Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proteins ; 92(8): 946-958, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38597224

RESUMO

Clostridium thermocellum is a potential microbial platform to convert abundant plant biomass to biofuels and other renewable chemicals. It efficiently degrades lignocellulosic biomass using a surface displayed cellulosome, a megadalton sized multienzyme containing complex. The enzymatic composition and architecture of the cellulosome is controlled by several transmembrane biomass-sensing RsgI-type anti-σ factors. Recent studies suggest that these factors transduce signals from the cell surface via a conserved RsgI extracellular (CRE) domain (also called a periplasmic domain) that undergoes autoproteolysis through an incompletely understood mechanism. Here we report the structure of the autoproteolyzed CRE domain from the C. thermocellum RsgI9 anti-σ factor, revealing that the cleaved fragments forming this domain associate to form a stable α/ß/α sandwich fold. Based on AlphaFold2 modeling, molecular dynamics simulations, and tandem mass spectrometry, we propose that a conserved Asn-Pro bond in RsgI9 autoproteolyzes via a succinimide intermediate whose formation is promoted by a conserved hydrogen bond network holding the scissile peptide bond in a strained conformation. As other RsgI anti-σ factors share sequence homology to RsgI9, they likely autoproteolyze through a similar mechanism.


Assuntos
Proteínas de Bactérias , Clostridium thermocellum , Simulação de Dinâmica Molecular , Proteólise , Clostridium thermocellum/metabolismo , Clostridium thermocellum/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fator sigma/química , Fator sigma/metabolismo , Fator sigma/genética , Sequência de Aminoácidos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Celulossomas/metabolismo , Celulossomas/química , Cristalografia por Raios X , Espectrometria de Massas em Tandem , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
2.
Proteins ; 87(11): 917-930, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31162722

RESUMO

Cellulolytic clostridia use a highly efficient cellulosome system to degrade polysaccharides. To regulate genes encoding enzymes of the multi-enzyme cellulosome complex, certain clostridia contain alternative sigma I (σI ) factors that have cognate membrane-associated anti-σI factors (RsgIs) which act as polysaccharide sensors. In this work, we analyzed the structure-function relationship of the extracellular sensory elements of Clostridium (Ruminiclostridium) thermocellum and Clostridium clariflavum (RsgI3 and RsgI4, respectively). These elements were selected for comparison, as each comprised two tandem PA14-superfamily motifs. The X-ray structures of the PA14 modular dyads from the two bacterial species were determined, both of which showed a high degree of structural and sequence similarity, although their binding preferences differed. Bioinformatic approaches indicated that the DNA sequence of promoter of sigI/rsgI operons represents a strong signature, which helps to differentiate binding specificity of the structurally similar modules. The σI4 -dependent C. clariflavum promoter sequence correlates with binding of RsgI4_PA14 to xylan and was identified in genes encoding xylanases, whereas the σI3 -dependent C. thermocellum promoter sequence correlates with RsgI3_PA14 binding to pectin and regulates pectin degradation-related genes. Structural similarity between clostridial PA14 dyads to PA14-containing proteins in yeast helped identify another crucial signature element: the calcium-binding loop 2 (CBL2), which governs binding specificity. Variations in the five amino acids that constitute this loop distinguish the pectin vs xylan specificities. We propose that the first module (PA14A ) is dominant in directing the binding to the ligand in both bacteria. The two X-ray structures of the different PA14 dyads represent the first reported structures of tandem PA14 modules.


Assuntos
Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Clostridium/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biomassa , Celulossomas/química , Celulossomas/genética , Clostridium/química , Clostridium/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , Alinhamento de Sequência
3.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 522-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531486

RESUMO

The anaerobic, thermophilic, cellulosome-producing bacterium Clostridium thermocellum relies on a variety of carbohydrate-active enzymes in order to efficiently break down complex carbohydrates into utilizable simple sugars. The regulation mechanism of the cellulosomal genes was unknown until recently, when genomic analysis revealed a set of putative operons in C. thermocellum that encode σI factors (i.e. alternative σ factors that control specialized regulon activation) and their cognate anti-σI factor (RsgI). These putative anti-σI-factor proteins have modules that are believed to be carbohydrate sensors. Three of these modules were crystallized and their three-dimensional structures were solved. The structures show a high overall degree of sequence and structural similarity to the cellulosomal family 3 carbohydrate-binding modules (CBM3s). The structures of the three carbohydrate sensors (RsgI-CBM3s) and a reference CBM3 are compared in the context of the structural determinants for the specificity of cellulose and complex carbohydrate binding. Fine structural variations among the RsgI-CBM3s appear to result in alternative substrate preferences for each of the sensors.


Assuntos
Celulose/química , Clostridium thermocellum/química , Proteínas Repressoras/química , Fator sigma/química , Transdução de Sinais , Sequência de Aminoácidos , Biomassa , Celulose/metabolismo , Celulossomas/química , Celulossomas/metabolismo , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Óperon , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Fator sigma/genética , Fator sigma/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
4.
J Plant Physiol ; 171(2): 25-34, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24331416

RESUMO

The phytohormone abscisic acid (ABA) plays important roles in response to environmental stress as well as in seed maturation and dormancy. In common wheat, quantitative trait loci (QTLs) for ABA responsiveness at the seedling stage have been reported on chromosomes 1B, 2A, 3A, 6D and 7B. In this study, we identified a novel QTL for ABA responsiveness on chromosome 5A using an F2 population derived from a cross between the common wheat cultivar Chinese Spring (CS) and a chromosome substitution line of CS with chromosome 5A of cultivar Hope (Hope5A). This QTL was found in a similar chromosomal region to previously reported QTLs for drought tolerance and seed dormancy. Physiological characterization of the QTL revealed a small effect on dehydration tolerance and seed dormancy. The rate of water loss from leaves during dehydration was lower, and transcript accumulation of the cold responsive (COR)/late embryogenesis abundant (LEA) genes Wrab18 and Wdhn13 tended to be higher under dehydration stress in F2 individuals carrying the Hope allele of the QTL, which also showed higher ABA responsiveness than the CS allele-carrying individuals. Seed dormancy of individuals carrying the Hope allele also tended to be lower than those carrying the CS allele. Our results suggest that variation in ABA responsiveness among common wheat cultivars is at least partly determined by the 5A QTL, and that this QTL contributes to development of dehydration and preharvest sprouting tolerance.


Assuntos
Ácido Abscísico/fisiologia , Cromossomos de Plantas , Locos de Características Quantitativas , Triticum/genética , Água/fisiologia , Mapeamento Cromossômico , Dormência de Plantas , Plântula/fisiologia , Estresse Fisiológico , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa