Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Waste Manag Res ; 33(9): 805-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25999368

RESUMO

A common assumption regarding the residual organic matter, in bottom ash, is that it does not represent a significant pool of organic carbon and, beyond metal-ion complexation process, it is of little consequence to evolution of ash/leachate chemistry. This article evaluates the effect of residual organic matter and associated microbial respiratory processes on leaching of toxic metals (i.e. arsenic, copper, chromium, molybdenum, nickel, lead, antimony and zinc), eco-toxicity of ash leachates. Microbial respiration was quantified with help of a respirometric test equipment OXITOP control system. The effect of microbial respiration on metal/residual organic matter leaching and eco-toxicity was quantified with the help of batch leaching tests and an eco-toxicity assay - Daphnia magna. In general, the microbial respiration process decreased the leachate pH and eco-toxicity, indicating modification of bioavailability of metal species. Furthermore, the leaching of critical metals, such as copper and chromium, decreased after the respiration in both ash types (fresh and weathered). It was concluded that microbial respiration, if harnessed properly, could enhance the stability of fresh bottom ash and may promote its reuse.


Assuntos
Bactérias/metabolismo , Cinza de Carvão/toxicidade , Daphnia/efeitos dos fármacos , Metais/toxicidade , Poluentes do Solo/toxicidade , Aerobiose , Animais , Bactérias/efeitos dos fármacos , Carbono/química , Carbono/metabolismo , Carbono/toxicidade , Cinza de Carvão/química , Cinza de Carvão/metabolismo , Daphnia/metabolismo , Metais/química , Metais/metabolismo , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Compostos Orgânicos/toxicidade , Oxigênio/metabolismo , Poluentes do Solo/química , Poluentes do Solo/metabolismo
2.
PeerJ ; 7: e7389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396446

RESUMO

Soil remediation industries continue to seek technologies to speed-up treatment and reduce operating costs. Some processes are energy intensive and, in some cases, transport can be the main source of carbon emissions. Residual fertilizing materials (RFM), such as organic residues, have the potential to be beneficial bioremediation agents. Following a circular economy framework, we investigated the feasibility of sourcing RFMs locally to reduce transport and assess possible bioremediation efficiency gains. RFMs were recruited within 100 km of the treatment site: ramial chipped wood (RCW), horse manure (MANR) and brewer spent grain (BSG). They were added to the land treatment unit's baseline fertilizer treatment (FERT, "F") to measure if they improved the remediation efficiency of an engine oil-contaminated soil (7,500 ± 100 mg kg-1). Results indicate that MANR-F was the only amendment more effective than FERT for petroleum hydrocarbons (PHC) reduction, while emitting the least CO2 overall. RCW-F was equivalent to FERT but retained more moisture. Although BSG contributed the most nitrogen to the soil, BSG-F retained excessive moisture, emitted more volatile organic compounds, contained less soil O2, and was less effective than the baseline treatment. Significantly more of the C16-C22 fraction was removed (63% ± 22%) than all other fractions (C22-C28, C28-C34, C34-C40), which were equally removed. Microbial community-level physiological profiling was conducted with Biolog Ecoplates™, and catabolic diversity differed between treatments (utilization rates of 31 carbon sources). MANR-F has the potential to increase PHC-remediation speed and efficiency compared to inorganic fertilizer alone. Other RFM promote moisture retention and diverse microbial catabolic activity. A variety of RFM are present across the globe and some can offer low-cost amendments to boost remediation efficiency, while reducing treatment time compared to traditional fertilizer-only methods.

3.
Environ Sci Pollut Res Int ; 23(10): 9730-41, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26850095

RESUMO

The combination of biological and chemical oxidation processes is an interesting approach to remove ready, poor, and non-biodegradable compounds from complex industrial wastewaters. In this study, biofiltration followed by H2O2/UV oxidation (or microfiltration) and final reverse osmosis (RO) step was employed for tertiary treatment of an oil refinery wastewater. Biofiltration alone allowed obtaining total organic carbon (TOC), chemical oxygen demand (COD), UV absorbance at 254 nm (UV254), ammonium, and turbidity removal of around 46, 46, 23, 50, and 61 %, respectively. After the combined biological-chemical oxidation treatment, TOC and UV254 removal amounted to 88 and 79 %, respectively. Whereas, the treatment performance achieved with different UV lamp powers (55 and 95 W) and therefore distinct irradiance levels (26.8 and 46.3 mW/cm(2), respectively) were very similar and TOC and UV254 removal rates were highly affected by the applied C/H2O2 ratio. Silt density index (SDI) was effectively reduced by H2O2/UV oxidation, favoring further RO application. C/H2O2 ratio of 1:4, 55 W UV lamp, and 20-min oxidation reaction corresponded to the experimental condition which provided the best cost/benefit ratio for TOC, UV254, and SDI reduction from the biofilter effluent. The array of treatment processes proposed in this study has shown to be adequate for tertiary treatment of the oil refinery wastewater, ensuring the mitigation of membrane fouling problems and producing a final effluent which is suitable for reuse applications.


Assuntos
Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Compostos de Amônio/isolamento & purificação , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Filtração , Peróxido de Hidrogênio/química , Oxirredução , Raios Ultravioleta , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa