Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
Mass Spectrom Rev ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556789

RESUMO

Zwitterionic ring-expansion polymerization (ZREP) is a polymerization method in which a cyclic monomer is converted into a cyclic polymer through a zwitterionic intermediate. In this review, we explored the ZREP of various cyclic polymers and how mass spectrometry assists in identifying the product architectures and understanding their intricate reaction mechanism. For the majority of polymers (from a few thousand to a few million Da) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is the most effective mass spectrometry technique to determine the true molecular weight (MW) of the resultant product, but only when the dispersity is low (approximately below 1.2). The key topics covered in this study were the ZREP of cyclic polyesters, cyclic polyamides, and cyclic ethers. In addition, this study also addresses a number of other preliminary topics, including the ZREP of cyclic polycarbonates, cyclic polysiloxanes, and cyclic poly(alkylene phosphates). The purity and efficiency of those syntheses largely depend on the catalyst. Among several catalysts, N-heterocyclic carbenes have exhibited high efficiency in the synthesis of cyclic polyesters and polyamides, whereas tris(pentafluorophenyl)borane [B(C6F5)3] is the most optimal catalyst for cyclic polyether synthesis.

2.
Chemistry ; 30(2): e202302884, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37814820

RESUMO

The sustainable solution to the environmental problem of polymeric materials calls for efficient and well-controlled ring-opening polymerization catalytic systems. Inspired by the highly reactive and stereospecific bimetallic catalysts, three kinds of bimetallic Salen-Mn catalysts supported by biaryl linking moieties are synthesized and applied to polymerization catalysis of lactide (LA) and ϵ-caprolactone (ϵ-CL) in this work. The polymerization is initiated in situ by the ring-opening of epoxide compounds, in which the ionic cocatalyst could accelerate the reaction process. The Mn-Mn coordination effect contributes to the higher activity and iso-selectivity towards LA compared to the mononuclear Salen-Mn catalyst. The reactivity and stereoselectivity are determined by the conformation of catalysts, specifically the Mn-Mn separation and dihedral angle. Finally, the CO2 -controlled switchable polymerizations are carried out with LA and ϵ-CL. The reversibility of the on-off switching operation is influenced by the combination between CO2 molecules and active species. The success in binuclear Salen-Mn catalysts not only expands the range of bimetallic catalyst analogues but also claims the promising potential of Mn-based catalysts in practical and theoretical research.

3.
Chemistry ; : e202401727, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979891

RESUMO

The development of innovative synthetic strategies to create functional polycaprolactones is highly demanded for advanced material applications. In this contribution, we reported a facile synthetic strategy to prepare a class of CL-based monomers (R-TO) derived from epoxides. They readily polymerize via well-controlled ring-opening polymerization (ROP) to afford a series of polyesters P(R-TO) with high molecular weight (Mn up to 350 kDa). Sequential addition copolymerization of MTO and L-lactide (L-LA) allowed to access of a series of ABA triblock copolymers with composition-dependent mechanical properties. Notably, P(L-LA)100-b-P(MTO)500-b-P(L-LA)100 containing the amorphous P(MTO) segment as a soft midblock and crystalline P(L-LA) domain as hard end block behaved as an excellent thermoplastic elastomer (TPE) with high elongation at break (1438±204 %), tensile strength (23.5±1.7 MPa), and outstanding elastic recovery (>88 %).

4.
Chemistry ; 30(44): e202401547, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38818742

RESUMO

Radical polymerization is the most widely applied technique in both industry and fundamental science. However, its major drawback is that it typically yields polymers with non-functional, non-degradable all-carbon backbones-a limitation that radical ring-opening polymerization (rROP) allows to overcome. The last decade has seen a surge in rROP, primarily focused on creating degradable polymers. This pursuit has resulted in the creation of the first readily degradable materials through radical polymerization. Recent years have witnessed innovations in new monomers that address previous design limitations, such as ring strain and reactivity ratios. Furthermore, advances in integrating rROP with reversible deactivation radical polymerization (RDRP) have facilitated the incorporation of complex, customizable chemical payloads into the main polymer chain. This short review discusses the latest developments in monomer design with a focused analysis of their limitations in a broader historical context. Recently evolving strategies for compatibility of rROP monomers with RDRP are discussed, which are key to precision polymer synthesis. The latest chemistry surveyed expands the horizon beyond mere hydrolytic degradation. Now is the time to explore the chemical potential residing in the previously inaccessible polymer backbone.

5.
J Pept Sci ; : e3626, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810988

RESUMO

Polylactide (PLA), a biocompatible and biodegradable polymer, is widely used in diverse biomedical applications. However, the industry standard for converting lactide into PLA involves toxic tin (Sn)-based catalysts. To mitigate the use of these harmful catalysts, other environmentally benign metal-containing agents for efficient lactide polymerization have been studied, but these alternatives are hindered by complex synthesis processes, reactivity issues, and selectivity limitations. To overcome these shortcomings, we explored the catalytic activity of Cu-(Phe)2 and Zn-(Phe)2 metal-amino acid co-assemblies as potential catalysts of the ring-opening polymerization (ROP) of lactide into PLA. Catalytic activity of the assemblies was monitored at different temperatures and solvents using 1H-NMR spectroscopy to determine the catalytic parameters. Notably, Zn-(Phe)2 achieved >99% conversion of lactide to PLA within 12 h in toluene under reflux conditions and was found to have first-order kinetics, whereas Cu-(Phe)2 exhibited significantly lower catalytic activity. Following Zn-(Phe)2-mediated catalysis, the resulting PLA had an average molecular weight of 128 kDa and a dispersity index of 1.25 as determined by gel permeation chromatography. Taken together, our minimalistic approach expands the realm of metal-amino acid-based supramolecular catalytic nanomaterials useful in the ROP of lactide. This advancement shows promise for the future design of simplified biocatalysts in both industrial and biomedical applications.

6.
Macromol Rapid Commun ; : e2400260, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824417

RESUMO

As the demand for sustainable polymers increases, most research efforts have focused on polyesters, which can be bioderived and biodegradable. Yet analogous polythioesters, where one of the oxygen atoms has been replaced by a sulfur atom, remain a relatively untapped source of potential. The incorporation of sulfur allows the polymer to exhibit a wide range of favorable properties, such as thermal resistance, degradability, and high refractive index. Polythioester synthesis represents a frontier in research, holding the promise of paving the way for eco-friendly alternatives to conventional polyesters. Moreover, polythioester research can also open avenues to the development of sustainable and recyclable materials. In the last 25 years, many methods to synthesize polythioesters have been developed. However, to date no industrial synthesis of polythioesters has been developed due to challenges of costs, yields, and the toxicity of the by-products. This review will summarize the recent advances in polythioester synthesis, covering step-growth polymerization, ring-opening polymerization (ROP), and biosynthesis. Crucially, the benefits and challenges of the processes will be highlighted, paying particular attention to their sustainability, with the aim of encouraging further exploration and research into the fast-growing field of polythioesters.

7.
Macromol Rapid Commun ; 45(11): e2400054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471494

RESUMO

The development of visible light-regulated polymerizations for precision synthesis of polymers has drawn considerable attention in the past years. In this study, an ancient dye, indigo, is successfully identified as a new and efficient photoacid catalyst, which can readily promote the ring-opening polymerization of lactones under visible light irradiation in a well-controlled manner, affording the desired polyester products with predictable molecular weights and narrow dispersity. The enhanced acidity of indigos by excitation is crucial to the H-bonding activation of the lactone monomers. Chain extension and block copolymer synthesis are also demonstrated with this method.


Assuntos
Índigo Carmim , Lactonas , Luz , Polimerização , Lactonas/química , Catálise , Índigo Carmim/química , Estrutura Molecular , Processos Fotoquímicos , Polímeros/química , Polímeros/síntese química
8.
Macromol Rapid Commun ; 45(3): e2300524, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37903330

RESUMO

Polyamides (PA) are among the most essential and versatile polymers due to their outstanding characteristics, for example, high chemical resistance and temperature stability. Furthermore, nature-derived monomers can introduce hard-to-synthesize structures into the PAs for unique polymer properties. Pinene, as one of the most abundant terpenes in nature and its presumable stability-giving bicyclic structure, is therefore highly promising. This work presents simple anionic ring-opening polymerizations of ß-pinene lactam (AROP) in-bulk and in solution. PAs with high molecular weights, suitable for further processing, are produced. Their good mechanical, thermal (Td s up to 440 °C), and transparent appearance render them promising high-performance biomaterials. In the following, the suitability of different initiators is discussed. Thereby, it is found that NaH is the most successful for in-bulk polymerization, with a degree of polymerization (DP) of about 322. For solution-AROP, iPrMgCl·LiCl is successfully used for the first time, achieving DPs up to about 163. The obtained PAs are also hot-pressed, and the dynamic mechanical properties are analyzed.


Assuntos
Monoterpenos Bicíclicos , Lactamas , beta-Lactamas , Lactamas/química , Nylons/química , Peso Molecular , Polímeros/química , Florestas , Polimerização
9.
Macromol Rapid Commun ; 45(14): e2400079, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38662380

RESUMO

Protein-polymer conjugates and polymeric nanomaterials hold great promise in many applications including biomaterials, medicine, or nanoelectronics. In this work, the first polymerization-induced self-assembly (PISA) approach performed in aqueous medium enabling protein-polymer conjugates and nanoparticles entirely composed of amino acids is presented by using ring-opening polymerization (ROP). It is indeed shown that aqueous ring-opening polymerization-induced self-assembly (ROPISA) can be used with protein or peptidic macroinitiators without prior chemical modification and afford the simple preparation of nanomaterials with protein-like property, for example, to implement biomimetic thermoresponsivity in drug delivery.


Assuntos
Nanopartículas , Peptídeos , Polimerização , Água , Peptídeos/química , Nanopartículas/química , Água/química , Polímeros/química , Polímeros/síntese química , Proteínas/química , Tamanho da Partícula , Estrutura Molecular
10.
Macromol Rapid Commun ; 45(14): e2400091, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38690992

RESUMO

Within bioplastics, natural poly(3-hydroxybutyrate) (PHB) stands out as fully biocompatible and biodegradable, even in marine environments; however, its high isotacticity and crystallinity limits its mechanical properties and hence its applications. PHB can also be synthesized with different tacticities via a catalytic ring-opening polymerization (ROP) of rac-ß-butyrolactone (BBL), paving the way to PHB with better thermomechanical and processability properties. In this work, the catalyst family is extended based on aluminum phenoxy-imine methyl catalyst [AlMeL2], that reveals efficient in the ROP of BBL, to the halogeno analogous complex [AlClL2]. As well, the impact on the ROP mechanism of different initiators is further explored with a particular focus in dimethylaminopyridine (DMAP), a hardly studied initiator for the ROP of BBL. A thorough mechanistic study is performed that evidences the presence of two concomitant DMAP-mediated mechanisms, that lead to either a DMAP or a crotonate end-capping group. Besides, in order to increase the possibilities of PHB post-polymerization functionalization, the introduction of a side-chain functionality is explored, establishing the copolymerization of BBL with ß-allyloxymethylene propiolactone (BPLOAll), resulting in well-defined P(BBL-co-BPLOAll) copolymers.


Assuntos
4-Butirolactona , Alumínio , Poli-Hidroxialcanoatos , Polimerização , Catálise , 4-Butirolactona/química , 4-Butirolactona/análogos & derivados , Poli-Hidroxialcanoatos/química , Alumínio/química , Estrutura Molecular , Hidroxibutiratos/química , Poli-Hidroxibutiratos
11.
Macromol Rapid Commun ; 45(12): e2400100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520318

RESUMO

Polymerization-induced self-assembly (PISA) has emerged as a scalable one-pot technique to prepare block copolymer (BCP) nanoparticles. Recently, a PISA process, that results in poly(l-lactide)-b-poly(ethylene glycol) BCP nanoparticles coined ring-opening polymerization (ROP)-induced crystallization-driven self-assembly (ROPI-CDSA), was developed. The resulting nanorods demonstrate a strong propensity for aggregation, resulting in the formation of 2D sheets and 3D networks. This article reports the synthesis of poly(N,N-dimethyl acrylamide)-b-poly(l)-lactide BCP nanoparticles by ROPI-CDSA, utilizing a two-step, one-pot approach. A dual-functionalized photoiniferter is first used for controlled radical polymerization of the acrylamido-based monomer, and the resulting polymer serves as a macroinitiator for organocatalyzed ROP to form the solvophobic polyester block. The resulting nanorods are highly stable and display anisotropy at higher molecular weights (>12k Da) and concentrations (>20% solids) than the previous report. This development expands the chemical scope of ROPI-CDSA BCPs and provides readily accessible nanorods made with biocompatible materials.


Assuntos
Nanotubos , Polimerização , Nanotubos/química , Anisotropia , Polímeros/química , Polímeros/síntese química , Poliésteres/química , Poliésteres/síntese química , Polietilenoglicóis/química , Processos Fotoquímicos , Estrutura Molecular , Tamanho da Partícula , Acrilamidas/química
12.
Macromol Rapid Commun ; 45(10): e2300658, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362957

RESUMO

The problem of plastic waste in the environment calls for the development of new polymeric materials designed specifically for easy recycling at the end of their life cycle. Herein, a green polymer system comprising a series of necklace-shaped polydimethylsiloxanes bearing anthracene dimer units is developed. The polymers have low environmental impact and are easily recycled. Further, their flexibility and glass transition temperatures are easy to control. These necklace-shaped inorganic polymers are synthesized by photopolymerizing (dimerizing) anthracene-terminated oligo-dimethylsiloxane monomers. A key achievement of the present work is the successful chemical recovery of the monomers from the polymers through thermal depolymerization, enabling monomer-polymer recycling. By applying equilibrium polymerization with base catalysts, monomers with a controlled distributed chain length are synthesized from monomers with a constant chain length. The necklace-shaped polymers synthesized from these randomized monomers have amorphous structures and readily form transparent films. It is possible to modulate the thermal and mechanical properties of the polymers by controlling the average chain length of the polydimethylsiloxane between the anthracene dimers. This investigation presents a method for the synthesis and cyclic utilization of polymer materials with a wide range of applications, including plastics and elastomers.


Assuntos
Antracenos , Dimetilpolisiloxanos , Polimerização , Antracenos/química , Dimetilpolisiloxanos/química , Dimerização , Estrutura Molecular , Polímeros/química , Polímeros/síntese química , Reciclagem
13.
Macromol Rapid Commun ; 45(15): e2400163, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38690806

RESUMO

Synthesis of monomer-recyclable polyesters solely from CO2 and bulk olefins holds great potential in significantly reducing CO2 emissions and addressing the issue of plastic pollution. Due to the kinetic disadvantage of direct copolymerization of CO2 and bulk olefins compared to homopolymerization of bulk olefins, considerable research attention has been devoted to synthesis of polyester via the ring-opening polymerization (ROP) of a six-membered disubstituted lactone intermediate, 1,2-ethylidene-6-vinyl-tetrahydro-2H-pyran-2-one (𝜹-L), obtained from telomerization of CO2 and 1,3-butadiene. However, the conjugate olefin on the six-membered ring of 𝜹-L leads to serious Michael addition side reactions. Thus, the selective ROP of 𝜹-L, which can precisely control the repeating unit for the production of polyesters potentially amenable to efficient monomer recycling, remains an unresolved challenge. Herein, the first example of selective ROP of 𝜹-L is reported using a combination of organobase and N,N'-Bis[3,5-bis(trifluoromethyl)phenyl]urea as the catalytic system. Systematic modifications of the substituent of the urea show that the presence of electron-deficient 3,5-bis(trifluoromethyl)-phenyl groups is the key to the extraordinary selectivity of ring opening over Michael addition. Efficient monomer recovery of oligo(𝜹-L) is also achieved under mild catalytic conditions.


Assuntos
Butadienos , Dióxido de Carbono , Poliésteres , Polimerização , Butadienos/química , Poliésteres/química , Poliésteres/síntese química , Dióxido de Carbono/química , Estrutura Molecular , Catálise
14.
Macromol Rapid Commun ; 45(15): e2400103, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38597209

RESUMO

N-carboxyanhydride ring-opening polymerization-induced self-assembly (NCA ROPISA) offers a convenient route for generating poly(amino acid)-based nanoparticles in a single step, crucially avoiding the need for post-polymerization self-assembly. Most examples of NCA ROPISA make use of a poly(ethylene glycol) (PEG) hydrophilic stabilizing block, however this non-biodegradable, oil-derived polymer may cause an immunological response in some individuals. Alternative water-soluble polymers are therefore highly sought. This work reports the synthesis of wholly poly(amino acid)-based nanoparticles, through the chain-extension of a polysarcosine macroinitiator with L-Phenylalanine-NCA (L-Phe-NCA) and Alanine-NCA (Ala-NCA), via aqueous NCA ROPISA. The resulting polymeric structures comprise of predominantly anisotropic, rod-like nanoparticles, with morphologies primarily influenced by the secondary structure of the hydrophobic poly(amino acid) that enables their formation.


Assuntos
Nanopartículas , Polimerização , Sarcosina , Nanopartículas/química , Sarcosina/química , Sarcosina/análogos & derivados , Estrutura Molecular , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Polímeros/síntese química , Tamanho da Partícula , Polietilenoglicóis/química , Peptídeos
15.
Macromol Rapid Commun ; 45(15): e2400122, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38831565

RESUMO

Polymers with well-defined structures, synthesized through metal-catalyzed processes, and having end groups exhibiting different polarity and reactivity than the backbone, are gaining considerable attention in both scientific and industrial communities. These polymers show potential applications as fundamental building blocks and additives in the creation of innovative functional materials. Investigations are directed toward identifying the most optimal and uncomplicated synthetic approach by employing a combination of living coordination polymerization mediated by rare-earth metal complexes and C-H bond activation reaction by σ-bond metathesis. This combination directly yields catalysts with diverse functional groups from a single precursor, enabling the production of terminal-functionalized polymers without the need for sequential reactions, such as termination reactions. The utilization of this innovative methodology allows for precise control over end-group functionalities, providing a versatile approach to tailor the properties and applications of the resulting polymers. This perspective discusses the principles, challenges, and potential advancements associated with this synthetic strategy, highlighting its significance in advancing the interface of metalorganic chemistry, polymer chemistry, and materials science.


Assuntos
Complexos de Coordenação , Metais Terras Raras , Polimerização , Polímeros , Catálise , Metais Terras Raras/química , Polímeros/química , Polímeros/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Estrutura Molecular
16.
Macromol Rapid Commun ; 45(2): e2300470, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37716013

RESUMO

Herein, an evaluation of the initial step of benzoxazine polymerization is presented by mass spectrometry, with a focus on differentiating the phenoxy and phenolic products formed by distinct pathways of the cationic ring opening polymerization (ROP) mechanism of polybenzoxazine formation. The use of infrared multiple photon dissociation (IRMPD) and ion mobility spectrometry (IMS) techniques allows for differentiation of the two pathways and provides valuable insights into the ROP mechanism. The results suggest that type I pathway is favored in the initial stages of the reaction yielding the phenoxy product, while type II product should be observed at later stages when the phenoxy product would interconvert to the most stable type II phenolic product. Overall, the findings presented here provide important information on the initial step of the benzoxazine polymerization, allowing the development of optimal polymerization conditions and represents a way to evaluate other multifunctional polymerization processes.


Assuntos
Benzoxazinas , Fenóis , Polimerização , Benzoxazinas/química , Fenóis/química , Cátions
17.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338928

RESUMO

The low percentage of recyclability of the polymeric materials obtained by olefin transition metal (TM) polymerization catalysis has increased the interest in their substitution with more eco-friendly materials with reliable physical and mechanical properties. Among the variety of known biodegradable polymers, linear aliphatic polyesters produced by ring-opening polymerization (ROP) of cyclic esters occupy a prominent position. The polymer properties are highly dependent on the macromolecule microstructure, and the control of stereoselectivity is necessary for providing materials with precise and finely tuned properties. In this review, we aim to outline the main synthetic routes, the physical properties and also the applications of three commercially available biodegradable materials: Polylactic acid (PLA), Poly(Lactic-co-Glycolic Acid) (PLGA), and Poly(3-hydroxybutyrate) (P3HB), all of three easily accessible via ROP. In this framework, understanding the origin of enantioselectivity and the factors that determine it is then crucial for the development of materials with suitable thermal and mechanical properties.


Assuntos
Ésteres , Poliésteres , Polimerização , Ésteres/química , Poliésteres/química , Polímeros , Ácido 3-Hidroxibutírico
18.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731630

RESUMO

A series of novel amine triphenolate iron complexes were synthesized and characterized using UV, IR, elemental analysis, and high-resolution mass spectrometry. These complexes were applied to the ring-opening polymerization (ROP) of cyclohexene oxide (CHO), demonstrating excellent activity (TOF > 11050 h-1) in the absence of a co-catalyst. In addition, complex C1 maintained the dimer in the presence of the reaction substrate CHO, catalyzing the ring-opening polymerization of CHO to PCHO through bimetallic synergy. Furthermore, a two-component system consisting of iron complexes and TBAB displayed the ability to catalyze the reaction of CHO with CO2, resulting in the formation of cis-cyclic carbonate with high selectivity. Complex C4 exhibited the highest catalytic activity, achieving 80% conversion of CHO at a CHO/C4/TBAB molar ratio of 2000/1/8 and a CO2 pressure of 3 MPa for 16 h at 100 °C, while maintaining >99% selectivity of cis-cyclic carbonates, which demonstrated good conversion and selectivity.

19.
Angew Chem Int Ed Engl ; 63(29): e202405382, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682252

RESUMO

Isotactic polythioesters (PTEs) that are thioester analogs to natural polyhydroxyalkanoates (PHAs) have attracted growing attention due to their distinct properties. However, the development of chemically synthetic methods for preparing isotactic PTEs has long been an intricate endeavour. Herein, we report the successful synthesis of perfectly isotactic PTEs via stereocontrolled ring-opening polymerization. This binaphthalene-salen aluminium (SalBinam-Al) catalyst promoted a robust polymerization of rac-α-substituted-ß-propiothiolactones (rac-BTL and rac-PTL) with highly kinetic resolution, affording perfectly isotactic P(BTL) and P(PTL) with Mn up to 276 kDa. Impressively, the isotactic P(BTL) formed a supramolecular stereocomplex with improved thermal property (Tm=204 °C). Ultimately, this kinetic resolution polymerization enabled the facile isolation of enantiopure (S)-BTL, which could efficiently convert to an important pharmaceutical building block (S)-2-benzyl-3-mercapto-propanoic acid. Isotactic P(PTL) served as a tough and ductile material comparable to the commercialized polyolefins. This synthetic system allowed to access of isotactic PTEs, establishing a powerful platform for the discovery of sustainable plastics.

20.
Angew Chem Int Ed Engl ; 63(27): e202404207, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647637

RESUMO

Alkyl borane compounds-mediated polymerizations have expanded to Lewis pair polymerization, free radical polymerization, ionic ring-opening polymerization, and polyhomologation. The bifunctional organoborane catalysts that contain the Lewis acid and ammonium or phosphonium salt in one molecule have demonstrated superior catalytic performance for ring-opening polymerization of epoxides and ring-opening copolymerization of epoxides and CO2 than their two-component analogues, i.e., the blend of organoborane and ammonium or phosphonium salt. To explore the origin of the differences of the one-component and two-component organoborane catalysts, here we conducted a systematic investigation on the catalytic performances of these two kinds of organoborane catalysts via terpolymerization of epoxide, carbon dioxide and anhydride. The resultant terpolymers produced independently by bifunctional and binary organoborane catalyst exhibited distinct microstructures, where a series of gradient polyester-polycarbonate terpolymers with varying polyester content were afforded using the bifunctional catalyst, while tapering diblock terpolymers were obtained using the binary system. The bifunctional catalyst enhances the competitiveness of CO2 insertion than anhydride, which leads to the premature incorporation of CO2 into the polymer chains and ultimately results in the formation of gradient terpolymers. DFT calculations revealed the role of electrostatic interaction and charge distribution caused by intramolecular synergistic effect for bifunctional organoborane catalyst.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa