Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Phytopathology ; 114(2): 454-463, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394356

RESUMO

Wheat sheath blight caused by the necrotic fungal pathogen Rhizoctonia cerealis is responsible for severe damage to bread wheat. Reactive oxygen species (ROS) are vital for stress resistance by plants and their homeostasis plays an important role in wheat resistance to sheath blight. Valine-glutamine (VQ) proteins play important roles in plant growth and development, and responses to biotic and abiotic stresses. However, the functional mechanism mediated by wheat VQ protein in response to sheath blight via ROS homeostasis regulation is unclear. In this study, we identified TaVQ22 protein containing the VQ motif and clarified the functional mechanisms involved in the defense of wheat against R. cerealis. TaVQ22 silencing reduced the accumulation of ROS and enhanced the resistance of wheat to R. cerealis. In addition, we showed that TaVQ22 regulated ROS generation by interacting with the WRKY transcription factor TaWRKY19-2B, thereby indicating that TaVQ22 and TaWRKY19-2B formed complexes in the plant cell nucleus. Yeast two-hybrid analysis showed that the VQ motif in TaVQ22 is crucial for the interaction, where it inhibits the transcriptional activation function of TaWRKY19-2B. In summary, TaVQ22 interacts with TaWRKY19-2B to regulate ROS homeostasis and negatively regulate the defense response to R. cerealis infection. This study provides novel insights into the mechanism that allows VQ protein to mediate the immune response in plants.


Assuntos
Doenças das Plantas , Triticum , Triticum/genética , Espécies Reativas de Oxigênio , Homeostase , Desenvolvimento Vegetal , Saccharomyces cerevisiae
2.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999100

RESUMO

Plant diseases caused by pathogenic fungi seriously affect the yield and quality of crops, cause huge economic losses, and pose a considerable threat to global food security. Phenylpyrrole analogues were designed and synthesized based on alkaloid lycogalic acid. All target compounds were characterized by 1H NMR, 13C NMR, and HRMS. Their antifungal activities against seven kinds of phytopathogenic fungi were evaluated. The results revealed that most compounds had broad-spectrum fungicidal activities at 50 µg/mL; 14 compounds displayed more than 60% fungicidal activities against Rhizoctonia cerealis and Sclerotinia sclerotiorum, and in particular, the fungicidal activities of compounds 8g and 8h against Rhizoctonia cerealis were more than 90%, which could be further developed as lead agents for water-soluble fungicides. The molecular docking results indicate that compounds 8g and 8h can interact with 14α-demethylase (RcCYP51) through hydrogen bonding with strong affinity.


Assuntos
Alcaloides , Antifúngicos , Desenho de Fármacos , Simulação de Acoplamento Molecular , Pirróis , Rhizoctonia , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Pirróis/química , Pirróis/farmacologia , Pirróis/síntese química , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/síntese química , Rhizoctonia/efeitos dos fármacos , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ascomicetos/efeitos dos fármacos
3.
J Appl Microbiol ; 134(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37188640

RESUMO

AIMS: Develop quantitative assays (qPCR) to determine the wheat rhizosphere competence of inoculant strains Bacillus amyloliquefaciens W10 and Pseudomonas protegens FD6, and their suppressive efficacies against the sharp eyespot pathogen Rhizoctonia cerealis. METHODS AND RESULTS: Antimicrobial metabolites of strains W10 and FD6 decreased in vitro growth of R. cerealis. A qPCR assay for strain W10 was designed from a diagnostic AFLP fragment and the rhizosphere dynamics of both strains in wheat seedlings were compared by culture-dependent (CFU) and qPCR assays. The qPCR minimum detection limits for strains W10 and FD6 were log 3.04 and log 4.03 genome (cell) equivalents g-1 soil, respectively. Inoculant soil and rhizosphere abundance determined by CFU and qPCR were highly correlated (r > 0.91). In wheat bioassays, rhizosphere abundance of strain FD6 was up to 80-fold greater (P < 0.001) than strain W10 at 14 and 28 days postinoculation. Both inoculants reduced (P < 0.05) rhizosphere soil and root abundance of R. cerealis by up to 3-fold. CONCLUSIONS: Strain FD6 exhibited greater abundance in wheat roots and rhizosphere soil than strain W10 and both inoculants decreased the rhizosphere abundance of R. cerealis.


Assuntos
Bacillus amyloliquefaciens , Bacillus amyloliquefaciens/genética , Triticum , Rizosfera , Solo , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Rhizoctonia , Doenças das Plantas/prevenção & controle
4.
Plant Dis ; 107(3): 820-825, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35961017

RESUMO

Wheat sharp eyespot (SES), caused by the soilborne pathogen Rhizoctonia cerealis Van der Hoeven (teleomorph: Ceratobasidium cereale), is a common stem disease of wheat globally. The disease caused a severe and extensive epidemic throughout the Willamette Valley of Oregon in 2014 and has remained one of the most important wheat diseases in this region. However, little was known about the genetics of host resistance to this disease. A recombinant inbred line (RIL) population with 257 lines developed from a cross of Einstein × Tubbs was used to study SES resistance of wheat. The phenotyping was conducted at two locations and in 3 years. Genotyping by sequencing was done by using Illumina HiSeq 3000. Low broad-sense heritability across four environments was obtained. The results of analysis of variance demonstrated that disease severity was significantly different among RILs for the data combined over environments and for one of the individual environments. Four SES resistance quantitative trait loci (QTL) were detected, including QSES-1A, QSES-2B, QSES-6A, and QSES-7A, and explained 5.9, 5.9, 8.8, and 8.3%, respectively, of the phenotypic variance. All four QTL overlapped or are in close proximity with one or more plant defense genes, and could lay the foundation for marker-assisted breeding.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Triticum/genética , Melhoramento Vegetal , Basidiomycota/genética
5.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902488

RESUMO

Sharp eyespot and Fusarium crown rot, mainly caused by soil-borne fungi Rhizoctonia cerealis and Fusarium pseudograminearum, are destructive diseases of major cereal crops including wheat (Triticum aestivum). However, the mechanisms underlying wheat-resistant responses to the two pathogens are largely elusive. In this study, we performed a genome-wide analysis of wall-associated kinase (WAK) family in wheat. As a result, a total of 140 TaWAK (not TaWAKL) candidate genes were identified from the wheat genome, each of which contains an N-terminal signal peptide, a galacturonan binding domain, an EGF-like domain, a calcium binding EGF domain (EGF-Ca), a transmembrane domain, and an intracellular Serine/Threonine protein kinase domain. By analyzing the RNA-sequencing data of wheat inoculated with R. cerealis and F. pseudograminearum, we found that transcript abundance of TaWAK-5D600 (TraesCS5D02G268600) on chromosome 5D was significantly upregulated, and that its upregulated transcript levels in response to both pathogens were higher compared with other TaWAK genes. Importantly, knock-down of TaWAK-5D600 transcript impaired wheat resistance against the fungal pathogens R. cerealis and F. pseudograminearum, and significantly repressed expression of defense-related genes in wheat, TaSERK1, TaMPK3, TaPR1, TaChitinase3, and TaChitinase4. Thus, this study proposes TaWAK-5D600 as a promising gene for improving wheat broad resistance to sharp eyespot and Fusarium crown rot (FCR) in wheat.


Assuntos
Fusarium , Triticum , Triticum/genética , Fusarium/genética , Fator de Crescimento Epidérmico/metabolismo , Cromossomos , Sequência de Bases , Doenças das Plantas/microbiologia
6.
BMC Plant Biol ; 22(1): 235, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35534832

RESUMO

BACKGROUND: Sheath blight is an important disease caused by Rhizoctonia cerealis that affects wheat yields worldwide. No wheat varieties have been identified with high resistance or immunity to sheath blight. Understanding the sheath blight resistance mechanism is essential for controlling this disease. In this study, we investigated the response of wheat to Rhizoctonia cerealis infection by analyzing the cytological changes and transcriptomes of common wheat 7182 with moderate sensitivity to sheath blight and H83 with moderate resistance. RESULTS: The cytological observation showed that the growth of Rhizoctonia cerealis on the surface and its expansion inside the leaf sheath tissue were more rapid in the susceptible material. According to the transcriptome sequencing results, a total of 88685 genes were identified in both materials, including 20156 differentially expressed genes (DEGs) of which 12087 was upregulated genes and 8069 was downregulated genes. At 36 h post-inoculation, compared with the uninfected control, 11498 DEGs were identified in resistant materials, with 5064 downregulated genes and 6434 upregulated genes, and 13058 genes were detected in susceptible materials, with 6759 downregulated genes and 6299 upregulated genes. At 72 h post-inoculation, compared with the uninfected control, 6578 DEGs were detected in resistant materials, with 2991 downregulated genes and 3587 upregulated genes, and 7324 genes were detected in susceptible materials, with 4119 downregulated genes and 3205 upregulated genes. Functional annotation and enrichment analysis showed that the main pathways enriched for the DEGs included biosynthesis of secondary metabolites, carbon metabolism, plant hormone signal transduction, and plant-pathogen interaction. In particular, phenylpropane biosynthesis pathway is specifically activated in resistant variety H83 after infection. Many DEGs also belonged to the MYB, AP2, NAC, and WRKY transcription factor families. CONCLUSIONS: Thus, we suggest that the normal functioning of plant signaling pathways and differences in the expression of key genes and transcription factors in some important metabolic pathways may be important for defending wheat against sheath blight. These findings may facilitate further exploration of the sheath blight resistance mechanism in wheat and the cloning of related genes.


Assuntos
Transcriptoma , Triticum , Basidiomycota , Resistência à Doença/genética , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Rhizoctonia/fisiologia , Fatores de Transcrição/genética , Triticum/metabolismo
7.
Plant Biotechnol J ; 20(4): 777-793, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34873799

RESUMO

STAUROSPORINE AND TEMPERATURE SENSITIVE3 (STT3) is a catalytic subunit of oligosaccharyltransferase, which is important for asparagine-linked glycosylation. Sharp eyespot, caused by the necrotrophic fungal pathogen Rhizoctonia cerealis, is a devastating disease of bread wheat. However, the molecular mechanisms underlying wheat defense against R. cerealis are still largely unclear. In this study, we identified TaSTT3a and TaSTT3b, two STT3 subunit genes from wheat and reported their functional roles in wheat defense against R. cerealis and increasing grain weight. The transcript abundance of TaSTT3b-2B was associated with the degree of wheat resistance to R. cerealis and induced by both R. cerealis and exogenous jasmonic acid (JA). Overexpression of TaSTT3b-2B significantly enhanced resistance to R. cerealis, grain weight, and JA content in transgenic wheat subjected to R. cerealis stress, while silencing of TaSTT3b-2B compromised resistance of wheat to R. cerealis. Transcriptomic analysis showed that TaSTT3b-2B affected the expression of a series of defense-related genes and JA biosynthesis-related genes, as well as genes coding starch synthase and sucrose synthase. Application of exogenous JA elevated expression levels of the abovementioned defense- and grain weight-related genes, and rescuing the resistance of TaSTT3b-2B-silenced wheat to R. cerealis, while pretreatment with sodium diethyldithiocarbamate, an inhibitor of JA synthesis, attenuated the TaSTT3b-2B-mediated resistance to R. cerealis, suggesting that TaSTT3b-2B played critical roles in regulating R. cerealis resistance and grain weight via JA biosynthesis. Altogether, this study reveals new functional roles of TaSTT3b-2B in regulating plant innate immunity and grain weight, and illustrates its potential application value for wheat molecular breeding.


Assuntos
Resistência à Doença , Triticum , Resistência à Doença/genética , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizoctonia , Triticum/metabolismo
8.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806194

RESUMO

The enzymes in the chalcone synthase family, also known as type-III polyketide synthases (PKSs), play important roles in the biosynthesis of various plant secondary metabolites and plant adaptation to environmental stresses. There have been few detailed reports regarding the gene and tissue expression profiles of the PKS (TaPKS) family members in wheat (Triticum aestivum L.). In this study, 81 candidate TaPKS genes were identified in the wheat genome, which were designated as TaPKS1-81. Phylogenetic analysis divided the TaPKS genes into two groups. TaPKS gene family expansion mainly occurred via tandem duplication and fragment duplication. In addition, we analyzed the physical and chemical properties, gene structures, and cis-acting elements of TaPKS gene family members. RNA-seq analysis showed that the expression of TaPKS genes was tissue-specific, and their expression levels differed before and after infection with Rhizoctonia cerealis. The expression levels of four TaPKS genes were also analyzed via qRT-PCR after treatment with methyl jasmonate, salicylic acid, abscisic acid, and ethylene. In the present study, we systematically identified and analyzed TaPKS gene family members in wheat, and our findings may facilitate the cloning of candidate genes associated with resistance to sheath blight in wheat.


Assuntos
Policetídeo Sintases , Triticum , Aciltransferases , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Estresse Fisiológico/genética , Triticum/metabolismo
9.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328796

RESUMO

The sharp eyespot, mainly caused by the soil-borne fungus Rhizoctonia cerealis, is a devastating disease endangering production of wheat (Triticum aestivum). Multi-Antimicrobial Extrusion (MATE) family genes are widely distributed in plant species, but little is known about MATE functions in wheat disease resistance. In this study, we identified TaPIMA1, a pathogen-induced MATE gene in wheat, from RNA-seq data. TaPIMA1 expression was induced by Rhizoctonia cerealis and was higher in sharp eyespot-resistant wheat genotypes than in susceptible wheat genotypes. Molecular biology assays showed that TaPIMA1 belonged to the MATE family, and the expressed protein could distribute in the cytoplasm and plasma membrane. Virus-Induced Gene Silencing plus disease assessment indicated that knock-down of TaPIMA1 impaired resistance of wheat to sharp eyespot and down-regulated the expression of defense genes (Defensin, PR10, PR1.2, and Chitinase3). Furthermore, TaPIMA1 was rapidly induced by exogenous H2O2 and jasmonate (JA) treatments, which also promoted the expression of pathogenesis-related genes. These results suggested that TaPIMA1 might positively regulate the defense against R. cerealis by up-regulating the expression of defense-associated genes in H2O2 and JA signal pathways. This study sheds light on the role of MATE transporter in wheat defense to Rhizoctonia cerealis and provides a potential gene for improving wheat resistance against sharp eyespot.


Assuntos
Anti-Infecciosos , Triticum , Anti-Infecciosos/metabolismo , Basidiomycota , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizoctonia/fisiologia , Triticum/metabolismo
10.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142601

RESUMO

Rhizoctonia cerealis is the causal agent of sharp eyespot, a devastating disease of cereal crops including wheat. Several metalloproteases have been implicated in pathogenic virulence, but little is known about whole-genome metalloproteases in R. cerealis. In this study, a total of 116 metalloproteases-encoding genes were identified and characterized from the R. cerealis Rc207 genome. The gene expression profiles and phylogenetic relationship of 11 MEP36/fungalysin metalloproteases were examined during the fungal infection to wheat, and function of an upregulated secretory MEP36 named RcFL1 was validated. Of 11 MEP36 family metalloproteases, ten, except RcFL5, were predicted to be secreted proteins and nine encoding genes, but not RcFL5 and RcFL2, were expressed during the R. cerealis infection process. Phylogenetic analysis suggested that MEP36 metalloproteases in R. cerealis were closely related to those of Rhizoctonia solani but were remote to those of Bipolaris sorokiniana, Fusarium graminearum, F. pseudograminearum, and Pyricularia oryzae. Expression of RcFL1 was significantly upregulated during the infection process and induced plant cell death in wheat to promote the virulence of the pathogen. The MEP36 domain was necessary for the activities of RcFL1. Furthermore, RcFL1 could repress the expression of wheat genes coding for the chitin elicitor receptor kinase TaCERK1 and chitinases. These results suggest that this MEP36 metalloprotease RcFL1 may function as a virulence factor of R. cerealis through inhibiting host chitin-triggered immunity and chitinases. This study provides insights on pathogenic mechanisms of R. cerealis. RcFL1 likely is an important gene resource for improving resistance of wheat to R. cerealis through host-induced gene silencing strategy.


Assuntos
Quitinases , Triticum , Basidiomycota , Quitina/metabolismo , Quitinases/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Rhizoctonia/fisiologia , Triticum/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
J Exp Bot ; 72(20): 6904-6919, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34254642

RESUMO

Sharp eyespot, caused by the necrotrophic fungal pathogen Rhizoctonia cerealis, is a devastating disease of bread wheat (Triticum aestivum). However, the molecular mechanisms underlying wheat defense against R. cerealis are still largely unknown. In this study, by comparative transcriptomic analysis we identified a novel cysteine-rich receptor-like kinase (CRK)-encoding gene, designated as TaCRK3, and investigated its role in defense against R. cerealis. TaCRK3 transcript abundance was significantly elevated by R. cerealis and exogenous ethylene treatments. Silencing of TaCRK3 significantly compromised resistance to R. cerealis and repressed expression of an ethylene biosynthesis enzyme-encoding gene, ACO2, and a subset of defense-associated genes in wheat, whose transcript levels are up-regulated by ethylene stimulus. TaCRK3 protein was localized at the plasma membrane in wheat. Noticeably, both the heterologously expressed TaCRK3 protein and its partial peptide harboring two DUF26 (DOMAIN OF UNKNOWN FUNCTION 26) domains could inhibit growth of R. cerealis mycelia. These results suggest that TaCRK3 mediates wheat resistance to R. cerealis through direct antifungal activity and heightening the expression of defense-associated genes in the ethylene signaling pathway. Moreover, its DUF26 domains are required for the antifungal activity of TaCRK3. Our results reveal that TaCRK3 is a promising gene for breeding wheat varieties with resistance to R. cerealis.


Assuntos
Rhizoctonia , Triticum , Basidiomycota , Cisteína , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
12.
Plant Dis ; 105(4): 997-1005, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33200970

RESUMO

Wheat sharp eyespot, a disease mainly caused by soilborne fungus Rhizoctonia cerealis, is a threat to world wheat production. Wheat's genetic resistance to sharp eyespot is a potential approach to reducing the application of fungicides and farming practice inputs. To identify the genetic basis of sharp eyespot resistance in Niavt14, a recombinant inbred line population comprising 215 F8 lines from Niavt14 × Xuzhou25, was developed. An earlier linkage map (148 simple sequence repeat markers) was updated with 5,792 polymorphic Affymetrix Axiom 55K single-nucleotide polymorphisms to a new map of 5,684.2 centimorgans with 1,406 nonredundant markers. The new linkage map covered all 21 chromosomes of common wheat and showed a good collinearity with the IWGSC RefSeq v1.0 genome. We conducted quantitative trait locus (QTL) mapping for sharp eyespot resistance using the adult plant response data from the field of five consecutive growing seasons and one greenhouse test. Two stable QTL on chromosomes 2B and 7D that were identified in the previous study were confirmed, and three novel, stable QTL, explaining 4.0 to 17.5% phenotypic variation, were mapped on 1D, 6D, and 7A, which were independent of QTL for phenology and plant height. The QTL on 1D, 2B, 6D, and 7A showed low frequencies in 384 landraces (0 to 10%) and 269 elite cultivars (5 to 23%) from the southern winter wheat region and the Yellow and Huai River Valley facultative wheat region in China, respectively. These identified QTL could be used in wheat breeding programs for improving sharp eyespot resistance through marker-assisted selection.


Assuntos
Resistência à Doença , Triticum , Basidiomycota , China , Resistência à Doença/genética , Dissecação , Humanos , Melhoramento Vegetal , Doenças das Plantas/genética , Estações do Ano , Triticum/genética
13.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073183

RESUMO

Sharp eyespot, caused by necrotrophic fungus Rhizoctonia cerealis, is a serious fungal disease in wheat (Triticum aestivum). Certain wall-associated receptor kinases (WAK) mediate resistance to diseases caused by biotrophic/hemibiotrophic pathogens in several plant species. Yet, none of wheat WAK genes with positive effect on the innate immune responses to R. cerealis has been reported. In this study, we identified a WAK gene TaWAK7D, located on chromosome 7D, and showed its positive regulatory role in the defense response to R. cerealis infection in wheat. RNA-seq and qRT-PCR analyses showed that TaWAK7D transcript abundance was elevated in wheat after R. cerealis inoculation and the induction in the stem was the highest among the tested organs. Additionally, TaWAK7D transcript levels were significantly elevated by pectin and chitin treatments. The knock-down of TaWAK7D transcript impaired resistance to R. cerealis and repressed the expression of five pathogenesis-related genes in wheat. The green fluorescent protein signal distribution assays indicated that TaWAK7D localized on the plasma membrane in wheat protoplasts. Thus, TaWAK7D, which is induced by R. cerealis, pectin and chitin stimuli, positively participates in defense responses to R. cerealis through modulating the expression of several pathogenesis-related genes in wheat.


Assuntos
Resistência à Doença , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Proteínas de Plantas , Proteínas Quinases , Rhizoctonia/crescimento & desenvolvimento , Triticum , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , Triticum/enzimologia , Triticum/genética , Triticum/microbiologia
14.
J Exp Bot ; 71(1): 344-355, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536614

RESUMO

Wheat (Triticum aestivum) is essential for global food security. Rhizoctonia cerealis is the causal pathogen of sharp eyespot, an important disease of wheat. GATA proteins in model plants have been implicated in growth and development; however, little is known about their roles in immunity. Here, we report a defence role for a wheat LLM-domain-containing B-GATA transcription factor, TaGATA1, against R. cerealis infection and explore the underlying mechanism. Through transcriptomic analysis, TaGATA1 was identified to be more highly expressed in resistant wheat genotypes than in susceptible wheat genotypes. TaGATA1 was located on chromosome 3B and had two homoeologous genes on chromosomes 3A and 3D. TaGATA1 was found to be localized in the nucleus, possessed transcriptional activation activity, and bound to GATA-core cis-elements. TaGATA1 overexpression significantly enhanced resistance of transgenic wheat to R. cerealis, whereas silencing of TaGATA1 suppressed the resistance. Quantitative reverse transcription-PCR and ChIP-qPCR results indicated that TaGATA1 directly bound to and activated certain defence genes in host immune response to R. cerealis. Collectively, TaGATA1 positively regulates immune responses to R. cerealis through activating expression of defence genes in wheat. This study reveals a new function of plant GATAs in immunity and provides a candidate gene for improving crop resistance to R. cerealis.


Assuntos
Basidiomycota/fisiologia , Fator de Transcrição GATA1/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Triticum/genética , Sequência de Aminoácidos , Resistência à Doença/imunologia , Fator de Transcrição GATA1/química , Fator de Transcrição GATA1/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Triticum/microbiologia
15.
Microb Cell Fact ; 19(1): 214, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228718

RESUMO

BACKGROUND: Wheat sheath blight, a soil borne fungal disease caused by Rhizoctonia cerealis, is considered as one of the most serious threats to wheat worldwide. Bacillus subtilis Z-14 was isolated from soil sampled from a wheat rhizosphere and was confirmed to have strong antifungal activity against R. cerealis. RESULTS: An antifungal protein, termed F2, was isolated from the culture supernatant of Z-14 strain using precipitation with ammonium sulfate, anion exchange chromatography, and reverse phase chromatography. Purified F2 had a molecular mass of approximately 8 kDa, as assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis. Edman degradation was used to determine the amino acid sequence of the N-terminus, which was NH2ASGGTVGIYGANMRS. This sequence is identical to a hypothetical protein RBAM_004680 (YP_001420098.1) synthesized by B. amyloliquefaciens FZB42. The recombinant F2 protein (rF2) was heterologously expressed in the yeast host Pichia pastoris, purified using a Niaffinity column, and demonstrated significant antifungal activity against R. cerealis. The purified rF2 demonstrated broad spectrum antifungal activity against different varieties of fungi such as Fusarium oxysporum, Verticillium dahliae, Bipolaris papendorfii, and Fusarium proliferatum. rF2 was thermostable, retaining 91.5% of its activity when incubated for 30 min at 100 °C. Meanwhile, rF2 maintained its activity under treatment by proteinase K and trypsin and over a wide pH range from 5 to 10. CONCLUSIONS: A novel antifungal protein, F2, was purified from biocontrol Bacillus subtilis Z-14 strain fermentation supernatant and heterologously expressed in Pichia pastoris to verify its antifungal activity against R. cerealis and the validity of the gene encoding F2. Considering its significant antifungal activity and stable characteristics, protein F2 presents an alternative compound to resist fungal infections caused by R. cerealis.


Assuntos
Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Agentes de Controle Biológico/farmacologia , Testes de Sensibilidade Microbiana , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Rizosfera , Saccharomycetales/metabolismo , Solo , Microbiologia do Solo , Triticum/microbiologia
16.
Plant Dis ; 104(12): 3192-3196, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33079640

RESUMO

Screening methodology of wheat genotypes for resistance to sharp eyespot (caused by Rhizoctonia cerealis) was developed. Disease severity differed among cultivars and between field and greenhouse trials. However, the cultivars Bobtail and Rosalyn had consistently lower severity in field experiments with high sharp eyespot disease pressure. Artificial inoculation was crucial to achieving adequate disease levels for effective screening but planting date had very little effect. Greenhouse inoculation of adult wheat plants was much less successful in categorizing resistance to sharp eyespot. Seedling inoculations in the greenhouse were highly inadequate as a screening method. Selection for resistance to sharp eyespot by artificial inoculation in field trials is feasible in wheat breeding programs.


Assuntos
Doenças das Plantas , Triticum , Basidiomycota , Genótipo , Programas de Rastreamento , Triticum/genética
17.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155734

RESUMO

Wheat (Triticum aestivum L.) is an important staple crop. Rhizoctonia cerealis is the causal agent of diseases that are devastating to cereal crops, including wheat. Xylanases play an important role in pathogenic infection, but little is known about xylanases in R. cerealis. Herein, we identified nine xylanase-encoding genes from the R. cerealis genome, named RcXYN1-RcXYN9, examined their expression patterns, and investigated the pathogenicity role of RcXYN1. RcXYN1-RcXYN9 proteins contain two conserved glutamate residues within the active motif in the glycoside hydrolase 10 (GH10) domain. Of them, RcXYN1-RcXYN4 are predicted to be secreted proteins. RcXYN1-RcXYN9 displayed different expression patterns during the infection process of wheat, and RcXYN1, RcXYN2, RcXYN5, and RcXYN9 were expressed highly across all the tested inoculation points. Functional dissection indicated that the RcXYN1 protein was able to induce necrosis/cell-death and H2O2 generation when infiltrated into wheat and Nicotiana benthamiana leaves. Furthermore, application of RcXYN1 protein followed by R. cerealis led to significantly higher levels of the disease in wheat leaves than application of the fungus alone. These results demonstrate that RcXYN1 acts as a pathogenicity factor during R. cerealis infection in wheat. This is the first investigation of xylanase genes in R. cerealis, providing novel insights into the pathogenesis mechanisms of R. cerealis.


Assuntos
Resistência à Doença/genética , Endo-1,4-beta-Xilanases/metabolismo , Doenças das Plantas/genética , Rhizoctonia/enzimologia , Rhizoctonia/genética , Triticum/virologia , Proteínas Virais/genética , Endo-1,4-beta-Xilanases/genética , Regulação Viral da Expressão Gênica , Genoma Viral , Interações Hospedeiro-Patógeno , Micoses/virologia , Doenças das Plantas/virologia , Proteínas Virais/metabolismo
18.
Int J Mol Sci ; 21(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963767

RESUMO

Wheat (Triticum aestivum L.) is an important staple crop. Sharp eyespot and common root rot are destructive diseases of wheat. Antimicrobial peptides (AMPs) are small peptides with broad-spectrum antimicrobial activity. In this study, we synthesized the DmAMP1W gene, encoding Dahlia merckii DmAMP1, and investigated the antifungal role of DmAMP1W in vitro and in transgenic wheat. Protein electrophoresis analysis and in vitro inhibition results demonstrated that the synthesized DmAMP1W correctly translated to the expected peptide DmAMP1W, and the purified peptide inhibited growths of the fungi Rhizoctonia cerealis and Bipolaris sorokiniana, the pathogenic causes of wheat sharp eyespot and common root rot. DmAMP1W was introduced into a wheat variety Zhoumai18 via Agrobacterium-mediated transformation. The molecular characteristics indicated that DmAMP1W could be heritable and expressed in five transgenic wheat lines in T1-T2 generations. Average sharp eyespot infection types of these five DmAMP1W transgenic wheat lines in T1-T2 generations decreased 0.69-1.54 and 0.40-0.82 compared with non-transformed Zhoumai18, respectively. Average common root rot infection types of these transgenic lines and non-transformed Zhoumai18 were 1.23-1.48 and 2.27, respectively. These results indicated that DmAMP1W-expressing transgenic wheat lines displayed enhanced-resistance to both sharp eyespot and common root rot. This study provides new broad-spectrum antifungal resources for wheat breeding.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Resistência à Doença , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Triticum/genética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dahlia/genética , Dahlia/metabolismo , Fungos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Característica Quantitativa Herdável , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
19.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340265

RESUMO

Rhizoctonia cerealis is the causal pathogen of the devastating disease, sharp eyespot, of the important crop wheat (Triticum aestivum L.). In phytopathogenic fungi, several M36 metalloproteases have been implicated in virulence, but pathogenesis roles of M35 family metalloproteases are largely unknown. Here, we identified four M35 family metalloproteases from R. cerealis genome, designated RcMEP2-RcMEP5, measured their transcriptional profiles, and investigated RcMEP2 function. RcMEP2-RcMEP5 are predicted as secreted metalloproteases since each protein sequence contains a signal peptide and an M35 domain that includes two characteristic motifs HEXXE and GTXDXXYG. Transcription levels of RcMEP2-RcMEP5 markedly elevated during the fungus infection to wheat, among which RcMEP2 expressed with the highest level. Functional dissection indicated that RcMEP2 and its M35 domain could trigger H2O2 rapidly-excessive accumulation, induce cell death, and inhibit expression of host chitinases. This consequently enhanced the susceptibility of wheat to R. cerealis and the predicated signal peptide of RcMEP2 functions required for secretion and cell death-induction. These results demonstrate that RcMEP2 is a virulence factor and that its M35 domain and signal peptide are necessary for the virulence role of RcMEP2. This study facilitates a better understanding of the pathogenesis mechanism of metalloproteases in phytopathogens including R. cerealis.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas Fúngicas/genética , Metaloproteases/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Rhizoctonia/fisiologia , Triticum/microbiologia , Genoma Fúngico , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/metabolismo , Família Multigênica , Fenótipo , Filogenia , Fatores de Virulência/genética
20.
Int J Mol Sci ; 21(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784820

RESUMO

The domain of unknown function 26 (DUF26), harboring a conserved cysteine-rich motif (C-X8-C-X2-C), is unique to land plants. Several cysteine-rich repeat proteins (CRRs), belonging to DUF26-containing proteins, have been implicated in the defense against fungal pathogens in ginkgo, cotton, and maize. However, little is known about the functional roles of CRRs in the important staple crop wheat (Triticum aestivum). In this study, we identified a wheat CRR-encoding gene TaCRR1 through transcriptomic analysis, and dissected the defense role of TaCRR1 against the soil-borne fungi Rhizoctonia cerealis and Bipolaris sorokiniana, causal pathogens of destructive wheat diseases. TaCRR1 transcription was up-regulated in wheat towards B. Sorokiniana or R. cerealis infection. The deduced TaCRR1 protein contained a signal peptide and two DUF26 domains. Heterologously-expressed TaCRR1 protein markedly inhibited the mycelia growth of B. sorokiniana and R. cerealis. Furthermore, the silencing of TaCRR1 both impaired host resistance to B. sorokiniana and R. cerealis and repressed the expression of several pathogenesis-related genes in wheat. These results suggest that the TaCRR1 positively participated in wheat defense against both B. sorokiniana and R. cerealis through its antifungal activity and modulating expression of pathogenesis-related genes. Thus, TaCRR1 is a candidate gene for improving wheat resistance to B. sorokiniana and R. cerealis.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Sequência de Aminoácidos , Bipolaris/fisiologia , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Rhizoctonia/fisiologia , Homologia de Sequência de Aminoácidos , Triticum/metabolismo , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa