Med Eng Phys ; 113: 103957, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36965998

RESUMO

Among the musculoskeletal disorders in the world, osteoarthritis is the most common, affecting most of the body joints, especially the knee. Clinical radiographic imaging methods are commonly used to diagnose osteoarthritis thanks to their cheapness and availability. Due to the low quality and indiscernibility of these images, however, accurate osteoarthritis diagnosis has always faced inaccuracies, such as the wrong diagnosis. One of the osteoarthritis hallmarks is joint space narrowing. Thus, its degree and severity can be determined relatively by assessing the space between the bones in the joint. Therefore, in this research, a deep residual neural network, termed IJES-OA Net, is presented to automatically grade (classify) the severity of knee osteoarthritis via radiographs. This is achieved by tuning it in a way to have it focused on the distance of the edges of the bones inside the knee joint. Experimental results which are conducted on MOST (for training) and OAI (for validation and testing) datasets show that the IJES-OA Net achieves high average accuracy as well as average precision (80.23% and 0.802, respectively) while having less complexity compared to other methods. Additionally, the resulting attention maps from IJES-OA Net are accurate enough that increase experts' reliance on the provided results.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Radiografia , Redes Neurais de Computação , Osso e Ossos
16.
Comput Biol Med ; 166: 107571, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37864911

RESUMO

A comprehensive understanding of protein functions holds significant promise for disease research and drug development, and proteins with analogous tertiary structures tend to exhibit similar functions. Protein fold recognition stands as a classical approach in the realm of protein structure investigation. Despite significant advancements made by researchers in this field, the continuous updating of protein databases presents an ongoing challenge in accurately identifying protein fold types. In this study, we introduce a predictor, ResCNNT-fold, for protein fold recognition and employ the LE dataset for testing purpose. ResCNNT-fold leverages a pre-trained language model to obtain embedding representations for protein sequences, which are then processed by the ResCNNT feature extractor, a combination of residual convolutional neural network and Transformer, to derive fold-specific features. Subsequently, the query protein is paired with each protein whose structure is known in the template dataset. For each pair, the similarity score of their fold-specific features is calculated. Ultimately, the query protein is identified as the fold type of the template protein in the pair with the highest similarity score. To further validate the utility and efficacy of the proposed ResCNNT-fold predictor, we conduct a 2-fold cross-validation experiment on the fold level of the LE dataset. Remarkably, this rigorous evaluation yields an exceptional accuracy of 91.57%, which surpasses the best result among other state-of-the-art protein fold recognition methods by an approximate margin of 10%. The excellent performance unequivocally underscores the compelling advantages inherent to our proposed ResCNNT-fold predictor in the realm of protein fold recognition. The source code and data of ResCNNT-fold can be downloaded from https://github.com/Bioinformatics-Laboratory/ResCNNT-fold.

17.
Comput Biol Med ; 148: 105635, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35961802

RESUMO

BACKGROUND: Malaria is a disease caused by the Plasmodium parasite, which results in millions of deaths in the human population worldwide each year. It is therefore considered a major global health issue with a massive disease burden. Accurate and rapid diagnosis of malaria is important for treatment. Rapid diagnosis of this disease will be very valuable for patients, as traditional methods require tedious work for its detection. The aim of the study is to classify malaria cell images using machine learning and deep learning methods. MATERIAL & METHODS: The National Institutes of Health (NIH) database was used for malaria cell images classification as infected and uninfected, with a total of 27,558 malaria cell images used in the experimental study. Additionally, the training option parameters (initial learning rate, L2 regularization, and momentum values) of the Residual Convolutional Neural Network (CNN) were optimized using the Bayesian method. In the study, Residual CNN, k-Nearest Neighbors (k-NN), and Support Vector Machine (SVM) classifiers were used to classify the malaria cell images. Neighborhood Components Analysis (NCA) were observed to increase the performance of classifiers used in the classification of malaria cell images. RESULTS AND CONCLUSION: The Accuracy (Acc), Sensitivity (Se), Specificity (Spe), and F-score were used as the performance metrics for the classifier performances. The best classification results were achieved with SVM (Acc 99.90%, Se 99.98%, Spe 87.50%, and F-Score 99.90%). As a result, a high level of classification performance was achieved from creating a hybrid model with Bayesian optimization and Deep Residual CNN features.


Assuntos
Malária , Redes Neurais de Computação , Teorema de Bayes , Progressão da Doença , Humanos , Aprendizado de Máquina , Máquina de Vetores de Suporte
18.
Front Plant Sci ; 13: 996069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407623

RESUMO

As a fungus with both medicinal and edible value, Wolfiporia cocos (F. A. Wolf) Ryvarden & Gilb. has drawn more public attention. Chemical components' content fluctuates in wild and cultivated W. cocos, whereas the accumulation ability of chemical components in different parts is different. In order to perform a quality assessment of W. cocos, we proposed a comprehensive method which was mainly realized by Fourier transform near-infrared (FT-NIR) spectroscopy and ultra-fast liquid chromatography (UFLC). A qualitative analysis means was built a residual convolutional neural network (ResNet) to recognize synchronous two-dimensional correlation spectroscopy (2DCOS) images. It can rapidly identify samples from wild and cultivated W. cocos in different parts. As a quantitative analysis method, UFLC was used to determine the contents of three triterpene acids in 547 samples. The results showed that a simultaneous qualitative and quantitative strategy could accurately evaluate the quality of W. cocos. The accuracy of ResNet models combined synchronous FT-NIR 2DCOS in identifying wild and cultivated W. cocos in different parts was as high as 100%. The contents of three triterpene acids in Poriae Cutis were higher than that in Poria, and the one with wild Poriae Cutis was the highest. In addition, the suitable habitat plays a crucial role in the quality of W. cocos. The maximum entropy (MaxEnt) model is a common method to predict the suitable habitat area for W. cocos under the current climate. Through the results, we found that suitable habitats were mostly situated in Yunnan Province of China, which accounted for approximately 49% of the total suitable habitat area of China. The research results not only pave the way for the rational planting in Yunnan Province of China and resource utilization of W. cocos, but also provide a basis for quality assessment of medicinal fungi.

19.
Biomedicines ; 10(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36428538

RESUMO

Breast cancer, which attacks the glandular epithelium of the breast, is the second most common kind of cancer in women after lung cancer, and it affects a significant number of people worldwide. Based on the advantages of Residual Convolutional Network and the Transformer Encoder with Multiple Layer Perceptron (MLP), this study proposes a novel hybrid deep learning Computer-Aided Diagnosis (CAD) system for breast lesions. While the backbone residual deep learning network is employed to create the deep features, the transformer is utilized to classify breast cancer according to the self-attention mechanism. The proposed CAD system has the capability to recognize breast cancer in two scenarios: Scenario A (Binary classification) and Scenario B (Multi-classification). Data collection and preprocessing, patch image creation and splitting, and artificial intelligence-based breast lesion identification are all components of the execution framework that are applied consistently across both cases. The effectiveness of the proposed AI model is compared against three separate deep learning models: a custom CNN, the VGG16, and the ResNet50. Two datasets, CBIS-DDSM and DDSM, are utilized to construct and test the proposed CAD system. Five-fold cross validation of the test data is used to evaluate the accuracy of the performance results. The suggested hybrid CAD system achieves encouraging evaluation results, with overall accuracies of 100% and 95.80% for binary and multiclass prediction challenges, respectively. The experimental results reveal that the proposed hybrid AI model could identify benign and malignant breast tissues significantly, which is important for radiologists to recommend further investigation of abnormal mammograms and provide the optimal treatment plan.

20.
Front Genet ; 13: 859626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571037

RESUMO

Predicting peptide inter-residue contact maps plays an important role in computational biology, which determines the topology of the peptide structure. However, due to the limited number of known homologous structures, there is still much room for inter-residue contact map prediction. Current models are not sufficient for capturing the high accuracy relationship between the residues, especially for those with a long-range distance. In this article, we developed a novel deep neural network framework to refine the rough contact map produced by the existing methods. The rough contact map is used to construct the residue graph that is processed by the graph convolutional neural network (GCN). GCN can better capture the global information and is therefore used to grasp the long-range contact relationship. The residual convolutional neural network is also applied in the framework for learning local information. We conducted the experiments on four different test datasets, and the inter-residue long-range contact map prediction accuracy demonstrates the effectiveness of our proposed method.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa