Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 408
Filtrar
1.
Bioorg Med Chem Lett ; 97: 129564, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000482

RESUMO

The aggregation of α-Syn is a pivotal mechanism in Parkinson's disease (PD). Effectively maintaining α-Syn proteostasis involves both inhibiting its aggregation and promoting disaggregation. In this study, we developed a series of aromatic amide derivatives based on Rhein. Two of these compounds, 4,5-dihydroxy-N-(3-hydroxyphenyl)-9,10-dioxo-9,10-dihydroanthracene-2-carboxamide (a5) and 4,5-dihydroxy-N-(2-hydroxy-4-chlorophenyl)-9,10-dioxo-9,10-dihydroanthracene-2-carboxamide (a8), exhibited good binding affinities to α-Syn residues, demonstrating promising inhibitory activity against α-Syn aggregation in vitro, with low IC50 values (1.35 and 1.08 µM, respectivly). These inhibitors acted throughout the entire aggregation process by stabilizing α-Syn's conformation and preventing the formation of ß-sheet aggregates. They also effectively disassembled preformed α-Syn oligomers and fibrils. Preliminary mechanistic insights indicated that they bound to the specific domain within fibrils, inducing fibril instability, collapse, and the formation of smaller aggregates and monomeric α-Syn units. This research underscores the therapeutic potential of Rhein's aromatic amides in targeting α-Syn aggregation for PD treatment and suggests broader applications in managing and preventing neurodegenerative diseases.


Assuntos
Antracenos , Doença de Parkinson , Humanos , alfa-Sinucleína , Antraquinonas/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Doença de Parkinson/metabolismo , Antracenos/química , Antracenos/farmacologia
2.
Fish Shellfish Immunol ; 144: 109284, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092092

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is a significant viral pathogen in largemouth bass aquaculture, causing substantial annual economic losses. However, effective prevention methods remain elusive for various reasons. Medicinal plant extracts have emerged as valuable tools in preventing and managing aquatic animal diseases. Thus, the search for immunomodulators with straightforward, safe structures in plant extracts is imperative to ensure the continued health and growth of the largemouth bass industry. In our research, we employed epithelioma papulosum cyprinid (EPC) cells and largemouth bass as models to assess the anti-MSRV properties and immunomodulatory effects of ten plant-derived bioactive compounds. Among them, rhein demonstrated noteworthy potential, exhibiting a 75 % reduction in viral replication in vitro at a concentration of 50 mg/L. Furthermore, rhein pre-treatment significantly inhibited MSRV genome replication in EPC cells, with the highest inhibition rate reaching 64.8 % after 24 h, underscoring rhein's preventive impact against MSRV. Likewise, rhein displayed remarkable therapeutic effects on EPC cells during the early stages of MSRV infection, achieving a maximum inhibition rate of 85.6 % in viral replication. Subsequent investigations unveiled that rhein, with its consistent activity, effectively mitigated cytopathic effects (CPE) and nuclear damage induced by MSRV infection. Moreover, it restrained mitochondrial membrane depolarization and reduced the apoptosis rate by 38.8 %. In vivo experiments reinforced these findings, demonstrating that intraperitoneal injection of rhein enhanced the expression levels of immune related genes in multiple organs, hindered virus replication, and curtailed the mortality rate of MSRV-infected largemouth bass by 29 %. Collectively, our study endorses the utility of rhein as an immunomodulator to combat MSRV infections in largemouth bass. This not only underscores the potential of rhein as a broad-spectrum antiviral and means to bolster the immune response but also highlights the role of apoptosis as an immunological marker, making it an invaluable addition to the armamentarium against aquatic viral pathogens.


Assuntos
Bass , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Fatores Imunológicos/metabolismo , Poder Psicológico , Doenças dos Peixes/prevenção & controle
3.
Bioorg Med Chem ; 113: 117895, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39259985

RESUMO

Rhein, as a plant antibiotic, demonstrates a broad spectrum of pharmacological effects. Nevertheless, its limited water solubility, low bioavailability, and potential hepatotoxicity and nephrotoxicity making it difficult to directly become a medicine, thereby imposing significant constraints on its clinical application. In recent decades, extensive researches have been proceeded on the multifaceted structural modifications of rhein, resulting in notable improvements on pharmacological activities and druggabilities. This review offers a comprehensive overview and advanced update on the biological potential and structural-activity relationships (SARs) of various rhein derivatives, delineating the sites of structural modification and corresponding activity trends of rhein derivatives for future.

4.
Mol Biol Rep ; 51(1): 266, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302764

RESUMO

BACKGROUND: Rhein, which has antioxidant and anti-inflammatory response properties, is a beneficial treatment for different pathologies. However, the mechanism by which rhein protects against myocardial ischemic injury is poorly understood. METHODS AND RESULTS: To establish an acute myocardial infarction (AMI) rat model, we performed left anterior descending (LAD) ligation. Sprague‒Dawley rats were randomly divided into four groups: sham, AMI, AMI + rhein (AMI + R), and AMI + mitochondrial fission inhibitor (AMI + M). The extent of myocardial injury was evaluated by TTC staining, serum myocardial injury markers, and HE and Masson staining. Cardiac mitochondria ultrastructure was visualized by transmission electron microscopy. TUNEL assay and flow cytometry analysis were used to estimate cell apoptosis. Protein expression levels were measured by Western blotting. In vitro, the efficacy of rhein was assessed in H9c2 cells under hypoxic condition. Our results revealed that rats with AMI exhibited increased infarct size and indicators of myocardial damage, along with activation of Drp1-dependent mitochondrial fission, decreased mitophagy and increased apoptosis rates. However, pretreatment with rhein significantly reversed these effects and demonstrated similar efficacy to Mdivi-1. Furthermore, rhein pretreatment protected against myocardial ischemic injury by inhibiting mitochondrial fission, as evidenced by decreased Drp1 expression. It also enhanced mitophagy, as indicated by increased expression of Beclin1, Pink1 and Parkin, an increased LC3-II/LC3-I ratio and increased formation of autolysosomes. Additionally, rhein pretreatment mitigated apoptosis in AMI. These results were also confirmed in vitro in H9c2 cells. CONCLUSION: Our results demonstrate that rhein pretreatment exerts cardioprotective effects against myocardial ischemic injury via the Drp1/Pink1/Parkin pathway.


Assuntos
Antraquinonas , Dinâmica Mitocondrial , Proteínas Quinases , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Quinases/metabolismo , Autofagia , Mitocôndrias/metabolismo , Apoptose , Ubiquitina-Proteína Ligases/metabolismo
5.
Ecotoxicol Environ Saf ; 279: 116474, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772144

RESUMO

Rhubarb is widely used in health care, but causing a great amount of rhein-containing herbal residue. Rhein with several toxicities might pollute environment, damage ecology and even hazard human health if left untreated. In this study, the degradation effects of bisulfite- (BS) and peroxymonosulfate- (PMS) based oxidation systems on rhein in rhubarb residue were compared and investigated. The effects of BS and PMS with two valence states of ferric ion (Fe) on the degradation of rhein in rhubarb residue were optimized for the selection of optimal oxidation system. The influences of reaction temperature, reaction time and initial pH on the removal of rhein under the optimal oxidation system were evaluated. The chemical profiles of rhubarb residue with and without oxidation process were compared by UPLC-QTOF-MS/MS, and the degradation effects were investigated by PLS-DA and S plot/OPLS-DA analysis. The results manifested that PMS showed relative higher efficiency than BS on the degradation of rhein. Moreover, Fe(III) promoted the degradation effect of PMS, demonstrated that Fe(III)/PMS is the optimal oxidation system to degrade rhein in rhubarb residue. Further studies indicated that the degradation of rhein by the Fe(III)/PMS oxidation system was accelerated with the prolong of reaction time and the elevation of reaction temperature, and also affected by the initial pH. More importantly, Fe(III)/PMS oxidation system could degrade rhein in rhubarb residue completely under the optimal conditions. In conclusion, Fe(III)/PMS oxidation system is a feasible method to treat rhein in rhubarb residue.


Assuntos
Antraquinonas , Oxirredução , Peróxidos , Rheum , Antraquinonas/química , Rheum/química , Peróxidos/química , Espectrometria de Massas em Tandem , Sulfitos/química , Concentração de Íons de Hidrogênio , Compostos Férricos/química , Temperatura
6.
Chem Biodivers ; 21(8): e202400753, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38818648

RESUMO

VEGFR-2 is a prominent therapeutic target in antitumor drug research to block tumor angiogenesis. This study focused on the synthesis and optimization of PROTACs based on the natural product rhein, resulting in the successful synthesis of 15 distinct molecules. In A549 cells, D9 exhibited remarkable antitumor efficacy with an IC50 of 5.88±0.50 µM, which was 15-fold higher compared to rhein (IC50=88.45±2.77 µM). An in-depth study of the effect of D9 on the degradation of VEGFR-2 revealed that D9 was able to induce the degradation of VEGFR-2 in A549 cells in a time-dependent manner. The observed effect was reversible, contingent upon the proteasome and ubiquitination system, and demonstrably linked to CRBN. Further experiments revealed that D9 induced apoptosis in A549 cells and led to cell cycle arrest in the G1 phase. Molecular docking simulations validated the binding mode of D9 to VEGFR, establishing the potential of D9 to bind to VEGFR-2 in its natural state. In summary, this study confirms the feasibility of natural product-bound PROTAC technology for the development of a new generation of VEGFR-2 degraders, offering a novel trajectory for the future development of pharmacological agents targeting VEGFR-2.


Assuntos
Antineoplásicos , Apoptose , Produtos Biológicos , Simulação de Acoplamento Molecular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/síntese química , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Antraquinonas/farmacologia , Antraquinonas/química , Antraquinonas/síntese química , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Estrutura Molecular , Células A549 , Proteólise/efeitos dos fármacos , Quimera de Direcionamento de Proteólise
7.
Phytochem Anal ; 35(3): 521-529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198752

RESUMO

INTRODUCTION: Sennosides are the main active constituents of the dried leaves and/or pods of Senna alexandrina Mill. that are used as laxatives. A hypothesis is that aglycones are formed during the degradation of sennosides. However, it is unknown, whether this happens under visible light exposure and how photosensitive sennosides behave in solution. OBJECTIVES: Pure anthraquinone glycosides were tested on their behaviour during sample preparation in the lab under visible light exposure in dependence on the instability of the solvent. MATERIALS AND METHODS: Samples before and after exposure were analysed using UHPLC with UV/Vis and MS detection. RESULTS: Under visible light protection, the solutions were stable for 14 days at room temperature whereas a loss of 20%-60% was measured after 1 day of light exposure. The loss of sennosides due to degradation can be as fast as up to 2%-2.5% per hour, which might have a tremendous impact on phytochemical analysis results during the course of an analysis. The formation of aglycones was not observed in the degradation of sennosides and rhein-8-O-glucoside. CONCLUSION: Aglycones could not be found as a result of the forced degradation. The solutions of sennosides clearly need to be protected from light to obtain reliable analytical results, and light protection is a major point for the stability of liquid preparations.


Assuntos
Extrato de Senna , Senna , Senosídeos , Extrato de Senna/análise , Antraquinonas , Senna/metabolismo , Glucosídeos , Folhas de Planta/química
8.
Molecules ; 29(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39064904

RESUMO

Carrier-free self-assembly has gradually shifted the focus of research on natural products, which effectively improve the bioavailability and the drug-loading rate. However, in spite of the existing studies, the development of self-assembled natural phytochemicals that possess pharmacological effects still has scope for further exploration and enhancement. Herein, a nano-delivery system was fabricated through the direct self-assembly of Rhein and Matrine and was identified as a self-assembled Rhein-Matrine nanoparticles (RM NPs). The morphology of RM NPs was characterized by TEM. The molecular mechanisms of self-assembly were explored using FT-IR, 1H NMR, and molecular dynamics simulation analysis. Gelatin methacryloyl (GelMA) hydrogel was used as a drug carrier for controlled release and targeted delivery of RM NPs. The potential wound repair properties of RM NPs were evaluated on a skin wound-healing model. TEM and dynamic light scattering study demonstrated that the RM NPs were close to spherical, and the average size was approximately 75 nm. 1H NMR of RM NPs demonstrated strong and weak changes in the interaction energies during self-assembly. Further molecular dynamics simulation analysis predicted the self-assembly behavior. An in vivo skin wound-healing model demonstrated that RM NPs present better protection effect against skin damages. Taken together, RM NPs are a new self-assembly system; this may provide new directions for natural product applications.


Assuntos
Alcaloides , Antraquinonas , Matrinas , Simulação de Dinâmica Molecular , Nanopartículas , Quinolizinas , Cicatrização , Alcaloides/química , Alcaloides/farmacologia , Cicatrização/efeitos dos fármacos , Quinolizinas/química , Quinolizinas/farmacologia , Nanopartículas/química , Antraquinonas/química , Antraquinonas/farmacologia , Animais , Portadores de Fármacos/química , Camundongos , Hidrogéis/química , Humanos
9.
J Recept Signal Transduct Res ; 43(2): 62-71, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37330920

RESUMO

Oxidative stress, inflammation and apoptosis are important pathogenic factors of diabetic retinopathy (DR). In the current study, we aimed to evaluate the potential role of Rhein, a natural anthraquinone compound found in rhubarb, in high glucose (HG)-induced Müller cells (MIO-M1). Cell Counting Kit­8 assay, TUNEL assay, Western blot analysis, Reverse transcription quantitative polymerase chain reaction (RT-qPCR), and ELISA were conducted to assess the effects of Rhein on Müller cells. Additionally, the EX-527, an Sirt1 inhibitor, was used to study whether the effects of Rhein, on HG-induced Müller cells were mediated by activation of the Sirt1 signaling pathway. Our data showed that Rhein improved cell viability of HG-induced Müller cells. Rhein reduced the ROS and MDA production and increased the activities of SOD and CAT in Müller cells in response to HG stimulation. Rhein decreased the production of VEGF, IL-1ß, IL-6 and TNF-α. Moreover, Rhein attenuated HG-induced apoptosis, evidenced by increase in Bcl-2 level and decreases in the Bax, caspase-3 expression. It was also found that EX-527 counteracted Rhein-mediated anti-inflammatory, antioxidant and anti-apoptosis effects on Müller cells. The protein levels of p-AMPK and PGC-1α were also upregulated by Rhein. In conclusion, these findings support that Rhein may ameliorate HG-induced inflammation, oxidative stress, apoptosis and protect against mitochondrial dysfunction by the activation of the AMPK/Sirt1/PGC-1α signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Células Ependimogliais , Humanos , Células Ependimogliais/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Estresse Oxidativo , Antraquinonas/farmacologia , Glucose/toxicidade , Glucose/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética
10.
Inflamm Res ; 72(6): 1237-1255, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37212865

RESUMO

BACKGROUND: Evidence indicated that the early stage transition of macrophages' polarization stages yielded a superior prognosis for acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Rhein (cassic acid) is one major component of many traditional Chinese medicines, and has been reported to perform with strong anti-inflammation capabilities. However, the role rhein played and the mechanism via which it did so in LPS-induced ALI/ARDS remain unclear. METHODS: ALI/ARDS was induced by LPS (3 mg/kg, i.n, st), accompanied by the applications of rhein (50 and 100 mg/kg, i.p, qd), and a vehicle or NFATc1 inhibitor (10 mg/kg, i.p, qd) in vivo. Mice were sacrificed 48 h after modeling. Lung injury parameters, epithelial cell apoptosis, macrophage polarization, and oxidative stress were examined. In vitro, conditioned medium from alveolar epithelial cells stimulated by LPS was used for culturing a RAW264.7 cell line, along with rhein administrations (5 and 25 µM). RNA sequencing, molecule docking, biotin pull-down, ChIP-qPCR, and dual luciferase assay were performed to clarify the mechanisms of rhein in this pathological process. RESULTS: Rhein significantly attenuated tissue inflammation and promoted macrophage M2 polarization transition in LPS-induced ALI/ARDS. In vitro, rhein alleviated the intracellular ROS level, the activation of P65, and thus the M1 polarization of macrophages. In terms of mechanism, rhein played its protective roles via targeting the NFATc1/Trem2 axis, whose function was significantly mitigated in both Trem2 and NFATc1 blocking experiments. CONCLUSION: Rhein promoted macrophage M2 polarization transition by targeting the NFATc1/Trem2 axis to regulate inflammation response and prognosis after ALI/ARDS, which shed more light on possibilities for the clinical treatments of this pathological process.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lipopolissacarídeos/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Macrófagos/metabolismo , Síndrome do Desconforto Respiratório/patologia , Fatores de Transcrição/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
11.
Fish Shellfish Immunol ; 142: 109128, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37777100

RESUMO

In recent years, the exploration of natural compounds possessing both immunostimulatory and antiviral activities has attracted growing attention in aquaculture research. Consequently, the pursuit of identifying natural products exhibiting anti-SVCV potential as immunostimulants holds significant promise, offering a pathway to mitigate the economic ramifications inflicted by SVCV outbreaks in aquaculture settings. Among them, rhein emerges as a particularly compelling contender. Boasting a widespread distribution, well-established extraction methods, and multiple biological activities, it has exhibited the capacity to enhance the antiviral activity of host cells in vitro by blocking the viral internalization process, with a peak inhibition rate of 44.0%. Based on this intervention, rhein inhibited apoptosis and mitochondrial damage triggered by SVCV infection, ultimately producing a significant antiviral effect. Moving beyond the laboratory setting, rhein's efficacy translates effectively into in vivo scenarios. It has demonstrated substantial antiviral potency by increasing the expression of antiviral-related genes, most notably, retinoic acid-inducible gene I (RIG-I), interferon-φ (IFN-φ) and IFN-stimulated gene product 15 (ISG15). In concert with this genetic modulation, rhein efficiently reduces the viral load, precipitating a consequential enhancement in the survival rate of SVCV-infected fish, elevating it to an encouraging 16%. In conclusion, the outcomes of our investigation offer a compelling testament to rhein's potential as a valuable immunomodulator in the battle against SVCV infections in aquaculture, and the remarkable attributes exhibited by rhein underscore its viability for future commercial deployment.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Rhabdoviridae/fisiologia , Viremia/tratamento farmacológico , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Peixe-Zebra
12.
Bioorg Med Chem ; 96: 117537, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37992440

RESUMO

Proteolysis Targeting Chimeras (PROTAC) technology has emerged as a promising approach for targeted protein degradation. In this study, we focused on tyrosinase (TYR), a key enzyme involved in melanin synthesis and pigmentation. For this target, we designed and synthesized a series of PROTACs (D3-D9), employing Rhein as the target protein-ligand. Through some experimental tests, we made a significant discovery. Preliminary experimental results show that the most promising compound (D6) demonstrated the ability to degrade MITF and inhibit the expression and TYR in B16-F10 cells, effectively suppressing melanogenesis in zebrafish. Notably, at equivalent concentrations, the whitening effect of D6 surpassed that of its precursor Rhein and was even comparable to that of the well-established whitening agent, ß-arbutin. Validating experiments further revealed that the action of D6 was reliant on the E3 ligand, indicating its capacity to degrade TYR and MITF through the ubiquitination pathway. Whether D6 acts directly on TYR or MITF needs to be further explored. These compelling results underscore the tremendous whitening potential of D6, suggesting its suitability as a valuable lead for whitening agents and its potential to expand the range of whitening cosmetic products.


Assuntos
Melaninas , Melanoma Experimental , Animais , Quimera de Direcionamento de Proteólise , Peixe-Zebra , Ligantes , Monofenol Mono-Oxigenase , Proteólise
13.
J Nanobiotechnology ; 21(1): 483, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104180

RESUMO

Salmonellosis is a globally extensive food-borne disease, which threatens public health and results in huge economic losses in the world annually. The rising prevalence of antibiotic resistance in Salmonella poses a significant global concern, emphasizing an imperative to identify novel therapeutic agents or methodologies to effectively combat this predicament. In this study, self-assembly hydrogen sulfide (H2S)-responsive nanoprodrugs were fabricated with poly(α-lipoic acid)-polyethylene glycol grafted rhein and geraniol (PPRG), self-assembled into core-shell nanoparticles via electrostatic, hydrophilic and hydrophobic interactions, with hydrophilic exterior and hydrophobic interior. The rhein and geraniol are released from self-assembly nanoprodrugs PPRG in response to Salmonella infection, which is known to produce hydrogen sulfide (H2S). PPRG demonstrated stronger antibacterial activity against Salmonella compared with rhein or geraniol alone in vitro and in vivo. Additionally, PPRG was also able to suppress the inflammation and modulate gut microbiota homeostasis. In conclusion, the as-prepared self-assembly nanoprodrug sheds new light on the design of natural product active ingredients and provides new ideas for exploring targeted therapies for specific Enteropathogens. Graphical  illustration for construction of self-assembly nanoprodrugs PPRG and its antibacterial and anti-inflammatory activities on experimental Salmonella infection in mice.


Assuntos
Sulfeto de Hidrogênio , Infecções por Salmonella , Animais , Camundongos , Salmonella typhimurium , Sulfeto de Hidrogênio/química , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/microbiologia , Antibacterianos/farmacologia
14.
J Nanobiotechnology ; 21(1): 71, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859261

RESUMO

Sustained retina drug delivery and rational drug combination are considered essential for enhancing the efficacy of therapy for wet age-related macular degeneration (wAMD) due to the conservative structure of the posterior ocular segment and the multi-factorial pathological mechanism. Designing a drug co-delivery system that can simultaneously achieve deep penetration and long-lasting retention in the vitreous is highly desired, yet remains a huge challenge. In this study, we fabricated Bor/RB-M@TRG as an intravitreal-injectable hydrogel depot for deep penetration into the posterior ocular segment and long-lasting distribution in the retinal pigment epithelium (RPE) layer. The Bor/RB-M@TRG consisted of borneol-decorated rhein and baicalein-coloaded microemulsions (Bor/RB-M, the therapy entity) and a temperature-responsive hydrogel matrix (the intravitreal depot). Bor/RB-M exhibited the strongest in vitro anti-angiogenic effects among all the groups studied, which is potentially associated with improved cellular uptake, as well as the synergism of rhein and baicalein, acting via anti-angiogenic and anti-oxidative stress pathways, respectively. Importantly, a single intravitreal (IVT) injection with Bor/RB-M@TRG displayed significant inhibition against the CNV of wAMD model mice, compared to all other groups. Particularly, coumarin-6-labeled Bor/RB-M@TRG (Bor/C6-M@TRG) could not only deeply penetrate into the retina but also stably accumulate in the RPE layer for at least 14 days. Our design integrates the advantages of borneol-decorated microemulsions and hydrogel depots, offering a promising new approach for clinically-translatable retinal drug delivery and synergistic anti-wAMD treatment.


Assuntos
Hidrogéis , Retina , Animais , Camundongos , Antraquinonas
15.
J Sep Sci ; 46(19): e2300192, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37507831

RESUMO

Microchip capillary electrophoresis in mixed hydro-organic solvent combined with laser-induced fluorescence detection was developed for the separation and detection of physcion and rhein in rhubarb. In contrast to the conventional capillary electrophoresis method, ammonium acetate-dimethyl sulfoxide was used as the basic buffer system in this method. The effects of background buffer, buffer apparent pH*, buffer concentration, water ratio, sample preparation method, and separation voltage on separation and detection were investigated. Optimized separation and detection conditions were obtained: the buffer consisted of 20 mmol/L of ammonium acetate in hydro-organic solvent composed dimethyl sulfoxide, formamide, and water mixed at 60/20/20 (v/v/v) ratio. The separation voltage was 1.9 kV. Under these conditions, the physcion, rhein, and other components of rhubarb can be completely separated within 150 s. Under the methodological verification, good linearity (R ≥ 0.9995) for physcion and rhein, and low limits of detection (0.085 µg·mL-1 and 0.077 µg·mL-1 , respectively), satisfactory peak area precisions, migration time precisions (1.74%-3.09%), and accuracy (recovery rate 97.8% and 101.4%) were achieved. It is shown that the proposed method is simple, efficient, fast, sensitive, simple instrument, consumes few samples, has low operating cost, and is linear.


Assuntos
Eletroforese em Microchip , Rheum , Dimetil Sulfóxido , Eletroforese Capilar , Solventes , Água , Lasers
16.
Oral Dis ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630585

RESUMO

OBJECTIVE: To evaluate the effect of rhein on eliminating the inflammation and promoting bone regeneration of periodontitis after local administration. MATERIALS AND METHODS: In vivo, periodontitis model was established in murine mandibular first molar by using ligature for 7 days, followed by ligature removal and local administration of rhein/vehicle for 7 consecutive days. In vitro, periodontal ligament fibroblasts were treated by LPS, along with the applications of rhein/vehicle. Histology and molecular biology approaches were applied for analysis. RESULTS: In vivo, rhein alleviated periodontitis inflammation through downregulating the inflammatory index and promoted the osteogenic potential of PDL fibroblasts in a dosage-dependent manner. The result of micro-CT validated this phenomenon. In vitro, rhein administration inhibited the phosphorylation and nuclear translocation of P65, along with the arose runx2 level of PDL fibroblasts with the stimulus of LPS in mimicking periodontitis. CONCLUSION: Rhein played its inhibitory role on inflammation via curbing the activation of P65 but uprising the activities of Runx2 in PDL fibroblasts in periodontitis microenvironment. These data suggested that rhein could be an effective and potential clinical choice for the treatment of periodontitis.

17.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239855

RESUMO

Oral cancer remains the leading cause of death worldwide. Rhein is a natural compound extracted from the traditional Chinese herbal medicine rhubarb, which has demonstrated therapeutic effects in various cancers. However, the specific effects of rhein on oral cancer are still unclear. This study aimed to investigate the potential anticancer activity and underlying mechanisms of rhein in oral cancer cells. The antigrowth effect of rhein in oral cancer cells was estimated by cell proliferation, soft agar colony formation, migration, and invasion assay. The cell cycle and apoptosis were detected by flow cytometry. The underlying mechanism of rhein in oral cancer cells was explored by immunoblotting. The in vivo anticancer effect was evaluated by oral cancer xenografts. Rhein significantly inhibited oral cancer cell growth by inducing apoptosis and S-phase cell cycle arrest. Rhein inhibited oral cancer cell migration and invasion through the regulation of epithelial-mesenchymal transition-related proteins. Rhein induced reactive oxygen species (ROS) accumulation in oral cancer cells to inhibit the AKT/mTOR signaling pathway. Rhein exerted anticancer activity in vitro and in vivo by inducing oral cancer cell apoptosis and ROS via the AKT/mTOR signaling pathway in oral cancer. Rhein is a potential therapeutic drug for oral cancer treatment.


Assuntos
Neoplasias Bucais , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Proliferação de Células , Neoplasias Bucais/tratamento farmacológico , Linhagem Celular Tumoral
18.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901755

RESUMO

Psoriasis is an inflammatory skin disease characterized by increased neo-vascularization, keratinocyte hyperproliferation, a pro-inflammatory cytokine milieu and immune cell infiltration. Diacerein is an anti-inflammatory drug, modulating immune cell functions, including expression and production of cytokines, in different inflammatory conditions. Therefore, we hypothesized that topical diacerein has beneficial effects on the course of psoriasis. The current study aimed to evaluate the effect of topical diacerein on imiquimod (IMQ)-induced psoriasis in C57BL/6 mice. Topical diacerein was observed to be safe without any adverse side effects in healthy or psoriatic animals. Our results demonstrated that diacerein significantly alleviated the psoriasiform-like skin inflammation over a 7-day period. Furthermore, diacerein significantly diminished the psoriasis-associated splenomegaly, indicating a systemic effect of the drug. Remarkably, we observed significantly reduced infiltration of CD11c+ dendritic cells (DCs) into the skin and spleen of psoriatic mice with diacerein treatment. As CD11c+ DCs play a pivotal role in psoriasis pathology, we consider diacerein to be a promising novel therapeutic candidate for psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Camundongos , Baço/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo , Psoríase/patologia , Dermatite/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
19.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958772

RESUMO

Breast cancer (BC) is the most common malignancy among women worldwide. In recent years, significant progress has been made in BC therapy. However, serious side effects resulting from the use of standard chemotherapeutic drugs, as well as the phenomenon of multidrug resistance (MDR), limit the effectiveness of approved therapies. Advanced research in the BC area is necessary to create more effective and safer forms of therapy to improve the outlook for individuals diagnosed with this aggressive neoplasm. For decades, plants and natural products with anticancer properties have been successfully utilized in treating various medical conditions. Anthraquinone derivatives are tricyclic secondary metabolites of natural origin that have been identified in plants, lichens, and fungi. They represent a few botanical families, e.g., Rhamnaceae, Rubiaceae, Fabaceae, Polygonaceae, and others. The review comprehensively covers and analyzes the most recent advances in the anticancer activity of 1,8-dihydroanthraquinone derivatives (emodin, aloe-emodin, hypericin, chrysophanol, rhein, and physcion) applied both individually, or in combination with other chemotherapeutic agents, in in vitro and in vivo BC models. The application of nanoparticles for in vitro and in vivo evidence in the context of 1,8-dihydroanthraquinone derivatives was also described.


Assuntos
Neoplasias da Mama , Emodina , Polygonaceae , Rheum , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Extratos Vegetais
20.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769037

RESUMO

The therapeutic efficacy of topically administered drugs, however powerful, is largely affected by their bioavailability and, thus, ultimately, on their aqueous solubility and stability. The aim of this study was to evaluate the use of ionic liquids (ILs) as functional excipients to solubilise, stabilise, and prolong the ocular residence time of diacerein (DIA) in eye drop formulations. DIA is a poorly soluble and unstable anthraquinone prodrug, rapidly hydrolysed to rhein (Rhe), for the treatment of osteoarthritis. DIA has recently been evaluated as an antimicrobial agent for bacterial keratitis. Two ILs based on natural zwitterionic compounds were investigated: L-carnitine C6 alkyl ester bromide (Carn6), and betaine C6 alkyl ester bromide (Bet6). The stabilising, solubilising, and mucoadhesive properties of ILs were investigated, as well as their cytotoxicity to the murine fibroblast BALB/3T3 clone A31 cell line. Two IL-DIA-based eye drop formulations were prepared, and their efficacy against both Staphylococcus aureus and Pseudomonas aeruginosa was determined. Finally, the eye drops were administered in vivo on New Zealand albino rabbits, testing their tolerability as well as their elimination and degradation kinetics. Both Bet6 and Carn6 have good potential as functional excipients, showing solubilising, stabilising, mucoadhesive, and antimicrobial properties; their in vitro cytotoxicity and in vivo ocular tolerability pave the way for their future use in ophthalmic applications.


Assuntos
Anti-Infecciosos , Líquidos Iônicos , Camundongos , Animais , Excipientes , Betaína/farmacologia , Líquidos Iônicos/farmacologia , Carnitina , Soluções Oftálmicas/farmacologia , Brometos , Anti-Infecciosos/farmacologia , Antraquinonas/farmacologia , Ésteres
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa