Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.047
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 88: 365-381, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30633551

RESUMO

Covalent inhibitors are widely used in drug discovery and chemical biology. Although covalent inhibitors are frequently designed to react with noncatalytic cysteines, many ligand binding sites lack an accessible cysteine. Here, we review recent advances in the chemical biology of lysine-targeted covalent inhibitors and chemoproteomic probes. By analyzing crystal structures of proteins bound to common metabolites and enzyme cofactors, we identify a large set of mostly unexplored lysines that are potentially targetable with covalent inhibitors. In addition, we describe mass spectrometry-based approaches for determining proteome-wide lysine ligandability and lysine-reactive chemoproteomic probes for assessing drug-target engagement. Finally, we discuss the design of amine-reactive inhibitors that form reversible covalent bonds with their protein targets.


Assuntos
Descoberta de Drogas/métodos , Lisina/química , Proteoma/metabolismo , Ligantes , Espectrometria de Massas , Ligação Proteica , Proteoma/química , Ácidos Sulfínicos
2.
Cell ; 170(6): 1079-1095.e20, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28823558

RESUMO

Loss-of-function mutations in TET2 occur frequently in patients with clonal hematopoiesis, myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML) and are associated with a DNA hypermethylation phenotype. To determine the role of TET2 deficiency in leukemia stem cell maintenance, we generated a reversible transgenic RNAi mouse to model restoration of endogenous Tet2 expression. Tet2 restoration reverses aberrant hematopoietic stem and progenitor cell (HSPC) self-renewal in vitro and in vivo. Treatment with vitamin C, a co-factor of Fe2+ and α-KG-dependent dioxygenases, mimics TET2 restoration by enhancing 5-hydroxymethylcytosine formation in Tet2-deficient mouse HSPCs and suppresses human leukemic colony formation and leukemia progression of primary human leukemia PDXs. Vitamin C also drives DNA hypomethylation and expression of a TET2-dependent gene signature in human leukemia cell lines. Furthermore, TET-mediated DNA oxidation induced by vitamin C treatment in leukemia cells enhances their sensitivity to PARP inhibition and could provide a safe and effective combination strategy to selectively target TET deficiency in cancer. PAPERCLIP.


Assuntos
Ácido Ascórbico/farmacologia , Proteínas de Ligação a DNA/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Proteínas Proto-Oncogênicas/metabolismo , Vitaminas/farmacologia , Animais , Ácido Ascórbico/administração & dosagem , Morte Celular , Linhagem Celular Tumoral , Metilação de DNA , Proteínas de Ligação a DNA/genética , Dioxigenases , Técnicas de Silenciamento de Genes , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Síndromes Mielodisplásicas/genética , Transplante de Neoplasias , Poli(ADP-Ribose) Polimerase-1/genética , Proteínas Proto-Oncogênicas/genética , Transcrição Gênica , Transplante Heterólogo , Vitaminas/administração & dosagem
3.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588421

RESUMO

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Assuntos
Tecido Adiposo Marrom , Glucose , Camundongos , Humanos , Animais , Glucose/metabolismo , Tecido Adiposo Marrom/metabolismo , Acetilação , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética , Camundongos Endogâmicos C57BL , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(24): e2311180121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830101

RESUMO

As a sustainable and promising approach of removing of nitrogen oxides (NOx), catalytic reduction of NOx with H2 is highly desirable with a precise understanding to the structure-activity relationship of supported catalysts. In particular, the dynamic evolution of support at microscopic scale may play a critical role in heterogeneous catalysis, however, identifying the in situ structural change of support under working condition with atomic precision and revealing its role in catalysis is still a grand challenge. Herein, we visually capture the surface lattice expansion of WO3-x support in Pt-WO3-x catalyst induced by NO in the exemplified reduction of NO with H2 using in situ transmission electron microscopy and first reveal its important role in enhancing catalysis. We find that NO can adsorb on the oxygen vacancy sites of WO3-x and favorably induce the reversible stretching of W-O-W bonds during the reaction, which can reduce the adsorption energy of NO on Pt4 centers and the energy barrier of the rate-determining step. The comprehensive studies reveal that lattice expansion of WO3-x support can tune the catalytic performance of Pt-WO3-x catalyst, leading to 20% catalytic activity enhancement for the exemplified reduction of NO with H2. This work reveals that the lattice expansion of defective support can tune and optimize the catalytic performance at the atomic scale.

5.
EMBO J ; 41(3): e109360, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918374

RESUMO

The vacuolar ATPase (V-ATPase) is a rotary motor proton pump that is regulated by an assembly equilibrium between active holoenzyme and autoinhibited V1 -ATPase and Vo proton channel subcomplexes. Here, we report cryo-EM structures of yeast V-ATPase assembled in vitro from lipid nanodisc reconstituted Vo and mutant V1 . Our analysis identified holoenzymes in three active rotary states, indicating that binding of V1 to Vo provides sufficient free energy to overcome Vo autoinhibition. Moreover, the structures suggest that the unequal spacing of Vo 's proton-carrying glutamic acid residues serves to alleviate the symmetry mismatch between V1 and Vo motors, a notion that is supported by mutagenesis experiments. We also uncover a structure of free V1 bound to Oxr1, a conserved but poorly characterized factor involved in the oxidative stress response. Biochemical experiments show that Oxr1 inhibits V1 -ATPase and causes disassembly of the holoenzyme, suggesting that Oxr1 plays a direct role in V-ATPase regulation.


Assuntos
Proteínas Mitocondriais/química , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Holoenzimas/química , Mutagênese , Ligação Proteica , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
6.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385872

RESUMO

Drug discovery and development constitute a laborious and costly undertaking. The success of a drug hinges not only good efficacy but also acceptable absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties. Overall, up to 50% of drug development failures have been contributed from undesirable ADMET profiles. As a multiple parameter objective, the optimization of the ADMET properties is extremely challenging owing to the vast chemical space and limited human expert knowledge. In this study, a freely available platform called Chemical Molecular Optimization, Representation and Translation (ChemMORT) is developed for the optimization of multiple ADMET endpoints without the loss of potency (https://cadd.nscc-tj.cn/deploy/chemmort/). ChemMORT contains three modules: Simplified Molecular Input Line Entry System (SMILES) Encoder, Descriptor Decoder and Molecular Optimizer. The SMILES Encoder can generate the molecular representation with a 512-dimensional vector, and the Descriptor Decoder is able to translate the above representation to the corresponding molecular structure with high accuracy. Based on reversible molecular representation and particle swarm optimization strategy, the Molecular Optimizer can be used to effectively optimize undesirable ADMET properties without the loss of bioactivity, which essentially accomplishes the design of inverse QSAR. The constrained multi-objective optimization of the poly (ADP-ribose) polymerase-1 inhibitor is provided as the case to explore the utility of ChemMORT.


Assuntos
Aprendizado Profundo , Humanos , Desenvolvimento de Medicamentos , Descoberta de Drogas , Inibidores de Poli(ADP-Ribose) Polimerases
7.
EMBO Rep ; 25(5): 2323-2347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565737

RESUMO

The eukaryotic vacuolar H+-ATPase (V-ATPase) is regulated by reversible disassembly into autoinhibited V1-ATPase and Vo proton channel subcomplexes. We recently reported that the TLDc protein Oxr1p induces V-ATPase disassembly in vitro. Whether and how Oxr1p is involved in enzyme disassembly in vivo, however, is not known. Here, using yeast genetics and fluorescence microscopy, we show that Oxr1p is essential for efficient V-ATPase disassembly in the cell. Supporting biochemical and biophysical in vitro experiments show that whereas Oxr1p-driven holoenzyme disassembly can occur in the absence of nucleotides, the presence of ATP greatly accelerates the process. ATP hydrolysis is needed, however, for subsequent release of Oxr1p so that the free V1 can adopt the autoinhibited conformation. Overall, our study unravels the molecular mechanism of Oxr1p-induced disassembly that occurs in vivo as part of the canonical V-ATPase regulation by reversible disassembly.


Assuntos
Trifosfato de Adenosina , Proteínas Mitocondriais , ATPases Vacuolares Próton-Translocadoras , Trifosfato de Adenosina/metabolismo , Hidrólise , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
8.
Mol Cell ; 69(6): 993-1004.e3, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29526695

RESUMO

The molecular mechanism of transmembrane proton translocation in rotary motor ATPases is not fully understood. Here, we report the 3.5-Å resolution cryoEM structure of the lipid nanodisc-reconstituted Vo proton channel of the yeast vacuolar H+-ATPase, captured in a physiologically relevant, autoinhibited state. The resulting atomic model provides structural detail for the amino acids that constitute the proton pathway at the interface of the proteolipid ring and subunit a. Based on the structure and previous mutagenesis studies, we propose the chemical basis of transmembrane proton transport. Moreover, we discovered that the C terminus of the assembly factor Voa1 is an integral component of mature Vo. Voa1's C-terminal transmembrane α helix is bound inside the proteolipid ring, where it contributes to the stability of the complex. Our structure rationalizes possible mechanisms by which mutations in human Vo can result in disease phenotypes and may thus provide new avenues for therapeutic interventions.


Assuntos
Microscopia Crioeletrônica , Nanopartículas , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Genótipo , Humanos , Lipídeos de Membrana/química , Modelos Moleculares , Mutação , Fenótipo , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas , Prótons , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
9.
Mol Cell Proteomics ; 23(7): 100794, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839039

RESUMO

Reversible cerebral vasoconstriction syndrome (RCVS) is a complex neurovascular disorder characterized by repetitive thunderclap headaches and reversible cerebral vasoconstriction. The pathophysiological mechanism of this mysterious syndrome remains underexplored and there is no clinically available molecular biomarker. To provide insight into the pathogenesis of RCVS, this study reported the first landscape of dysregulated proteome of cerebrospinal fluid (CSF) in patients with RCVS (n = 21) compared to the age- and sex-matched controls (n  = 20) using data-independent acquisition mass spectrometry. Protein-protein interaction and functional enrichment analysis were employed to construct functional protein networks using the RCVS proteome. An RCVS-CSF proteome library resource of 1054 proteins was established, which illuminated large groups of upregulated proteins enriched in the brain and blood-brain barrier (BBB). Personalized RCVS-CSF proteomic profiles from 17 RCVS patients and 20 controls reveal proteomic changes involving the complement system, adhesion molecules, and extracellular matrix, which may contribute to the disruption of BBB and dysregulation of neurovascular units. Moreover, an additional validation cohort validated a panel of biomarker candidates and a two-protein signature predicted by machine learning model to discriminate RCVS patients from controls with an area under the curve of 0.997. This study reveals the first RCVS proteome and a potential pathogenetic mechanism of BBB and neurovascular unit dysfunction. It also nominates potential biomarker candidates that are mechanistically plausible for RCVS, which may offer potential diagnostic and therapeutic opportunities beyond the clinical manifestations.


Assuntos
Biomarcadores , Proteoma , Humanos , Feminino , Proteoma/metabolismo , Masculino , Adulto , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Vasoconstrição , Pessoa de Meia-Idade , Transtornos da Cefaleia Primários/líquido cefalorraquidiano , Transtornos da Cefaleia Primários/metabolismo , Proteômica/métodos , Estudos de Casos e Controles , Mapas de Interação de Proteínas , Síndrome
10.
Proc Natl Acad Sci U S A ; 120(23): e2219688120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252961

RESUMO

Reversible scavenging, the oceanographic process by which dissolved metals exchange onto and off sinking particles and are thereby transported to deeper depths, has been well established for the metal thorium for decades. Reversible scavenging both deepens the elemental distribution of adsorptive elements and shortens their oceanic residence times in the ocean compared to nonadsorptive metals, and scavenging ultimately removes elements from the ocean via sedimentation. Thus, it is important to understand which metals undergo reversible scavenging and under what conditions. Recently, reversible scavenging has been invoked in global biogeochemical models of a range of metals including lead, iron, copper, and zinc to fit modeled data to observations of oceanic dissolved metal distributions. Nonetheless, the effects of reversible scavenging remain difficult to visualize in ocean sections of dissolved metals and to distinguish from other processes such as biological regeneration. Here, we show that particle-rich "veils" descending from high-productivity zones in the equatorial and North Pacific provide idealized illustrations of reversible scavenging of dissolved lead (Pb). A meridional section of dissolved Pb isotope ratios across the central Pacific shows that where particle concentrations are sufficiently high, such as within particle veils, vertical transport of anthropogenic surface-dissolved Pb isotope ratios toward the deep ocean is manifested as columnar isotope anomalies. Modeling of this effect shows that reversible scavenging within particle-rich waters allows anthropogenic Pb isotope ratios from the surface to penetrate ancient deep waters on timescales sufficiently rapid to overcome horizontal mixing of deep water Pb isotope ratios along abyssal isopycnals.

11.
J Biol Chem ; 300(9): 107636, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122007

RESUMO

In cellular contexts, the oscillation of calcium ions (Ca2+) is intricately linked to various physiological processes, such as cell proliferation, metabolism, and survival. Stromal interaction molecule 1 (STIM1) proteins form a crucial regulatory component in the store-operated calcium entry process. The structural attributes of STIM1 are vital for its functionality, encompassing distinct domains situated in the endoplasmic reticulum lumen and the cytoplasm. The intraluminal domain enables the timely detection of diminishing Ca2+ concentrations, prompting structural modifications that activate the cytoplasmic domain. This activated cytoplasmic domain undergoes conformational alterations and engages with membrane components, opening a channel that facilitates the influx of Ca2+ from the extracellular environment. Given its multiple domains and interaction mechanisms, STIM1 plays a foundational role in cellular biology. This review focuses on the design of optogenetic tools inspired by the structure and function of STIM1. These tools offer a groundbreaking approach for studying and manipulating intracellular Ca2+ signaling with precise spatiotemporal control. We further explore the practical applications of these tools, spanning fundamental scientific research, clinical studies, and their potential for translational research.

12.
Mol Biol Evol ; 41(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39158305

RESUMO

Profile mixture models capture distinct biochemical constraints on the amino acid substitution process at different sites in proteins. These models feature a mixture of time-reversible models with a common matrix of exchangeabilities and distinct sets of equilibrium amino acid frequencies known as profiles. Combining the exchangeability matrix with each profile generates the matrix of instantaneous rates of amino acid exchange for that profile. Currently, empirically estimated exchangeability matrices (e.g. the LG matrix) are widely used for phylogenetic inference under profile mixture models. However, these were estimated using a single profile and are unlikely optimal for profile mixture models. Here, we describe the GTRpmix model that allows maximum likelihood estimation of a common exchangeability matrix under any profile mixture model. We show that exchangeability matrices estimated under profile mixture models differ from the LG matrix, dramatically improving model fit and topological estimation accuracy for empirical test cases. Because the GTRpmix model is computationally expensive, we provide two exchangeability matrices estimated from large concatenated phylogenomic-supermatrices to be used for phylogenetic analyses. One, called Eukaryotic Linked Mixture (ELM), is designed for phylogenetic analysis of proteins encoded by nuclear genomes of eukaryotes, and the other, Eukaryotic and Archaeal Linked mixture (EAL), for reconstructing relationships between eukaryotes and Archaea. These matrices, combined with profile mixture models, fit data better and have improved topology estimation relative to the LG matrix combined with the same mixture models. Starting with version 2.3.1, IQ-TREE2 allows users to estimate linked exchangeabilities (i.e. amino acid exchange rates) under profile mixture models.


Assuntos
Modelos Genéticos , Filogenia , Archaea/genética , Funções Verossimilhança , Substituição de Aminoácidos , Evolução Molecular , Eucariotos/genética
13.
Bioessays ; 45(7): e2200251, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183929

RESUMO

Vacuolar ATPases (V-ATPases, V1 Vo -ATPases) are rotary motor proton pumps that acidify intracellular compartments, and, when localized to the plasma membrane, the extracellular space. V-ATPase is regulated by a unique process referred to as reversible disassembly, wherein V1 -ATPase disengages from Vo proton channel in response to diverse environmental signals. Whereas the disassembly step of this process is ATP dependent, the (re)assembly step is not, but requires the action of a heterotrimeric chaperone referred to as the RAVE complex. Recently, an alternative pathway of holoenzyme disassembly was discovered that involves binding of Oxidation Resistance 1 (Oxr1p), a poorly characterized protein implicated in oxidative stress response. Unlike conventional reversible disassembly, which depends on enzyme activity, Oxr1p induced dissociation can occur in absence of ATP. Yeast Oxr1p belongs to the family of TLDc domain containing proteins that are conserved from yeast to mammals, and have been implicated in V-ATPase function in a variety of tissues. This brief perspective summarizes what we know about the molecular mechanisms governing both reversible (ATP dependent) and Oxr1p driven (ATP independent) V-ATPase dissociation into autoinhibited V1 and Vo subcomplexes.


Assuntos
Proteínas de Saccharomyces cerevisiae , ATPases Vacuolares Próton-Translocadoras , Animais , Saccharomyces cerevisiae/metabolismo , Amor , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Mamíferos/metabolismo
14.
Am J Respir Crit Care Med ; 210(1): 97-107, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631023

RESUMO

Rationale: Conventionally considered irreversible, bronchiectasis has been demonstrated to be reversible in children in small studies. However, the factors associated with radiographic reversibility of bronchiectasis have yet to be defined. Objectives: In a large cohort of children with bronchiectasis, we aimed to determine: 1) if and to what extent bronchiectasis is reversible and 2) factors associated with radiographic chest high-resolution computed tomography (cHRCT) resolution. Methods: We identified children with bronchiectasis who had a repeat multidetector cHRCT scan between 2010 and 2021. We excluded those with cystic fibrosis, surgical pulmonary resection, traction bronchiectasis only, or lobar opacification. Measurements and Main Results: cHRCT scans were scored using the modified Reiff score (MRS) with a pediatric correction. Resolution was defined as an absence of abnormal bronchoarterial ratio (>0.8) on the second cHRCT scan. We included 142 children (median age, 5 years; IQR, 2.6-7.4). Inter- and intrarater agreement in MRSs was excellent (weighted κ = 0.83-0.86 and 0.95, respectively). There was radiographic resolution in 57 of 142 patients (40.1%), improvement in 56 of 142 (39.4%), and no change or worsening in 29 of 142 (20.4%). Pseudomonas aeruginosa (PsA) was absolutely associated with a lack of resolution. On multivariable regression, in those without PsA cultured, younger age at the time of diagnosis (risk ratio [RR], 0.94; 95% confidence interval [CI], 0.88-0.99), lower MRS (RR, 0.89; 95% CI, 0.82-0.97), and lower annual rate of exacerbations requiring intravenous antibiotic therapy (RR, 0.60; 95% CI, 0.37-0.98) increased the likelihood of radiographic resolution. Conclusions: This first large cohort confirms that bronchiectasis in children is often reversible with appropriate management. Younger children and those with lesser radiographic severity at diagnosis were most likely to exhibit radiographic reversibility, whereas those with PsA infection were least likely.


Assuntos
Bronquiectasia , Humanos , Bronquiectasia/diagnóstico por imagem , Masculino , Feminino , Criança , Pré-Escolar , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Estudos de Coortes , Tomografia Computadorizada Multidetectores/métodos
15.
Proc Natl Acad Sci U S A ; 119(29): e2203074119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858303

RESUMO

Adhesives typically fall into two categories: those that have high but irreversible adhesion strength due to the formation of covalent bonds at the interface and are slow to deploy, and others that are fast to deploy and the adhesion is reversible but weak in strength due to formation of noncovalent bonds. Synergizing the advantages from both categories remains challenging but pivotal for the development of the next generation of wound dressing adhesives. Here, we report a fast and reversible adhesive consisting of dynamic boronic ester covalent bonds, formed between poly(vinyl alcohol) (PVA) and boric acid (BA) for potential use as a wound dressing adhesive. Mechanical testing shows that the adhesive film has strength in shear of 61 N/cm2 and transcutaneous adhesive strength of 511 N/cm2, generated within 2 min of application. Yet the film can be effortlessly debonded when exposed to excess water. The mechanical properties of PVA/BA adhesives are tunable by varying the cross-linking density. Within seconds of activation by water, the surface boronic ester bonds in the PVA/BA film undergo fast debonding and instant softening, leading to conformal contact with the adherends and reformation of the boronic ester bonds at the interface. Meanwhile, the bulk film remains dehydrated to offer efficient load transmission, which is important to achieve strong adhesion without delamination at the interface. Whether the substrate surface is smooth (e.g., glass) or rough (e.g., hairy mouse skin), PVA/BA adhesives demonstrate superior adhesion compared to the most widely used topical skin adhesive in clinical medicine, Dermabond.


Assuntos
Adesivos , Curativos Hidrocoloides , Cicatrização , Adesivos/química , Animais , Ésteres , Hidrogéis/química , Camundongos , Álcool de Polivinil/química , Água/química
16.
Proc Natl Acad Sci U S A ; 119(22): e2202449119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35622888

RESUMO

Organodisulfides (RSSR) are a class of promising active materials for redox flow batteries (RFBs). However, their sluggish kinetics and poor cyclic stability remain a formidable challenge. Here, we propose carbon disulfide (CS2) as a unique redox mediator involving reversible C-S bond formation/breakage to facilitate the reduction reaction of organodisulfides in RFBs. In the discharge of RSSR, CS2 interacts with the negatively charged RSSR-• to promote cleavage of the S-S bond by reducing about one-third of the energy barrier, forming RSCS2Li. In the recharge, CS2 is unbonded from RSCS2Li while RSSR is regenerated. Meanwhile, the redox mediator can also be inserted into the molecular structure of RSSR to form RSCS2SR/RSCS2CS2SR, and these new active materials with lower energy barriers can further accelerate the reaction kinetics of RSSR. With CS2, phenyl disulfide exhibits an exceptional rate capability and cyclability of 500 cycles. An average energy efficiency of >90% is achieved. This strategy provides a unique redox-mediating pathway involving C-S bond formation/breakage with the active species, which is different from those used in lithium-oxygen or other batteries.

17.
Nano Lett ; 24(18): 5593-5602, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38619365

RESUMO

The design of intracellular delivery systems for protein drugs remains a challenge due to limited delivery efficacy and serum stability. Herein, we propose a reversible assembly strategy to assemble cargo proteins and phenolic polymers into stable nanoparticles for this purpose using a heterobifunctional adaptor (2-formylbenzeneboronic acid). The adaptor is easily decorated on cargo proteins via iminoboronate chemistry and further conjugates with catechol-bearing polymers to form nanoparticles via boronate diester linkages. The nanoparticles exhibit excellent serum stability in culture media but rapidly release the cargo proteins triggered by lysosomal acidity and GSH after endocytosis. In a proof-of-concept animal model, the strategy successfully transports superoxide dismutase to retina via intravitreal injection and efficiently ameliorates the oxidative stress and cellular damage in the retina induced by ischemia-reperfusion (I/R) with minimal adverse effects. The reversible assembly strategy represents a robust and efficient method to develop serum-stable systems for the intracellular delivery of biomacromolecules.


Assuntos
Nanopartículas , Polímeros , Animais , Polímeros/química , Nanopartículas/química , Humanos , Superóxido Dismutase/metabolismo , Superóxido Dismutase/química , Sistemas de Liberação de Medicamentos , Fenóis/química , Estresse Oxidativo/efeitos dos fármacos , Ácidos Borônicos/química , Retina/metabolismo , Camundongos
18.
Nano Lett ; 24(32): 9854-9860, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39082842

RESUMO

Synthesizing COFs with hybrid linkage coupling with both reversible and irreversible natures remains a challenging issue. Herein, we report the synthesis of two rare COFs constructed by both reversible and irreversible linkages through a liquid-solid two-phase strategy. A systematic study reveals a one-pot, two-step reaction mechanism for the two COFs, the first step being a reversible Schiff base reaction and the second step being an irreversible Knoevenagel reaction. Interestingly, this hybrid linkage COF is found to show an outstanding photoenhanced uranium extraction performance. The results not only provide a general and green approach to develop the linkage chemistry of COFs but also enrich the synthesis toolboxes and application of COFs.

19.
Nano Lett ; 24(9): 2812-2820, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396345

RESUMO

Electroreduction of waste nitrate to valuable ammonia offers a green solution for environmental restoration and energy storage. However, the electrochemical self-reconstruction of catalysts remains a huge challenge in terms of maintaining their stability, achieving the desired active sites, and managing metal leaching. Herein, we present an electrical pulse-driven Co surface reconstruction-coupled Coδ+ shuttle strategy for the precise in situ regulation of the Co(II)/Co(III) redox cycle on the Co-based working electrode and guiding the dissolution and redeposition of Co-based particles on the counter electrode. As result, the ammonia synthesis performance and stability are significantly promoted while cathodic hydrogen evolution and anodic ammonia oxidation in a membrane-free configuration are effectively blocked. A high rate of ammonia production of 1.4 ± 0.03 mmol cm-2 h-1 is achieved at -0.8 V in a pulsed system, and the corresponding nitrate-to-ammonia Faraday efficiency is 91.7 ± 1.0%. This work holds promise for the regulation of catalyst reactivity and selectivity by engineering in situ controllable structural and chemical transformations.

20.
Crit Rev Biochem Mol Biol ; 57(4): 377-398, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36048510

RESUMO

The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.


Assuntos
Fenômenos Biológicos , Receptores Notch , Proteínas de Transporte/metabolismo , Proteína Jagged-1/metabolismo , Ligantes , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa