Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Sens J ; 20(13): 6881-6888, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32601522

RESUMO

Several breakthrough applications in biomedical imaging have been reported in the recent years using advanced photoacoustic microscopy imaging systems. While two photon and other optical microscopy systems have recently emerged in portable and wearable form, there is much less work reported on the portable and wearable photoacoustic microscopy (PAM) systems. Working towards this goal, we report our studies on a low-cost and portable photoacoustic microscopy system that uses a custom fabricated 2.5 mm diameter ring ultrasound transducer integrated with a fiber-coupled laser diode. The ultrasound transducer is centered at 17.25 MHz, and shows ~ 45% and ~ 100% fractional bandwidths for ultrasound pulse-echo and photoacoustic A-line signals respectively. To achieve overall system portability, besides the imaging head, other backend imaging system components need to be readily portable as well. In this direction, we have studied the potential use of compact pre-amplifiers, scanning stages and microcontroller based data acquisition and reconstruction for photoacoustic imaging. The portable PAM system is validated by imaging phantoms embedded with light absorbing targets. Future directions that will likely help achieve a completely portable and wearable photoacoustic microscopy system are discussed.

2.
J Biomed Opt ; 24(4): 1-7, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31028693

RESUMO

Given that breast cancer is the second leading cause of cancer-related deaths among women in the United States, it is necessary to continue improving the sensitivity and specificity of breast imaging systems that diagnose breast lesions. Photoacoustic (PA) imaging can provide functional information during in vivo studies and can augment the structural information provided by ultrasound (US) imaging. A full-ring, all-reflective, illumination system for photoacoustic tomography (PAT) coupled to a full-ring US receiver is developed and tested. The US/PA tomography system utilizes a cone mirror and conical reflectors to optimize light delivery for PAT imaging and has the potential to image objects that are placed within the ring US transducer. The conical reflector used in this system distributes the laser energy over a circular cross-sectional area, thereby reducing the overall fluence. This, in turn, allows the operator to increase the laser energy achieving better cross-sectional penetration depth. A proof-of-concept design utilizing a single cone mirror and a parabolic reflector is used for imaging cylindrical phantoms with light-absorbing objects. For the given phantoms, it has been shown that there was no restriction in imaging a given targeted cross-sectional area irrespective of vertical depth, demonstrating the potential of mirror-based, ring-illuminated PAT system. In addition, the all-reflective ring illumination method shows a uniform PA signal across the scanned cross-sectional area.


Assuntos
Técnicas Fotoacústicas , Tomografia , Ultrassonografia Mamária , Desenho de Equipamento , Imagens de Fantasmas , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Tomografia/instrumentação , Tomografia/métodos , Transdutores , Ultrassonografia Mamária/instrumentação , Ultrassonografia Mamária/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa