Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(21): e2301521120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186849

RESUMO

Channelrhodopsins with red-shifted absorption, rare in nature, are highly desired for optogenetics because light of longer wavelengths more deeply penetrates biological tissue. RubyACRs (Anion ChannelRhodopsins), a group of four closely related anion-conducting channelrhodopsins from thraustochytrid protists, are the most red-shifted channelrhodopsins known with absorption maxima up to 610 nm. Their photocurrents are large, as is typical of blue- and green-absorbing ACRs, but they rapidly decrease during continuous illumination (desensitization) and extremely slowly recover in the dark. Here, we show that long-lasting desensitization of RubyACRs results from photochemistry not observed in any previously studied channelrhodopsins. Absorption of a second photon by a photocycle intermediate with maximal absorption at 640 nm (P640) renders RubyACR bistable (i.e., very slowly interconvertible between two spectrally distinct forms). The photocycle of this bistable form involves long-lived nonconducting states (Llong and Mlong), formation of which is the reason for long-lasting desensitization of RubyACR photocurrents. Both Llong and Mlong are photoactive and convert to the initial unphotolyzed state upon blue or ultraviolet (UV) illumination, respectively. We show that desensitization of RubyACRs can be reduced or even eliminated by using ns laser flashes, trains of short light pulses instead of continuous illumination to avoid formation of Llong and Mlong, or by application of pulses of blue light between pulses of red light to photoconvert Llong to the initial unphotolyzed state.


Assuntos
Luz , Fótons , Channelrhodopsins , Ânions/metabolismo , Fotoquímica
2.
J Biol Chem ; 300(9): 107712, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39178949

RESUMO

Membrane transport proteins undergo multistep conformational changes to fulfill the transport of substrates across biological membranes. Substrate release and uptake are the most important events of these multistep reactions that accompany significant conformational changes. Thus, their relevant structural intermediates should be identified to better understand the molecular mechanism. However, their identifications have not been achieved for most transporters due to the difficulty of detecting the intermediates. Herein, we report the success of these identifications for a light-driven chloride transporter halorhodopsin (HR). We compared the time course of two flash-induced signals during a single transport cycle. One is a potential change of Cl--selective membrane, which enabled us to detect tiny Cl--concentration changes due to the Cl- release and the subsequent Cl--uptake reactions by HR. The other is the absorbance change of HR reflecting the sequential formations and decays of structural intermediates. Their comparison revealed not only the intermediates associated with the key reactions but also the presence of two additional Cl--binding sites on the Cl--transport pathways. The subsequent mutation studies identified one of the sites locating the protein surface on the releasing side. Thus, this determination also clarified the Cl--transport pathway from the initial binding site until the release to the medium.


Assuntos
Cloretos , Halobacteriaceae , Halorrodopsinas , Halorrodopsinas/metabolismo , Halorrodopsinas/química , Halorrodopsinas/genética , Cloretos/metabolismo , Cloretos/química , Halobacteriaceae/metabolismo , Halobacteriaceae/química , Halobacteriaceae/genética , Sítios de Ligação , Transporte de Íons , Transporte Biológico
3.
J Biol Chem ; 299(12): 105393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890784

RESUMO

Membrane transport proteins require a gating mechanism that opens and closes the substrate transport pathway to carry out unidirectional transport. The "gating" involves large conformational changes and is achieved via multistep reactions. However, these elementary steps have not been clarified for most transporters due to the difficulty of detecting the individual steps. Here, we propose these steps for the gate opening of the bacterial Na+ pump rhodopsin, which outwardly pumps Na+ upon illumination. We herein solved an asymmetric dimer structure of Na+ pump rhodopsin from the bacterium Indibacter alkaliphilus. In one protomer, the Arg108 sidechain is oriented toward the protein center and appears to block a Na+ release pathway to the extracellular (EC) medium. In the other protomer, however, this sidechain swings to the EC side and then opens the release pathway. Assuming that the latter protomer mimics the Na+-releasing intermediate, we examined the mechanism for the swing motion of the Arg108 sidechain. On the EC surface of the first protomer, there is a characteristic cluster consisting of Glu10, Glu159, and Arg242 residues connecting three helices. In contrast, this cluster is disrupted in the second protomer. Our experimental results suggested that this disruption is a key process. The cluster disruption induces the outward movement of the Glu159-Arg242 pair and simultaneously rotates the seventh transmembrane helix. This rotation resultantly opens a space for the swing motion of the Arg108 sidechain. Thus, cluster disruption might occur during the photoreaction and then trigger sequential conformation changes leading to the gate-open state.


Assuntos
Rodopsina , Membrana Celular/metabolismo , Transporte de Íons , Íons/metabolismo , Subunidades Proteicas/metabolismo , Rodopsina/química , Rodopsina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais
4.
J Biol Chem ; 296: 100792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019877

RESUMO

Membrane transport proteins undergo critical conformational changes during substrate uptake and release, as the substrate-binding site is believed to switch its accessibility from one side of the membrane to the other. Thus, at least two substrate-binding intermediates should appear during the process, that is, after uptake and before the release of the substrate. However, this view has not been verified for most transporters because of the difficulty in detecting short-lived intermediates. Here, we report real-time identification of these intermediates for the light-driven outward current-generating Na+-pump rhodopsin. We triggered the transport cycle of Na+-pump rhodopsin using a short laser pulse, and subsequent formation and decay of various intermediates was detected by time-resolved measurements of absorption changes. We used this method to analyze transport reactions and elucidated the sequential formation of the Na+-binding intermediates O1 and O2. Both intermediates exhibited red-shifted absorption spectra and generated transient equilibria with short-wavelength intermediates. The equilibria commonly shifted toward O1 and O2 with increasing Na+ concentration, indicating that Na+ is bound to these intermediates. However, these equilibria were formed independently; O1 reached equilibrium with preceding intermediates, indicating Na+ uptake on the cytoplasmic side. In contrast, O2 reached equilibrium with subsequent intermediates, indicating Na+ release on the extracellular side. Thus, there is an irreversible switch in "accessibility" during the O1 to O2 transition, which could represent one of the key processes governing unidirectional Na+ transport.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/química , Luz , Rodopsina/química , Sódio/química , Proteínas de Bactérias/metabolismo , Bacteroidetes/metabolismo , Rodopsina/metabolismo , Sódio/metabolismo
5.
J Biol Chem ; 297(3): 101013, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34329681

RESUMO

Many H+-pump rhodopsins conserve "H+ donor" residues in cytoplasmic (CP) half channels to quickly transport H+ from the CP medium to Schiff bases at the center of these proteins. For conventional H+ pumps, the donors are conserved as Asp or Glu but are replaced by Lys in the minority, such as Exiguobacterium sibiricum rhodopsin (ESR). In dark states, carboxyl donors are protonated, whereas the Lys donor is deprotonated. As a result, carboxyl donors first donate H+ to the Schiff bases and then capture the other H+ from the medium, whereas the Lys donor first captures H+ from the medium and then donates it to the Schiff base. Thus, carboxyl and Lys-type H+ pumps seem to have different mechanisms, which are probably optimized for their respective H+-transfer reactions. Here, we examined these differences via replacement of donor residues. For Asp-type deltarhodopsin (DR), the embedded Lys residue distorted the protein conformation and did not act as the H+ donor. In contrast, for Glu-type proteorhodopsin (PR) and ESR, the embedded residues functioned well as H+ donors. These differences were further examined by focusing on the activation volumes during the H+-transfer reactions. The results revealed essential differences between archaeal H+ pump (DR) and eubacterial H+ pumps PR and ESR. Archaeal DR requires significant hydration of the CP channel for the H+-transfer reactions; however, eubacterial PR and ESR require the swing-like motion of the donor residue rather than hydration. Given this common mechanism, donor residues might be replaceable between eubacterial PR and ESR.


Assuntos
Luz , Rodopsina/química , Bases de Schiff/química , Substituição de Aminoácidos , Conformação Proteica , Prótons , Reprodutibilidade dos Testes
6.
Chemistry ; 24(46): 12084-12092, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30048017

RESUMO

By comparing two-dimensional electronic spectroscopy (2DES) and Pump-Probe (PP) measurements on xanthorhodopsin (XR) and reduced-xanthorhodopsin (RXR) complexes, the ultrafast carotenoid-to-retinal energy transfer pathway is revealed, at very early times, by an excess of signal amplitude at the associated cross-peak and by the carotenoid bleaching reduction due to its ground state recovery. The combination of the measured 2DES and PP spectroscopic data with theoretical modelling allows a clear identification of the main experimental signals and a comprehensive interpretation of their origin and dynamics. The remarkable velocity of the energy transfer, despite the non-negligible energy separation between the two chromophores, and the analysis of the underlying transport mechanism, highlight the role played by the ground state carotenoid vibrations in assisting the process.

7.
J Biol Chem ; 291(1): 355-62, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26578511

RESUMO

Light-driven ion-pumping rhodopsins are widely distributed in microorganisms and are now classified into the categories of outward H(+) and Na(+) pumps and an inward Cl(-) pump. These different types share a common protein architecture and utilize the photoisomerization of the same chromophore, retinal, to evoke photoreactions. Despite these similarities, successful pump-to-pump conversion had been confined to only the H(+) pump bacteriorhodopsin, which was converted to a Cl(-) pump in 1995 by a single amino acid replacement. In this study we report the first success of the reverse conversion from a Cl(-) pump to a H(+) pump. A novel microbial rhodopsin (MrHR) from the cyanobacterium Mastigocladopsis repens functions as a Cl(-) pump and belongs to a cluster that is far distant from the known Cl(-) pumps. With a single amino acid replacement, MrHR is converted to a H(+) pump in which dissociable residues function almost completely in the H(+) relay reactions. MrHR most likely evolved from a H(+) pump, but it has not yet been highly optimized into a mature Cl(-) pump.


Assuntos
Bacteriorodopsinas/metabolismo , Cloretos/metabolismo , Cianobactérias/metabolismo , Bombas de Próton/metabolismo , Adaptação Fisiológica/efeitos da radiação , Bacteriorodopsinas/química , Cianobactérias/efeitos da radiação , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Isomerismo , Cinética , Luz , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Filogenia , Retinaldeído/química , Retinaldeído/metabolismo , Análise Espectral
8.
J Biol Chem ; 288(29): 21254-21265, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23696649

RESUMO

A lysine instead of the usual carboxyl group is in place of the internal proton donor to the retinal Schiff base in the light-driven proton pump of Exiguobacterium sibiricum (ESR). The involvement of this lysine in proton transfer is indicated by the finding that its substitution with alanine or other residues slows reprotonation of the Schiff base (decay of the M intermediate) by more than 2 orders of magnitude. In these mutants, the rate constant of the M decay linearly decreases with a decrease in proton concentration, as expected if reprotonation is limited by the uptake of a proton from the bulk. In wild type ESR, M decay is biphasic, and the rate constants are nearly pH-independent between pH 6 and 9. Proton uptake occurs after M formation but before M decay, which is especially evident in D2O and at high pH. Proton uptake is biphasic; the amplitude of the fast phase decreases with a pKa of 8.5 ± 0.3, which reflects the pKa of the donor during proton uptake. Similarly, the fraction of the faster component of M decay decreases and the slower one increases, with a pKa of 8.1 ± 0.2. The data therefore suggest that the reprotonation of the Schiff base in ESR is preceded by transient protonation of an initially unprotonated donor, which is probably the ε-amino group of Lys-96 or a water molecule in its vicinity, and it facilitates proton delivery from the bulk to the reaction center of the protein.


Assuntos
Proteínas de Bactérias/metabolismo , Halobacterium/metabolismo , Luz , Lisina/metabolismo , Prótons , Bases de Schiff/metabolismo , Absorção/efeitos da radiação , Alanina/genética , Substituição de Aminoácidos/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/efeitos da radiação , Óxido de Deutério/metabolismo , Escherichia coli/metabolismo , Halobacterium/efeitos dos fármacos , Halobacterium/efeitos da radiação , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos da radiação , Cinética , Lipossomos/metabolismo , Lisina/genética , Proteínas Mutantes/metabolismo , Azida Sódica/farmacologia , Fatores de Tempo
9.
J Mol Biol ; 436(5): 168298, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802216

RESUMO

Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is the first discovered natural light-gated ion channel that shows higher selectivity to K+ than to Na+ and therefore is used to silence neurons with light (optogenetics). Replacement of the conserved cysteine residue in the transmembrane helix 3 (Cys110) with alanine or threonine results in a >1,000-fold decrease in the channel closing rate. The phenotype of the corresponding mutants in channelrhodopsin 2 is attributed to breaking of a specific interhelical hydrogen bond (the "DC gate"). Unlike CrChR2 and other ChRs with long distance "DC gates", the HcKCR1 structure does not reveal any hydrogen bonding partners to Cys110, indicating that the mutant phenotype is likely caused by disruption of direct interaction between this residue and the chromophore. In HcKCR1_C110A, fast photochemical conversions corresponding to channel gating were followed by dramatically slower absorption changes. Full recovery of the unphotolyzed state in HcKCR1_C110A was extremely slow with two time constants 5.2 and 70 min. Analysis of the light-minus-dark difference spectra during these slow processes revealed accumulation of at least four spectrally distinct blue light-absorbing photocycle intermediates, L, M1 and M2, and a UV light-absorbing form, typical of bacteriorhodopsin-like channelrhodopsins from cryptophytes. Our results contribute to better understanding of the mechanistic links between the chromophore photochemistry and channel conductance, and provide the basis for using HcKCR1_C110A as an optogenetic tool.


Assuntos
Channelrhodopsins , Ativação do Canal Iônico , Optogenética , Rhinosporidium , Channelrhodopsins/química , Channelrhodopsins/genética , Luz , Ativação do Canal Iônico/genética , Mutação , Cisteína/química , Cisteína/genética , Conformação Proteica em alfa-Hélice , Humanos , Células HEK293 , Sequência Conservada , Substituição de Aminoácidos
10.
Methods Mol Biol ; 2501: 169-179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35857228

RESUMO

Absorption of light quanta by microbial rhodopsins (or more generally by retinal proteins) leads to conversion of the light energy to the generation of transmembrane anion or cation gradients, optically gated channels, or signal states in photoreception. All these processes are accompanied by series of reaction steps with half-times ranging from femtoseconds to seconds or longer (photocycles). The number of these steps and their kinetic and spectral properties are the essential experimental information required for determination of the mechanism of light energy conversion in these proteins. Here we describe experiments and data analysis providing this information.


Assuntos
Proteínas , Rodopsinas Microbianas , Cinética , Rodopsinas Microbianas/química , Análise Espectral
11.
Biophys Physicobiol ; 18: 317-326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087698

RESUMO

Microbial rhodopsin is a ubiquitous membrane protein in unicellular microorganisms. Similar to animal rhodopsin, this protein consists of seven transmembrane helices and the chromophore retinal. However, unlike animal rhodopsin, microbial rhodopsin acts as not only a photosignal receptor but also a light-activated ion transporter and light-switchable enzyme. In this article, the third Cl- pump microbial rhodopsin will be introduced. The physiological importance of Cl- pumps has not been clarified. Despite this, their mechanisms, especially that of the first Cl- pump halorhodopsin (HR), have been studied to characterize them as model proteins for membrane anion transporters. The third Cl- pump defines a phylogenetic cluster distinct from other microbial rhodopsins. However, this Cl- pump conserves characteristic residues for not only the Cl- pump HR but also the H+ pump bacteriorhodopsin (BR). Reflecting close similarity to BR, the third Cl- pump begins to pump H+ outwardly after single amino acid replacement. This mutation activates several residues that have no roles in the original Cl- pump function but act as important H+ relay residues in the H+ pump mutant. Thus, the third Cl- pump might be the model protein for functional differentiation because this rhodopsin seems to be the Cl- pump occurring immediately after functional differentiation from the BR-type H+ pump.

12.
Int J Biol Macromol ; 118(Pt B): 1942-1947, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30017983

RESUMO

Bacteriorhodopsin (BR) is an exciting photo-active retinal protein with many potential industrial applications. In this study, BR from the extremely halophilic archaeon Haloarcula marismortui (HmBR) was purified successfully using aqueous two phase extraction method. Absorption spectroscopy analysis showed maximum absorption peak of HmBR retinal protein (λmax) at 415 nm. The purified HmBR was visualized by SDS-PAGE, with a subunit molecular mass of 27 kDa, and its identity was confirmed by resonance Raman spectroscopy, Fourier transform infrared spectroscopy and atomic force microscopy. The effect of pH and salt concentration on the absorption spectrum of HmBR was evaluated. Red-shifted in λmax of HmBR was recorded at acidic condition (pH 5) and HmBR showed remarkable optical activity under high salinity condition. The photoelectric activity of HmBR was evaluated by measuring the DC-voltage generated from HmBR coated on indium tin oxide (ITO) glass when light illumination was applied.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Haloarcula marismortui/citologia , Luz , Bacteriorodopsinas/isolamento & purificação , Concentração de Íons de Hidrogênio , Sais/farmacologia
13.
Front Mol Biosci ; 2: 38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217670

RESUMO

Among optogenetic tools, channelrhodopsins, the light gated ion channels of the plasma membrane from green algae, play the most important role. Properties like channel selectivity, timing parameters or color can be influenced by the exchange of selected amino acids. Although widely used, in the field of neurosciences for example, there is still little known about their photocycles and the mechanism of ion channel gating and conductance. One of the preferred methods for these studies is infrared spectroscopy since it allows observation of proteins and their function at a molecular level and in near-native environment. The absorption of a photon in channelrhodopsin leads to retinal isomerization within femtoseconds, the conductive states are reached in the microsecond time scale and the return into the fully dark-adapted state may take more than minutes. To be able to cover all these time regimes, a range of different spectroscopical approaches are necessary. This mini-review focuses on time-resolved applications of the infrared technique to study channelrhodopsins and other light triggered proteins. We will discuss the approaches with respect to their suitability to the investigation of channelrhodopsin and related proteins.

14.
J R Soc Interface ; 10(84): 20130197, 2013 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-23676894

RESUMO

In nature, biological systems gradually evolve through complex, algorithmic processes involving mutation and differential selection. Evolution has optimized biological macromolecules for a variety of functions to provide a comparative advantage. However, nature does not optimize molecules for use in human-made devices, as it would gain no survival advantage in such cooperation. Recent advancements in genetic engineering, most notably directed evolution, have allowed for the stepwise manipulation of the properties of living organisms, promoting the expansion of protein-based devices in nanotechnology. In this review, we highlight the use of directed evolution to optimize photoactive proteins, with an emphasis on bacteriorhodopsin (BR), for device applications. BR, a highly stable light-activated proton pump, has shown great promise in three-dimensional optical memories, real-time holographic processors and artificial retinas.


Assuntos
Bacteriorodopsinas/genética , Bioengenharia/métodos , Evolução Molecular Direcionada , Eletrônica Médica/métodos , Nanotecnologia/métodos , Bacteriorodopsinas/química , Dispositivos de Armazenamento em Computador , Holografia/métodos , Humanos , Modelos Biológicos , Estrutura Molecular , Mutagênese , Próteses Visuais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa