Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Bioorg Med Chem ; 82: 117214, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36913882

RESUMO

Retinoic acid (RA, 1), an oxidized form of vitamin A, binds to retinoic acid receptors (RAR) and retinoid X receptors (RXR) to regulate gene expression and has important functions such as cell proliferation and differentiation. Synthetic ligands regarding RAR and RXR have been devised for the treatment of various diseases, particularly promyelocytic leukemia, but their side effects have led to the development of new, less toxic therapeutic agents. Fenretinide (4-HPR, 2), an aminophenol derivative of RA, exhibits potent antiproliferative activity without binding to RAR/RXR, but its clinical trial was discontinued due to side effects of impaired dark adaptation. Assuming that the cyclohexene ring of 4-HPR is the cause of the side effects, methylaminophenol was discovered through structure-activity relationship research, and p-dodecylaminophenol (p-DDAP, 3), which has no side effects or toxicity and is effective against a wide range of cancers, was developed. Therefore, we thought that introducing the motif carboxylic acid found in retinoids, could potentially enhance the anti-proliferative effects. Introducing chain terminal carboxylic functionality into potent p-alkylaminophenols significantly attenuated antiproliferative potencies, while a similar structural modification of weakly potent p-acylaminophenols enhanced growth inhibitory potencies. However, conversion of the carboxylic acid moieties to their methyl esters completely abolished the cell growth inhibitory effects of both series. Insertion of a carboxylic acid moiety, which is important for binding to RA receptors, abolishes the action of p-alkylaminophenols, but enhances the action of p-acylaminophenols. This suggests that the amido functionality may be important for the growth inhibitory effects of the carboxylic acids.


Assuntos
Antineoplásicos , Fenretinida , Retinoides/farmacologia , Retinoides/química , Aminofenóis , Antineoplásicos/farmacologia , Tretinoína/farmacologia , Receptores X de Retinoides
2.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003656

RESUMO

Retinoic acid (RA) exerts pleiotropic effects during neural development and regulates homeostasis in the adult human brain. The RA signal may be transduced through RXR (retinoid-X receptor)-non-permissive RA receptor/RXR heterodimers or through RXR-permissive RXR heterodimers. The significance of RA signaling in malignant brain tumors such as glioblastoma multiforme (GBM) and gliosarcoma (GS) is poorly understood. In particular, the impact RA has on the proliferation, survival, differentiation, or metabolism of GBM- or GS-derived cells with features of stem cells (SLGCs) remains elusive. In the present manuscript, six GBM- and two GS-derived SLGC lines were analyzed for their responsiveness to RAR- and RXR-selective agonists. Inhibition of proliferation and initiation of differentiation were achieved with a RAR-selective pan-agonist in a subgroup of SLGC lines, whereas RXR-selective pan-agonists (rexinoids) supported proliferation in most SLGC lines. To decipher the RAR-dependent and RAR-independent effects of RXR, the genes encoding the RAR or RXR isotypes were functionally inactivated by CRISPR/Cas9-mediated editing in an IDH1-/p53-positive SLGC line with good responsiveness to RA. Stemness, differentiation capacity, and growth behavior were preserved after editing. Taken together, this manuscript provides evidence about the positive impact of RAR-independent RXR signaling on proliferation, survival, and tumor metabolism in SLGCs.


Assuntos
Glioma , Receptores do Ácido Retinoico , Adulto , Humanos , Receptores do Ácido Retinoico/metabolismo , Retinoides/farmacologia , Tretinoína/farmacologia , Receptores X de Retinoides , Glioma/genética , Células-Tronco/metabolismo
3.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239961

RESUMO

HNF4α, a member of the nuclear receptor superfamily, regulates the genes involved in lipid and glucose metabolism. The expression of the RARß gene in the liver of HNF4α knock-out mice was higher versus wildtype controls, whereas oppositely, RARß promoter activity was 50% reduced by the overexpression of HNF4α in HepG2 cells, and treatment with retinoic acid (RA), a major metabolite of vitamin A, increased RARß promoter activity 15-fold. The human RARß2 promoter contains two DR5 and one DR8 binding motifs, as RA response elements (RARE) proximal to the transcription start site. While DR5 RARE1 was previously reported to be responsive to RARs but not to other nuclear receptors, we show here that mutation in DR5 RARE2 suppresses the promoter response to HNF4α and RARα/RXRα. Mutational analysis of ligand-binding pocket amino acids shown to be critical for fatty acid (FA) binding indicated that RA may interfere with interactions of FA carboxylic acid headgroups with side chains of S190 and R235, and the aliphatic group with I355. These results could explain the partial suppression of HNF4α transcriptional activation toward gene promoters that lack RARE, including APOC3 and CYP2C9, while conversely, HNF4α may bind to RARE sequences in the promoter of the genes such as CYP26A1 and RARß, activating these genes in the presence of RA. Thus, RA could act as either an antagonist towards HNF4α in genes lacking RAREs, or as an agonist for RARE-containing genes. Overall, RA may interfere with the function of HNF4α and deregulate HNF4α targets genes, including the genes important for lipid and glucose metabolism.


Assuntos
Fator 4 Nuclear de Hepatócito , Hepatócitos , Receptores do Ácido Retinoico , Tretinoína , Animais , Humanos , Camundongos , Glucose , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Lipídeos , Receptor alfa de Ácido Retinoico/genética , Tretinoína/farmacologia , Receptores do Ácido Retinoico/genética
4.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563205

RESUMO

There is a need for agents that eliminate cancer stem cells, which sustain cancer and are also largely responsible for disease relapse and metastasis. Conventional chemotherapeutics and radiotherapy are often highly effective against the bulk of cancer cells, which are proliferating, but spare cancer stem cells. Therapeutics that target cancer stem cells may also provide a bona fide cure for cancer. There are two rationales for targeting the retinoic acid receptor (RAR)γ. First, RARγ is expressed selectively within primitive cells. Second, RARγ is a putative oncogene for a number of human cancers, including cases of acute myeloid leukemia, cholangiocarcinoma, and colorectal, renal and hepatocellular carcinomas. Prostate cancer cells depend on active RARγ for their survival. Antagonizing all RARs caused necroptosis of prostate and breast cancer stem cell-like cells, and the cancer stem cells that gave rise to neurospheres from pediatric patients' primitive neuroectodermal tumors and an astrocytoma. As tested for prostate cancer, antagonizing RARγ was sufficient to drive necroptosis. Achieving cancer-selectively is a longstanding paradigm for developing new treatments. The normal prostate epithelium was less sensitive to the RARγ antagonist and pan-RAR antagonist than prostate cancer cells, and fibroblasts and blood mononuclear cells were insensitive. The RARγ antagonist and pan-RAR antagonist are promising new cancer therapeutics.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias da Próstata , Carcinoma Hepatocelular/patologia , Criança , Humanos , Neoplasias Hepáticas/patologia , Masculino , Necroptose , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Receptores do Ácido Retinoico , Tretinoína
5.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361629

RESUMO

Retinoic acid (RA) plays important roles in various biological processes in animals. RA signaling is mediated by two types of nuclear receptors, namely retinoic acid receptor (RAR) and retinoid x receptor (RXR), which regulate gene expression by binding to retinoic acid response elements (RAREs) in the promoters of target genes. Here, we explored the effect of all-trans retinoic acid (ATRA) on the Pacific oyster Crassostera gigas at the transcriptome level. A total of 586 differentially expressed genes (DEGs) were identified in C. gigas upon ATRA treatment, with 309 upregulated and 277 downregulated genes. Bioinformatic analysis revealed that ATRA affects the development, metabolism, reproduction, and immunity of C. gigas. Four tyrosinase genes, including Tyr-6 (LOC105331209), Tyr-9 (LOC105346503), Tyr-20 (LOC105330910), and Tyr-12 (LOC105320007), were upregulated by ATRA according to the transcriptome data and these results were verified by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. In addition, increased expression of Tyr (a melanin-related TYR gene in C. gigas) and Tyr-2 were detected after ATRA treatment. The yeast one-hybrid assay revealed the DNA-binding activity of the RA receptors CgRAR and CgRXR, and the interaction of CgRAR with RARE present in the Tyr-2 promoter. These results provide evidence for the further studies on the role of ATRA and the mechanism of RA receptors in mollusks.


Assuntos
Crassostrea , Tretinoína , Animais , Tretinoína/farmacologia , Tretinoína/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Expressão Gênica , Regulação da Expressão Gênica
6.
Am J Physiol Renal Physiol ; 320(5): F683-F692, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645319

RESUMO

Retinoid acid (RA) is synthesized mainly in the liver and has multiple functions in development, cell differentiation and proliferation, and regulation of inflammation. RA has been used to treat multiple diseases, such as cancer and skin disorders. The kidney is a major organ for RA metabolism, which is altered in the diseased condition. RA is known to have renal-protective effects in multiple animal models of kidney disease. RA has been shown to ameliorate podocyte injury through induction of expression of differentiation markers and regeneration of podocytes from its progenitor cells in animal models of kidney disease. The effects of RA in podocytes are mediated mainly by activation of the cAMP/PKA pathway via RA receptor-α (RARα) and activation of its downstream transcription factor, Kruppel-like factor 15. Screening of RA signaling molecules in human kidney disease has revealed RAR responder protein 1 (RARRES1) as a risk gene for glomerular disease progression. RARRES1, a podocyte-specific growth arrest gene, is regulated by high doses of both RA and TNF-α. Mechanistically, RARRES1 is cleaved by matrix metalloproteinases to generate soluble RARRES1, which then induces podocyte apoptosis through interaction with intracellular RIO kinase 1. Therefore, a high dose of RA may induce podocyte toxicity through upregulation of RARRES1. Based on the current findings, to avoid potential side effects, we propose three strategies to develop future therapies of RA for glomerular disease: 1) develop RARα- and Kruppel-like factor 15-specific agonists, 2) use the combination of a low dose of RAR-α agonist with phosphodiesterase 4 inhibitors, and 3) use a combination of RARα agonist with RARRES1 inhibitors.NEW & NOTEWORTHY Retinoic acid (RA) exerts pleotropic cellular effects, including induction of cell differentiation while inhibiting proliferation and inflammation. These effects are mediated by both RA responsive element-dependent or -independent pathways. In kidneys, RA confers renoprotection by signaling through podocyte RA receptor (RAR)α and activation of cAMP/PKA/Kruppel-like factor 15 pathway to promote podocyte differentiation. Nevertheless, in kidney disease settings, RA can also promote podocyte apoptosis and loss through downstream expression of RAR responder protein 1, a recently described risk factor for glomerular disease progression. These disparate roles of RA underscore the complexity of its effects in kidney homeostasis and disease, and a need to target specific RA-mediated pathways for effective therapeutic treatments against kidney disease progression.


Assuntos
Nefropatias/metabolismo , Rim/metabolismo , Proteínas de Membrana/metabolismo , Receptores do Ácido Retinoico/metabolismo , Tretinoína/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Nefropatias/fisiopatologia , Receptores do Ácido Retinoico/agonistas , Transdução de Sinais , Tretinoína/efeitos adversos
7.
Molecules ; 26(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477997

RESUMO

(1) Background and Aim: All-trans retinoic acid (ATRA) induces differentiation and inhibits growth of many cancer cells. However, resistance develops rapidly prompting the urgent need for new synthetic and potent derivatives. EC19 and EC23 are two synthetic retinoids with potent stem cell neuro-differentiation activity. Here, these compounds were screened for their in vitro antiproliferative and cytotoxic activity using an array of different cancer cell lines. (2) Methods: MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, AV/PI (annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)), cell cycle analysis, immunocytochemistry, gene expression analysis, Western blotting, measurement of glutamate and total antioxidant concentrations were recruited. (3) Results: HepG2, Caco-2, and MCF-7 were the most sensitive cell lines; HepG2 (ATRA; 36.2, EC19; 42.2 and EC23; 0.74 µM), Caco-2 (ATRA; 58.0, EC19; 10.8 and EC23; 14.7 µM) and MCF-7 (ATRA; 99.0, EC19; 9.4 and EC23; 5.56 µM). Caco-2 cells were selected for further biochemical investigations. Isobologram analysis revealed the combined synergistic effects with 5-fluorouracil with substantial reduction in IC50. All retinoids induced apoptosis but EC19 had higher potency, with significant cell cycle arrest at subG0-G1, -S and G2/M phases, than ATRA and EC23. Moreover, EC19 reduced cellular metastasis in a transwell invasion assay due to overexpression of E-cadherin, retinoic acid-induced 2 (RAI2) and Werner (WRN) genes. (4) Conclusion: The present study suggests that EC-synthetic retinoids, particularly EC19, can be effective, alone or in combinations, for potential anticancer activity to colorectal cancer. Further in vivo studies are recommended to pave the way for clinical applications.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Retinoides/síntese química , Retinoides/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Técnicas de Química Sintética , Humanos , Retinoides/química
8.
Clin Genet ; 96(4): 371-375, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343737

RESUMO

Retinoid acid receptors (RAR) are transcription factors that bind retinoic acid (RA), a metabolite of vitamin A. RARs are composed of three subunits encoded by RARA, RARB and RARG. In humans, RARB defects cause syndromic microphthalmia. So far, no germline pathogenic variants have been identified in RARA or RARG. We describe a girl with a de novo mutation NM_000964 c.826C > T (p.Arg276Trp) in RARA with symptoms overlapping those described in RARB patients (coloboma, muscular hypotonia, dilated pulmonary artery, ectopic kidney). RARA Arg276 residue is functionally important, as it was previously shown that its substitution for Ala or Gln causes a 50- or 21-fold impairment of RA binding, respectively. Moreover, in leukemic cells, the p.Arg611Trp mutation in a chimeric PML/RARA gene (corresponding to the RARA p.Arg276Trp detected in our patient) conferred resistance to therapy by decreasing binding of all-trans RA. The functional effect of RARA p.Arg276Trp was further confirmed by in silico modeling which showed that binding of RA by the Trp276 variant was similarly defective as in the deleterious model Ala276 mutant. We propose that RARA p.Arg276Trp causes the disease by affecting RA interaction with the RARA receptor.


Assuntos
Aminoácidos/metabolismo , Coloboma/genética , Coloboma/metabolismo , Heterozigoto , Mutação , Receptor alfa de Ácido Retinoico/genética , Tretinoína/metabolismo , Criança , Coloboma/diagnóstico , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Modelos Moleculares , Linhagem , Fenótipo , Receptor alfa de Ácido Retinoico/química , Relação Estrutura-Atividade
9.
Crit Rev Food Sci Nutr ; 59(sup1): S71-S80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30277803

RESUMO

All-trans retinoic acid (ATRA), an active metabolite of vitamin A, plays important roles in cell proliferation, cell differentiation, apoptosis, and embryonic development. The effects of ATRA are mediated by nuclear retinoid receptors as well as non-genomic signal pathway, such as MAPK and PKA. The great success of differentiation therapy with ATRA in acute promyelocytic leukemia (APL) not only improved the prognosis of APL but also spurred the studies of ATRA in the treatment of other tumors. Since the genetic and physiopathological simplicity of APL is not common in human malignancies, the combination of ATRA with other agents (chemotherapy, epigenetic modifiers, and arsenic trioxide, etc) had been extensively investigated in a variety of tumors. In this review, we will discuss in details about ATRA and its role in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Apoptose/efeitos dos fármacos , Trióxido de Arsênio , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Tratamento Farmacológico , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Receptores do Ácido Retinoico , Transdução de Sinais/efeitos dos fármacos
10.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207999

RESUMO

The family of retinoic acid receptors (RARs: RARα, -ß, and -γ) has remarkable pleiotropy characteristics, since the retinoic acid/RARs pathway is involved in numerous biological processes not only during embryonic development, but also in the postnatal phase and during adulthood. In this review, we trace the roles of RA/RARs signaling in the immune system (where this pathway has both an immunosuppressive role or is involved in the inflammatory response), in hematopoiesis (enhancing hematopoietic stem cell self-renewal, progenitor cells differentiation or maintaining the bone marrow microenvironment homeostasis), and in bone remodeling (where this pathway seems to have controversial effects on bone formation or osteoclast activation). Moreover, in this review is shown the involvement of RAR genes in multiple chromosomal rearrangements generating different fusion genes in hematological neoplasms, with a particular focus on acute promyelocytic leukemia and its variant subtypes. The effect of different RARs fusion proteins on leukemic transformation, on patients' outcome, and on therapy response is also discussed.


Assuntos
Rearranjo Gênico , Leucemia Promielocítica Aguda/metabolismo , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Tretinoína/metabolismo , Animais , Pleiotropia Genética , Humanos , Leucemia Promielocítica Aguda/genética , Receptores do Ácido Retinoico/genética
11.
Int J Mol Sci ; 18(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635660

RESUMO

Vitamin D receptor (VDR) is present in multiple blood cells, and the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) is essential for the proper functioning of the immune system. The role of retinoic acid receptor α (RARα) in hematopoiesis is very important, as the fusion of RARα gene with PML gene initiates acute promyelocytic leukemia where differentiation of the myeloid lineage is blocked, followed by an uncontrolled proliferation of leukemic blasts. RARα takes part in regulation of VDR transcription, and unliganded RARα acts as a transcriptional repressor to VDR gene in acute myeloid leukemia (AML) cells. This is why we decided to examine the effects of the combination of 1,25D and all-trans-retinoic acid (ATRA) on VDR gene expression in normal human and murine blood cells at various steps of their development. We tested the expression of VDR and regulation of this gene in response to 1,25D or ATRA, as well as transcriptional activities of nuclear receptors VDR and RARs in human and murine blood cells. We discovered that regulation of VDR expression in humans is different from in mice. In human blood cells at early stages of their differentiation ATRA, but not 1,25D, upregulates the expression of VDR. In contrast, in murine blood cells 1,25D, but not ATRA, upregulates the expression of VDR. VDR and RAR receptors are present and transcriptionally active in blood cells of both species, especially at early steps of blood development.


Assuntos
Células Sanguíneas/metabolismo , Regulação da Expressão Gênica , Receptores de Calcitriol/genética , Tretinoína/metabolismo , Vitamina D/análogos & derivados , Animais , Células Sanguíneas/citologia , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Células HL-60 , Hematopoese , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ácido Retinoico 4 Hidroxilase/genética , Vitamina D/metabolismo
12.
J Neurosci ; 35(43): 14467-75, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26511239

RESUMO

The mammalian striatum controls sensorimotor and psychoaffective functions through coordinated activities of its two striatonigral and striatopallidal output pathways. Here we show that retinoic acid receptor ß (RARß) controls development of a subpopulation of GABAergic, Gad65-positive striatonigral projection neurons. In Rarb(-/-) knock-out mice, concomitant reduction of Gad65, dopamine receptor D1 (Drd1), and substance P expression at different phases of prenatal development was associated with reduced number of Drd1-positive cells at birth, in contrast to normal numbers of striatopallidal projection neurons expressing dopamine receptor D2. Fate mapping using BrdU pulse-chase experiments revealed that such deficits may originate from compromised proliferation of late-born striosomal neurons and lead to decreased number of Drd1-positive cells retaining BrdU in postnatal day (P) 0 Rarb(-/-) striatum. Reduced expression of Fgf3 in the subventricular zone of the lateral ganglionic eminence (LGE) at embryonic day 13.5 may underlie such deficits by inducing premature differentiation of neuronal progenitors, as illustrated by reduced expression of the proneural gene Ascl1 (Mash1) and increased expression of Meis1, a marker of postmitotic LGE neurons. In agreement with a critical role of FGF3 in this control, reduced number of Ascl1-expressing neural progenitors, and a concomitant increase of Meis1-expressing cells, were observed in primary cell cultures of Rarb(-/-) LGE. This defect was normalized by addition of fibroblast growth factor (FGF). Such data point to role of Meis1 in striatal development, also supported by reduced neuronal differentiation in the LGE of Meis1(-/-) embryos. Our data unveil a novel mechanism of development of striatonigral projection neurons involving retinoic acid and FGF, two signals required for positioning the boundaries of Meis1-expressing cells.


Assuntos
Corpo Estriado/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Proteínas de Homeodomínio/fisiologia , Proteínas de Neoplasias/fisiologia , Neurônios/fisiologia , Receptores do Ácido Retinoico/fisiologia , Substância Negra/fisiologia , Animais , Antimetabólitos/farmacologia , Bromodesoxiuridina/farmacologia , Corpo Estriado/citologia , Corpo Estriado/embriologia , Feminino , Fator 3 de Crescimento de Fibroblastos/metabolismo , Glutamato Descarboxilase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Meis1 , Neurogênese/genética , Neurogênese/fisiologia , Gravidez , Cultura Primária de Células , Receptores de Dopamina D1/metabolismo , Substância Negra/citologia , Substância Negra/embriologia
13.
Stem Cells ; 33(5): 1390-404, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25546009

RESUMO

We previously demonstrated that coexpressing retinoic acid (RA) receptor gamma and liver receptor homolog-1 (LRH1 or NR5A2) with OCT4, MYC, KLF4, and SOX2 (4F) rapidly reprograms mouse embryonic fibroblast cells (MEFs) into induced pluripotent stem cells (iPSCs). Here, we further explore the role of RA in reprogramming and report that the six factors (6F) efficiently and directly reprogram MEFs into integration-free iPSCs in defined medium (N2B27) in the absence of feeder cells. Through genetic and chemical approaches, we find that RA signalling is essential, in a highly dose-sensitive manner, for MEF reprogramming. The removal of exogenous RA from N2B27, the inhibition of endogenous RA synthesis or the expression of a dominant-negative form of RARA severely impedes reprogramming. By contrast, supplementing N2B27 with various retinoids substantially boosts reprogramming. In addition, when coexpressed with LRH1, RA receptors (RARs) can promote reprogramming in the absence of both exogenous and endogenously synthesized RA. Remarkably, the reprogramming of epiblast stem cells into embryonic stem cell-like cells also requires low levels of RA, which can modulate Wnt signalling through physical interactions of RARs with ß-catenin. These results highlight the important functions of RA signalling in reprogramming somatic cells and primed stem cells to naïve pluripotency. Stem Cells 2015;33:1390-1404.


Assuntos
Reprogramação Celular , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Camadas Germinativas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Animais , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Ligantes , Camundongos , Fatores de Transcrição , Tretinoína/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Receptor gama de Ácido Retinoico
14.
Mol Carcinog ; 54(10): 1110-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24838400

RESUMO

It has been established that retinoids exert some of their effects on cell differentiation and malignant phenotype reversion through the interaction with different members of the protein kinase C (PKC) family. Till nowadays the nature and extension of this interaction is not well understood. Due to the cytostatic and differentiating effects of retinoids, in the present study we propose to evaluate whether the crosstalk between the retinoid system and the PKC pathway could become a possible target for breast cancer treatment. We could determine that ATRA (all-trans retinoic) treatment showed a significant growth inhibition due to (G1 or G2) cell cycle arrest both in LM3 and SKBR3, a murine and human mammary cell line respectively. ATRA also induced a remarkable increase in PKCα and PKCδ expression and activity. Interestingly, the pharmacological inhibition of these two PKC isoforms prevented the activation of retinoic acid receptors (RARs) by ATRA, indicating that both PKC isoforms are required for RARs activation. Moreover, PKCδ inhibition also impaired ATRA-induced RARα translocation to the nucleus. In vivo assays revealed that a combined treatment using ATRA and PKCα inhibitors prevented lung metastatic dissemination in an additive way. Our results clearly indicate that ATRA modulates the expression and activity of different PKCs. Besides inducing cell arrest, the activity of both PKC is necessary for the induction of the retinoic acid system. The combined ATRA and PKCα inhibitors could be an option for the hormone-independent breast cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Receptores do Ácido Retinoico/metabolismo , Tretinoína/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-delta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Células Tumorais Cultivadas
15.
J Comput Aided Mol Des ; 29(10): 975-88, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26384496

RESUMO

Retinoid X receptors (RXRs) are ligand-controlled transcription factors which heterodimerize with other nuclear receptors to regulate gene transcriptions associated with crucial biological events. 9-cis retinoic acid (9cRA), which transactivates RXRs, is believed to be an endogenous RXR ligand. All-trans retinoic acid (ATRA) is a natural ligand for retinoic acid receptors (RARs), which heterodimerize with RXRs. Although the concentration of 9cRA in tissues is very low, ATRA is relatively abundant and some reports show that ATRA activates RXRs. We computationally studied the possibility of ATRA binding to RXRs using two different docking methods with our developed programs to assess the binding affinities of naturally occurring retinoids. The simulations showed good correlations to the reported binding affinities of these molecules for RXRs and RARs.


Assuntos
Simulação de Acoplamento Molecular , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/metabolismo , Tretinoína/metabolismo , Alitretinoína , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Isotretinoína/química , Isotretinoína/metabolismo , Ligantes , Camundongos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Receptores do Ácido Retinoico/química , Reprodutibilidade dos Testes , Receptores X de Retinoides/química , Tretinoína/química
16.
J Recept Signal Transduct Res ; 34(6): 484-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24846581

RESUMO

All-trans retinoic acid (ATRA) plays an essential role in cell survival and differentiation by binding to retinoic acid receptors (RARs), including RAR-α, RAR-ß, and RAR-γ. Injury to podocytes is the most frequent cause of glomerulosclerosis (GS). This study was performed to investigate which of the RAR subtypes is involved in the signal pathway of ATRA-induced differentiation of injured podocytes. ATRA (0.1 µM) was administered to Adriamycin (ADR)-induced, injured podocytes, in vitro. Morphological changes were observed. The protein/mRNA expression of podocin, nephrin, transforming growth factor ß1(TGF-ß1), and the RARs (RAR-α,ß,γ) was measured by RT-PCR and Western blotting. ATRA treatment ameliorated cell hypertrophy and reduced the shedding of the cytoplasm which was observed under light microscope and the extension of the foot processes was observed under scan electron microscope. Compared with the injured podocytes, ATRA exposure significantly increased the protein/mRNA expression of nephrin and podocin and it markedly reduced TGF-ß1 (all p < 0.05). Compared with the injured podocytes, the protein/mRNA expression of RAR-α and RAR-γ was significantly increased after ATRA exposure; however, the expression level of RAR-ß was not significantly different. The RAR-α/γ protein expression level was positively correlated with nephrin and podocin (-α, r = 0.637, 0.663; -γ, r = 0.882, 0.878; all p < 0.05), and negatively correlated with TGF-ß1 (-α, r = -0.650; -γ, r = -0.739; all p < 0.05). The RAR-ß protein expression level was not correlated with nephrin, podocin and TGF-ß1 (r = -0.312, 0.079, -0.279; all p > 0.05). In conclusion, RAR-α/γ (and RAR-ß to a lesser degree) may be involved in the signal pathway of ATRA-induced differentiation in injured podocytes.


Assuntos
Diferenciação Celular/fisiologia , Doxorrubicina/farmacologia , Podócitos/citologia , Podócitos/fisiologia , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/fisiologia , Tretinoína/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Podócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
17.
J Recept Signal Transduct Res ; 34(5): 378-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24694005

RESUMO

All-trans-retinoic acid (ATRA) can regulate some specific genes expression in various tissue and cells via nuclear retinoic acid receptors (RARs), including three subtypes: retinoic acid receptor-alpha (RAR-α), retinoic acid receptor-beta (RAR-ß) and retinoic acid receptor-gamma (RAR-γ). Podocyte injury plays a pivotal role in the progression of glomerulosclerosis (GS). This study was performed to study the potential signal pathway of ATRA in the expression of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9) in injury podocyte. Cells were divided into three groups: group of negative control (NC), group of injury podocyte induced by adriamycin (ADR) (AI) and group of ADR inducing podocyte injury model treated with ATRA (AA). The cells morphology changes were detected using microscope and scanning electron microscopy. MMP-2 and MMP-9 enzymic activity was detected using the gelatin zymography method. Protein and mRNA expressions of MMP-2, MMP-9, RAR-α, RAR-ß and RAR-γ were measured by western-blot and real-time RT-PCR. Enzymatic activity of MMP-2 and MMP-9 in group AA was significantly enhanced compared to AI group after ATRA-treated 24 h (p < 0.05). The protein and mRNA expressions of MMP-2/MMP-9 in group AA were significantly increased than those in group AI at both 12 and 24 h time points (p < 0.05). Compared to group AI, RAR-α and RAR-γ protein/mRNA expressions of group AA were significantly increased at both 12 and 24 h time points (p < 0.05). There was no difference for the expression of RAR-ß between group AI and group AA (p > 0.05). RAR-α protein level was positively correlated with MMP-2 or MMP-9 protein expression (p < 0.05), and RAR-γ protein level was also positively correlated with MMP-2 or MMP-9 protein expression (p < 0.05). In conclusion, ATRA may increase expression of MMP-2 and MMP-9 by the potential signal pathway of RAR-α and RAR-γ in injury podocyte induced by adriamycin, but not RAR-ß.


Assuntos
Doxorrubicina/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Transdução de Sinais/fisiologia , Tretinoína/metabolismo , Animais , Linhagem Celular , Tamanho Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Camundongos , Podócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Toxicol Sci ; 198(2): 246-259, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38237923

RESUMO

Early developmental exposure to environmental toxicants may play a role in the risk for developing autism. A variety of pesticides have direct effects on retinoic acid (RA) signaling and as RA signaling has important roles in neurodevelopment, such compounds may cause developmental neurotoxicity through an overlapping adverse outcome pathway. It is hypothesized that a pesticide's embryonic effects on retinoid function may correspond with neurobehavioral disruption later in development. In the current studies, we determined the effects of RA-acting pesticides on neurobehavioral development in zebrafish. Buprofezin and imazalil caused generalized hypoactivity in the larval motility test, whereas chlorothalonil and endosulfan I led to selective hypoactivity and hyperactivity, respectively. With buprofezin, chlorothalonil, and imazalil, hypoactivity and/or novel anxiety-like behaviors persisted in adulthood and buprofezin additionally decreased social attraction responses in adulthood. Endosulfan I did not produce significant adult behavioral effects. Using qPCR analyses of adult brain tissue, we observed treatment-induced alterations in RA synthesis or catabolic genes, indicating persistent changes in RA homeostasis. These changes were compound-specific, with respect to expression directionality, and potential patterns of homeostatic disruption. Results suggest the likely persistence of disruptions in RA signaling well into adulthood and may represent compensatory mechanisms following early life stage exposures. This study demonstrates that early developmental exposure to environmental toxicants that interfere with RA signaling causes short as well as long-term behavioral disruption in a well-established zebrafish behavioral model and expand upon the meaning of the RA adverse outcome pathway, indicating that observed effects likely correspond with the nature of underlying homeostatic effects.


Assuntos
Nitrilas , Praguicidas , Tiadiazinas , Peixe-Zebra , Animais , Tretinoína/toxicidade , Retinoides/farmacologia , Praguicidas/metabolismo , Endossulfano , Comportamento Animal
19.
Front Cell Dev Biol ; 11: 1182204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082619

RESUMO

All-trans retinoic acid (ATRA) activation of retinoic acid receptors (RARs) is crucial to an organism's proper development as established by findings for mouse foetuses from dams fed a vitamin A-deficient diet. ATRA influences decision-making by embryonic stem (ES) cells for differentiation including lineage fate. From studies of knockout mice, RARα and RARγ regulate haematopoiesis whereby active RARα modulates the frequency of decision-making for myeloid differentiation, but is not essential for myelopoiesis, and active RARγ supports stem cell self-renewal and maintenance. From studies of zebrafish embryo development, active RARγ plays a negative role in stem cell decision-making for differentiation whereby, in the absence of exogenous ATRA, selective agonism of RARγ disrupted stem cell decision-making for differentiation patterning for development. From transactivation studies, 0.24 nM ATRA transactivated RARγ and 19.3 nM (80-fold more) was needed to transactivate RARα. Therefore, the dose of ATRA that cells are exposed to in vivo, from gradients created by cells that synthesize and metabolize, is important to RARγ versus RARα and RARγ activation and balancing of the involvements in modulating stem cell maintenance versus decision-making for differentiation. RARγ activation favours stemness whereas concomitant or temporal activation of RARγ and RARα favours differentiation. Crosstalk with signalling events that are provoked by membrane receptors is also important.

20.
Oncol Res Treat ; 45(5): 291-298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130553

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a gland-forming malignancy arising in the pancreas. It is estimated that in developed countries the incidence of PDAC will continue to rise, and PDAC is now the fourth leading cause of cancer-related deaths in the USA. The mortality of PDAC patients closely parallels the incidence rate, as this malignancy generally remains asymptomatic until it reaches an advanced stage. SUMMARY: The poor prognosis results from the aggressive nature of the tumor, late detection, and resistance to chemotherapy and radiotherapy. Retinoids, vitamin A (retinol) and its metabolites, such as retinoic acid (RA), play critical roles in important biological functions, including cell growth and differentiation, development, metabolism, and immunity. The actions of retinoids in maintaining normal pancreatic functions have generated considerable research interest from investigators interested in understanding and treating PDAC. Altered expression of retinoid receptors and other RA signaling pathway genes in human cancers offers opportunities for target discovery, drug design, and personalized medicine for distinct molecular retinoid subtypes. KEY MESSAGES: The goals of this review are to explore the potential activities of retinoids in the pancreas, to assess the evidence that retinoid functions become dysregulated in PDAC, and to describe the actions of retinoids in new therapies developed to increase patient survival.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Humanos , Neoplasias Pancreáticas/genética , Retinoides/farmacologia , Retinoides/uso terapêutico , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Vitamina A/uso terapêutico , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa