Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 40(21): e108648, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34542926

RESUMO

So-called ρ0 cells lack mitochondrial DNA and are therefore incapable of aerobic ATP synthesis. How cells adapt to survive ablation of oxidative phosphorylation remains poorly understood. Complexome profiling analysis of ρ0 cells covered 1,002 mitochondrial proteins and revealed changes in abundance and organization of numerous multiprotein complexes including previously not described assemblies. Beyond multiple subassemblies of complexes that would normally contain components encoded by mitochondrial DNA, we observed widespread reorganization of the complexome. This included distinct changes in the expression pattern of adenine nucleotide carrier isoforms, other mitochondrial transporters, and components of the protein import machinery. Remarkably, ablation of mitochondrial DNA hardly affected the complexes organizing cristae junctions indicating that the altered cristae morphology in ρ0 mitochondria predominantly resulted from the loss of complex V dimers required to impose narrow curvatures to the inner membrane. Our data provide a comprehensive resource for in-depth analysis of remodeling of the mitochondrial complexome in response to respiratory deficiency.


Assuntos
Adaptação Fisiológica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Complexos Multiproteicos/genética , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Expressão Gênica , Humanos , Mitocôndrias/patologia , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/deficiência , Complexos Multiproteicos/deficiência , Osteoblastos/metabolismo , Osteoblastos/patologia , Fosforilação Oxidativa
2.
FASEB J ; 29(3): 820-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25404709

RESUMO

This study demonstrates that the association of mitochondria with vimentin intermediate filaments (VIFs) measurably increases their membrane potential. This increase is detected by quantitatively comparing the fluorescence intensity of mitochondria stained with the membrane potential-sensitive dye tetramethylrhodamine-ethyl ester (TMRE) in murine vimentin-null fibroblasts with that in the same cells expressing human vimentin (∼35% rise). When vimentin expression is silenced by small hairpin RNA (shRNA) to reduce vimentin by 90%, the fluorescence intensity of mitochondria decreases by 20%. The increase in membrane potential is caused by specific interactions between a subdomain of the non-α-helical N terminus (residues 40 to 93) of vimentin and mitochondria. In rho 0 cells lacking mitochondrial DNA (mtDNA) and consequently missing several key proteins in the mitochondrial respiratory chain (ρ(0) cells), the membrane potential generated by an alternative anaerobic process is insensitive to the interactions between mitochondria and VIF. The results of our studies show that the close association between mitochondria and VIF is important both for determining their position in cells and their physiologic activity.


Assuntos
Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Filamentos Intermediários/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Vimentina/metabolismo , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , DNA Mitocondrial/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Imunofluorescência , Humanos , Ratos
3.
Biomed Microdevices ; 18(3): 41, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27165101

RESUMO

The objective of this study was to determine if plasma membrane vesicles (PMVs) could be exploited for efficient transfer of macro-biomolecules and mitochondria. PMVs were derived from mechanical extrusion, and made fusogenic (fPMVs) by incorporating the glycoprotein G of vesicular stomatitis virus (VSV-G). Confocal microscopy examination revealed that cytoplasmic proteins and mitochondria were enclosed in PMVs as evidenced by tracing with cytoplasmically localized and mitochondria-targeted EGFP, respectively. However, no fluorescence signal was detected in PMVs from cells whose nucleus was labeled with an EGFP-tagged histone H2B. Consistently, qRT-PCR measurement showed that mRNA, miRNA and mitochondrial DNA decreased slightly; while nuclear DNA was not measureable. Further, Western blot analysis revealed that cytoplasmic and membrane-bound proteins fell inconspicuously while nuclear proteins were barely detecsle. In addition, fPMVs carrying cytoplamic DsRed proteins transduced about ~40 % of recipient cells. The transfer of protein was further confirmed by using the inducible Cre/loxP system. Mitochondria transfer was found in about 20 % recipient cells after incubation with fPMVs for 5 h. To verify the functionalities of transferred mitochondria, mitochodria-deficient HeLa cells (Rho0) were generated and cultivated with fPMVs. Cell enumeration demonstrated that adding fPMVs into culture media stimulated Rho0 cell growth by 100 % as compared to the control. Lastly, MitoTracker and JC-1 staining showed that transferred mitochondria maintained normal shape and membrane potential in Rho0 cells. This study established a time-saving and efficient approach to delivering proteins and mitochondria by using fPMVs, which would be helpful for finding a cure to mitochondria-associated diseases. Graphical abstract Schematic of the delivery of macro-biomolecules and organelles by fPMVs. VSV-G-expressing cells were extruded through a 3 µm polycarbonate membrane filter to generate fusogenic plasma membrane vesicles (fPMVs), which contain bioactive molecules and organelles but not the nucleus. fPMVs can be endocytosed by target cells, while the cargo is released due to low-pH induced membrane fusion. These nucleus-free fPMVs are efficient at delivery of cytoplasmic proteins and mitochondria, leading to recovery of mitochondrial biogenesis and proliferative ability in mitochondria-deficient cells.


Assuntos
Membrana Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Núcleo Celular , DNA Mitocondrial/genética , Genômica , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , MicroRNAs/genética , Cimento de Policarboxilato/química , RNA Mensageiro/genética , Análise de Sequência de DNA , Vírus da Estomatite Vesicular Indiana
4.
J Cell Mol Med ; 18(8): 1694-703, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24912369

RESUMO

In eukaryotic cells, mitochondrial dysfunction is associated with a variety of human diseases. Delivery of exogenous functional mitochondria into damaged cells has been proposed as a mechanism of cell transplant and physiological repair for damaged tissue. We here demonstrated that isolated mitochondria can be transferred into homogeneic and xenogeneic cells by simple co-incubation using genetically labelled mitochondria, and elucidated the mechanism and the effect of direct mitochondrial transfer. Intracellular localization of exogenous mitochondria was confirmed by PCR, real-time PCR, live fluorescence imaging, three-dimensional reconstruction imaging, continuous time-lapse microscopic observation, flow cytometric analysis and immunoelectron microscopy. Isolated homogeneic mitochondria were transferred into human uterine endometrial gland-derived mesenchymal cells in a dose-dependent manner. Moreover, mitochondrial transfer rescued the mitochondrial respiratory function and improved the cellular viability in mitochondrial DNA-depleted cells and these effects lasted several days. Finally, we discovered that mitochondrial internalization involves macropinocytosis. In conclusion, these data support direct transfer of exogenous mitochondria as a promising approach for the treatment of various diseases.


Assuntos
Colo do Útero/fisiologia , Endométrio/fisiologia , Mesoderma/fisiologia , Mitocôndrias/transplante , Miócitos Cardíacos/fisiologia , Pinocitose , Animais , Sobrevivência Celular , Células Cultivadas , Colo do Útero/citologia , DNA Mitocondrial/genética , Endométrio/citologia , Metabolismo Energético , Feminino , Citometria de Fluxo , Humanos , Imageamento Tridimensional , Mesoderma/citologia , Microscopia Confocal , Microscopia Imunoeletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Miócitos Cardíacos/citologia , Ratos , Reação em Cadeia da Polimerase em Tempo Real
5.
J Biol Chem ; 288(37): 26594-605, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23884459

RESUMO

Multiple lines of evidence support the notion that DNA ligase III (LIG3), the only DNA ligase found in mitochondria, is essential for viability in both whole organisms and in cultured cells. Previous attempts to generate cells devoid of mitochondrial DNA ligase failed. Here, we report, for the first time, the derivation of viable LIG3-deficient mouse embryonic fibroblasts. These cells lack mtDNA and are auxotrophic for uridine and pyruvate, which may explain the apparent lethality of the Lig3 knock-out observed in cultured cells in previous studies. Cells with severely reduced expression of LIG3 maintain normal mtDNA copy number and respiration but show reduced viability in the face of alkylating and oxidative damage, increased mtDNA degradation in response to oxidative damage, and slow recovery from mtDNA depletion. Our findings clarify the cellular role of LIG3 and establish that the loss of viability in LIG3-deficient cells is conditional and secondary to the ρ(0) phenotype.


Assuntos
DNA Ligases/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Alelos , Animais , Cruzamentos Genéticos , Dano ao DNA , DNA Ligase Dependente de ATP , DNA Ligases/genética , Reparo do DNA , Fibroblastos/metabolismo , Genótipo , Células HeLa , Humanos , Camundongos , Microscopia Confocal , Proteínas Mitocondriais/genética , Oligonucleotídeos/genética , Estresse Oxidativo , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas de Xenopus
6.
DNA (Basel) ; 4(3): 201-211, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39035221

RESUMO

Mammalian cell lines devoid of mitochondrial DNA (mtDNA) are indispensable in studies aimed at elucidating the contribution of mtDNA to various cellular processes or interactions between nuclear and mitochondrial genomes. However, the repertoire of tools for generating such cells (also known as rho-0 or ρ0 cells) remains limited, and approaches remain time- and labor-intensive, ultimately limiting their availability. Ethidium bromide (EtBr), which is most commonly used to induce mtDNA loss in mammalian cells, is cytostatic and mutagenic as it affects both nuclear and mitochondrial genomes. Therefore, there is growing interest in new tools for generating ρ0 cell lines. Here, we examined the utility of 2',3'-dideoxycytidine (ddC, zalcitabine) alone or in combination with EtBr for generating ρ0 cell lines of mouse and human origin as well as inducing the ρ0 state in mouse/human somatic cell hybrids. We report that ddC is superior to EtBr in both immortalized mouse fibroblasts and human 143B cells. Also, unlike EtBr, ddC exhibits no cytostatic effects at the highest concentration tested (200 µM), making it more suitable for general use. We conclude that ddC is a promising new tool for generating mammalian ρ0 cell lines.

7.
Antioxidants (Basel) ; 12(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627592

RESUMO

Mitochondrial Complex I plays a crucial role in the proliferation, chemoresistance, and metastasis of breast cancer (BC) cells. This highlights it as an attractive target for anti-cancer drugs. Using submitochondrial particles, we identified FRV-1, an ortho-carbonyl quinone, which inhibits NADH:duroquinone activity in D-active conformation and reduces the 3ADP state respiration dependent on Complex I, causing mitochondrial depolarization, ATP drop, increased superoxide levels, and metabolic remodeling towards glycolysis in BC cells. Introducing methyl groups at FRV-1 structure produced analogs that acted as electron acceptors at the Complex I level or increased the inhibitory effect of FCCP-stimulated oxygen consumption rate, which correlated with their redox potential, but increased toxicity on RMF-621 human breast fibroblasts was observed. FRV-1 was inactive in the naphthoquinone oxidoreductase 1 (NOQ1)-positive BC cell line, MCF7, but the sensitivity was recovered by dicoumarol, a NOQ1 inhibitor, suggesting that FRV-1 is a NOQ1 substrate. Importantly, FRV-1 selectively inhibited the proliferation, migration, and invasion of NQO1 negative BC cell, MDA-MB-231, in an OXPHOS- and ROS-dependent manner and sensitized it to the BH3 mimetic drug venetoclax. Overall, FRV-1 is a novel Complex I inhibitor in D-active conformation, blocking possibly the re-activation to A-state, producing selective anti-cancer effects in NQO1-negative BC cell lines.

8.
Oncoscience ; 4(11-12): 189-198, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29344557

RESUMO

BACKGROUND: Mitochondrial reprogramming has emerged as a hallmark of cancer pathobiology. Although it is believed this reprogramming is essential for cancer cells to thrive, how it supports cancer pathobiology is unclear. We previously generated colonic ρ0 (rho0) cells with reduced mitochondrial energy function and acquired their transcriptional signature. Here, we utilized a bioinformatics approach to identify their changes linked to cancer pathobiology. METHODS: Human colon cancer HCT116 cells, control and ρ0, were used for qPCR. Bioinformatics analysis: GeneCards, Kaplan-Meier Survival, GENT, cBioPortal. RESULTS: The colonic ρ0 transcriptome was linked with proliferation, DNA replication, survival, tumor morphology, and cancer. Among differentially expressed transcripts, 281 were regulators or biomarkers of human colon cancer especially those with inflammatory microsatellite instability (MSI). We identified and validated novel transcripts in ρ0 cells with altered expression in human colon cancer. Among them DGK1, HTR7, FLRT3, and ZBTB18 co-occurred with established regulators of human colon cancer pathobiology. Also, increased levels of DGKI, FLRT3, ZBTB18, and YPEL1 as well as decreased levels of HTR7, and CALML6 were linked to substantially poorer patient survival. CONCLUSION: We identified established and novel regulators in colon cancer pathobiology that are dependent on mitochondrial energy reprogramming and linked to poorer patient survival.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa