Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 778
Filtrar
1.
Cell ; 187(21): 5935-5950.e18, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39368476

RESUMO

Diatoms are central to the global carbon cycle. At the heart of diatom carbon fixation is an overlooked organelle called the pyrenoid, where concentrated CO2 is delivered to densely packed Rubisco. Diatom pyrenoids fix approximately one-fifth of global CO2, but the protein composition of this organelle is largely unknown. Using fluorescence protein tagging and affinity purification-mass spectrometry, we generate a high-confidence spatially defined protein-protein interaction network for the diatom pyrenoid. Within our pyrenoid interaction network are 10 proteins with previously unknown functions. We show that six of these form a shell that encapsulates the Rubisco matrix and is critical for pyrenoid structural integrity, shape, and function. Although not conserved at a sequence or structural level, the diatom pyrenoid shares some architectural similarities to prokaryotic carboxysomes. Collectively, our results support the convergent evolution of pyrenoids across the two main plastid lineages and uncover a major structural and functional component of global CO2 fixation.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Diatomáceas , Organelas , Ribulose-Bifosfato Carboxilase , Diatomáceas/metabolismo , Dióxido de Carbono/metabolismo , Organelas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Mapas de Interação de Proteínas , Fotossíntese
2.
Annu Rev Biochem ; 92: 385-410, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37127263

RESUMO

Carbon fixation is the process by which CO2 is converted from a gas into biomass. The Calvin-Benson-Bassham cycle (CBB) is the dominant carbon-consuming pathway on Earth, driving >99.5% of the ∼120 billion tons of carbon that are converted to sugar by plants, algae, and cyanobacteria. The carboxylase enzyme in the CBB, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fixes one CO2 molecule per turn of the cycle into bioavailable sugars. Despite being critical to the assimilation of carbon, rubisco's kinetic rate is not very fast, limiting flux through the pathway. This bottleneck presents a paradox: Why has rubisco not evolved to be a better catalyst? Many hypothesize that the catalytic mechanism of rubisco is subject to one or more trade-offs and that rubisco variants have been optimized for their native physiological environment. Here, we review the evolution and biochemistry of rubisco through the lens of structure and mechanism in order to understand what trade-offs limit its improvement. We also review the many attempts to improve rubisco itself and thereby promote plant growth.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese
3.
Cell ; 183(2): 457-473.e20, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979320

RESUMO

Rubisco, the key enzyme of CO2 fixation in photosynthesis, is prone to inactivation by inhibitory sugar phosphates. Inhibited Rubisco undergoes conformational repair by the hexameric AAA+ chaperone Rubisco activase (Rca) in a process that is not well understood. Here, we performed a structural and mechanistic analysis of cyanobacterial Rca, a close homolog of plant Rca. In the Rca:Rubisco complex, Rca is positioned over the Rubisco catalytic site under repair and pulls the N-terminal tail of the large Rubisco subunit (RbcL) into the hexamer pore. Simultaneous displacement of the C terminus of the adjacent RbcL opens the catalytic site for inhibitor release. An alternative interaction of Rca with Rubisco is mediated by C-terminal domains that resemble the small Rubisco subunit. These domains, together with the N-terminal AAA+ hexamer, ensure that Rca is packaged with Rubisco into carboxysomes. The cyanobacterial Rca is a dual-purpose protein with functions in Rubisco repair and carboxysome organization.


Assuntos
Cianobactérias/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Organelas/metabolismo , Fotossíntese/fisiologia , Ribulose-Bifosfato Carboxilase/fisiologia , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/metabolismo
4.
Cell ; 179(6): 1255-1263.e12, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31778652

RESUMO

The living world is largely divided into autotrophs that convert CO2 into biomass and heterotrophs that consume organic compounds. In spite of widespread interest in renewable energy storage and more sustainable food production, the engineering of industrially relevant heterotrophic model organisms to use CO2 as their sole carbon source has so far remained an outstanding challenge. Here, we report the achievement of this transformation on laboratory timescales. We constructed and evolved Escherichia coli to produce all its biomass carbon from CO2. Reducing power and energy, but not carbon, are supplied via the one-carbon molecule formate, which can be produced electrochemically. Rubisco and phosphoribulokinase were co-expressed with formate dehydrogenase to enable CO2 fixation and reduction via the Calvin-Benson-Bassham cycle. Autotrophic growth was achieved following several months of continuous laboratory evolution in a chemostat under intensifying organic carbon limitation and confirmed via isotopic labeling.


Assuntos
Biomassa , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Escherichia coli/metabolismo , Adaptação Fisiológica/genética , Aminoácidos/metabolismo , Processos Autotróficos/fisiologia , Isótopos de Carbono , Evolução Molecular Direcionada , Escherichia coli/genética , Marcação por Isótopo , Engenharia Metabólica , Análise do Fluxo Metabólico , Mutação/genética
5.
Cell ; 171(1): 133-147.e14, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938113

RESUMO

Approximately one-third of global CO2 fixation is performed by eukaryotic algae. Nearly all algae enhance their carbon assimilation by operating a CO2-concentrating mechanism (CCM) built around an organelle called the pyrenoid, whose protein composition is largely unknown. Here, we developed tools in the model alga Chlamydomonas reinhardtii to determine the localizations of 135 candidate CCM proteins and physical interactors of 38 of these proteins. Our data reveal the identity of 89 pyrenoid proteins, including Rubisco-interacting proteins, photosystem I assembly factor candidates, and inorganic carbon flux components. We identify three previously undescribed protein layers of the pyrenoid: a plate-like layer, a mesh layer, and a punctate layer. We find that the carbonic anhydrase CAH6 is in the flagella, not in the stroma that surrounds the pyrenoid as in current models. These results provide an overview of proteins operating in the eukaryotic algal CCM, a key process that drives global carbon fixation.


Assuntos
Proteínas de Algas/metabolismo , Ciclo do Carbono , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Proteínas de Algas/química , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Chlamydomonas reinhardtii/química , Cloroplastos/química , Proteínas Luminescentes/análise , Microscopia Confocal , Fotossíntese , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo
6.
Cell ; 171(1): 148-162.e19, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938114

RESUMO

Approximately 30%-40% of global CO2 fixation occurs inside a non-membrane-bound organelle called the pyrenoid, which is found within the chloroplasts of most eukaryotic algae. The pyrenoid matrix is densely packed with the CO2-fixing enzyme Rubisco and is thought to be a crystalline or amorphous solid. Here, we show that the pyrenoid matrix of the unicellular alga Chlamydomonas reinhardtii is not crystalline but behaves as a liquid that dissolves and condenses during cell division. Furthermore, we show that new pyrenoids are formed both by fission and de novo assembly. Our modeling predicts the existence of a "magic number" effect associated with special, highly stable heterocomplexes that influences phase separation in liquid-like organelles. This view of the pyrenoid matrix as a phase-separated compartment provides a paradigm for understanding its structure, biogenesis, and regulation. More broadly, our findings expand our understanding of the principles that govern the architecture and inheritance of liquid-like organelles.


Assuntos
Chlamydomonas reinhardtii/citologia , Cloroplastos/ultraestrutura , Proteínas de Algas/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Biogênese de Organelas , Ribulose-Bifosfato Carboxilase/metabolismo
7.
EMBO J ; 43(14): 3072-3083, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806660

RESUMO

Autotrophy is the basis for complex life on Earth. Central to this process is rubisco-the enzyme that catalyzes almost all carbon fixation on the planet. Yet, with only a small fraction of rubisco diversity kinetically characterized so far, the underlying biological factors driving the evolution of fast rubiscos in nature remain unclear. We conducted a high-throughput kinetic characterization of over 100 bacterial form I rubiscos, the most ubiquitous group of rubisco sequences in nature, to uncover the determinants of rubisco's carboxylation velocity. We show that the presence of a carboxysome CO2 concentrating mechanism correlates with faster rubiscos with a median fivefold higher rate. In contrast to prior studies, we find that rubiscos originating from α-cyanobacteria exhibit the highest carboxylation rates among form I enzymes (≈10 s-1 median versus <7 s-1 in other groups). Our study systematically reveals biological and environmental properties associated with kinetic variation across rubiscos from nature.


Assuntos
Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Cinética , Dióxido de Carbono/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cianobactérias/metabolismo , Cianobactérias/enzimologia , Cianobactérias/genética , Bactérias/enzimologia , Bactérias/metabolismo , Bactérias/genética
8.
Trends Biochem Sci ; 48(10): 832-834, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487910

RESUMO

Synthetically reconstructed carboxysomes form the basis of CO2-concentrating mechanisms (CCMs) that could enhance the photosynthetic efficiency of crops and improve yield. Recently, Chen et al. revealed another step toward the reconstruction of bacterial carboxysomes in plants, reporting the formation of almost-complete carboxysomes in the chloroplast of Nicotiana tabacum.


Assuntos
Cianobactérias , Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Organelas , Cloroplastos
9.
Proc Natl Acad Sci U S A ; 121(16): e2311390121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593075

RESUMO

Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.


Assuntos
Archaea , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Archaea/metabolismo , Fotossíntese , Glicolatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Oxigenases/metabolismo , Pentoses
10.
Proc Natl Acad Sci U S A ; 121(11): e2321050121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442173

RESUMO

Rubisco is the primary entry point for carbon into the biosphere. However, rubisco is widely regarded as inefficient leading many to question whether the enzyme can adapt to become a better catalyst. Through a phylogenetic investigation of the molecular and kinetic evolution of Form I rubisco we uncover the evolutionary trajectory of rubisco kinetic evolution in angiosperms. We show that rbcL is among the 1% of slowest-evolving genes and enzymes on Earth, accumulating one nucleotide substitution every 0.9 My and one amino acid mutation every 7.2 My. Despite this, rubisco catalysis has been continually evolving toward improved CO2/O2 specificity, carboxylase turnover, and carboxylation efficiency. Consistent with this kinetic adaptation, increased rubisco evolution has led to a concomitant improvement in leaf-level CO2 assimilation. Thus, rubisco has been slowly but continually evolving toward improved catalytic efficiency and CO2 assimilation in plants.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Filogenia , Aminoácidos , Catálise
11.
Proc Natl Acad Sci U S A ; 121(10): e2318542121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408230

RESUMO

Pyrenoids are microcompartments that are universally found in the photosynthetic plastids of various eukaryotic algae. They contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and play a pivotal role in facilitating CO2 assimilation via CO2-concentrating mechanisms (CCMs). Recent investigations involving model algae have revealed that pyrenoid-associated proteins participate in pyrenoid biogenesis and CCMs. However, these organisms represent only a small part of algal lineages, which limits our comprehensive understanding of the diversity and evolution of pyrenoid-based CCMs. Here we report a pyrenoid proteome of the chlorarachniophyte alga Amorphochlora amoebiformis, which possesses complex plastids acquired through secondary endosymbiosis with green algae. Proteomic analysis using mass spectrometry resulted in the identification of 154 potential pyrenoid components. Subsequent localization experiments demonstrated the specific targeting of eight proteins to pyrenoids. These included a putative Rubisco-binding linker, carbonic anhydrase, membrane transporter, and uncharacterized GTPase proteins. Notably, most of these proteins were unique to this algal lineage. We suggest a plausible scenario in which pyrenoids in chlorarachniophytes have evolved independently, as their components are not inherited from green algal pyrenoids.


Assuntos
Dióxido de Carbono , Clorófitas , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Proteômica , Plastídeos/metabolismo , Fotossíntese/genética , Clorófitas/genética , Clorófitas/metabolismo , Plantas/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(4): e2311013121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241434

RESUMO

The pyrenoid is a chloroplastic microcompartment in which most algae and some terrestrial plants condense the primary carboxylase, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) as part of a CO2-concentrating mechanism that improves the efficiency of CO2 capture. Engineering a pyrenoid-based CO2-concentrating mechanism (pCCM) into C3 crop plants is a promising strategy to enhance yield capacities and resilience to the changing climate. Many pyrenoids are characterized by a sheath of starch plates that is proposed to act as a barrier to limit CO2 diffusion. Recently, we have reconstituted a phase-separated "proto-pyrenoid" Rubisco matrix in the model C3 plant Arabidopsis thaliana using proteins from the alga with the most well-studied pyrenoid, Chlamydomonas reinhardtii [N. Atkinson, Y. Mao, K. X. Chan, A. J. McCormick, Nat. Commun. 11, 6303 (2020)]. Here, we describe the impact of introducing the Chlamydomonas proteins StArch Granules Abnormal 1 (SAGA1) and SAGA2, which are associated with the regulation of pyrenoid starch biogenesis and morphology. We show that SAGA1 localizes to the proto-pyrenoid in engineered Arabidopsis plants, which results in the formation of atypical spherical starch granules enclosed within the proto-pyrenoid condensate and adjacent plate-like granules that partially cover the condensate, but without modifying the total amount of chloroplastic starch accrued. Additional expression of SAGA2 further increases the proportion of starch synthesized as adjacent plate-like granules that fully encircle the proto-pyrenoid. Our findings pave the way to assembling a diffusion barrier as part of a functional pCCM in vascular plants, while also advancing our understanding of the roles of SAGA1 and SAGA2 in starch sheath formation and broadening the avenues for engineering starch morphology.


Assuntos
Arabidopsis , Chlamydomonas reinhardtii , Arabidopsis/genética , Arabidopsis/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Fotossíntese , Amido/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(50): e2308933120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064510

RESUMO

The bacterial chaperonin GroEL-GroES promotes protein folding through ATP-regulated cycles of substrate protein binding, encapsulation, and release. Here, we have used cryoEM to determine structures of GroEL, GroEL-ADP·BeF3, and GroEL-ADP·AlF3-GroES all complexed with the model substrate Rubisco. Our structures provide a series of snapshots that show how the conformation and interactions of non-native Rubisco change as it proceeds through the GroEL-GroES reaction cycle. We observe specific charged and hydrophobic GroEL residues forming strong initial contacts with non-native Rubisco. Binding of ATP or ADP·BeF3 to GroEL-Rubisco results in the formation of an intermediate GroEL complex displaying striking asymmetry in the ATP/ADP·BeF3-bound ring. In this ring, four GroEL subunits bind Rubisco and the other three are in the GroES-accepting conformation, suggesting how GroEL can recruit GroES without releasing bound substrate. Our cryoEM structures of stalled GroEL-ADP·AlF3-Rubisco-GroES complexes show Rubisco folding intermediates interacting with GroEL-GroES via different sets of residues.


Assuntos
Trifosfato de Adenosina , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperonina 60/metabolismo , Chaperonina 10/química , Dobramento de Proteína , Ligação Proteica
14.
Proc Natl Acad Sci U S A ; 120(20): e2300466120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155899

RESUMO

The history of Earth's carbon cycle reflects trends in atmospheric composition convolved with the evolution of photosynthesis. Fortunately, key parts of the carbon cycle have been recorded in the carbon isotope ratios of sedimentary rocks. The dominant model used to interpret this record as a proxy for ancient atmospheric CO2 is based on carbon isotope fractionations of modern photoautotrophs, and longstanding questions remain about how their evolution might have impacted the record. Therefore, we measured both biomass (εp) and enzymatic (εRubisco) carbon isotope fractionations of a cyanobacterial strain (Synechococcus elongatus PCC 7942) solely expressing a putative ancestral Form 1B rubisco dating to ≫1 Ga. This strain, nicknamed ANC, grows in ambient pCO2 and displays larger εp values than WT, despite having a much smaller εRubisco (17.23 ± 0.61‰ vs. 25.18 ± 0.31‰, respectively). Surprisingly, ANC εp exceeded ANC εRubisco in all conditions tested, contradicting prevailing models of cyanobacterial carbon isotope fractionation. Such models can be rectified by introducing additional isotopic fractionation associated with powered inorganic carbon uptake mechanisms present in Cyanobacteria, but this amendment hinders the ability to accurately estimate historical pCO2 from geological data. Understanding the evolution of rubisco and the CO2 concentrating mechanism is therefore critical for interpreting the carbon isotope record, and fluctuations in the record may reflect the evolving efficiency of carbon fixing metabolisms in addition to changes in atmospheric CO2.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Isótopos de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Fotossíntese
15.
Proc Natl Acad Sci U S A ; 120(25): e2304833120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37311001

RESUMO

The slow kinetics and poor substrate specificity of the key photosynthetic CO2-fixing enzyme Rubisco have prompted the repeated evolution of Rubisco-containing biomolecular condensates known as pyrenoids in the majority of eukaryotic microalgae. Diatoms dominate marine photosynthesis, but the interactions underlying their pyrenoids are unknown. Here, we identify and characterize the Rubisco linker protein PYCO1 from Phaeodactylum tricornutum. PYCO1 is a tandem repeat protein containing prion-like domains that localizes to the pyrenoid. It undergoes homotypic liquid-liquid phase separation (LLPS) to form condensates that specifically partition diatom Rubisco. Saturation of PYCO1 condensates with Rubisco greatly reduces the mobility of droplet components. Cryo-electron microscopy and mutagenesis data revealed the sticker motifs required for homotypic and heterotypic phase separation. Our data indicate that the PYCO1-Rubisco network is cross-linked by PYCO1 stickers that oligomerize to bind to the small subunits lining the central solvent channel of the Rubisco holoenzyme. A second sticker motif binds to the large subunit. Pyrenoidal Rubisco condensates are highly diverse and tractable models of functional LLPS.


Assuntos
Diatomáceas , Príons , Ribulose-Bifosfato Carboxilase/genética , Microscopia Crioeletrônica , Condensados Biomoleculares , Diatomáceas/genética
16.
Plant J ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080917

RESUMO

Photosynthetic and chemosynthetic extremophiles have evolved adaptations to thrive in challenging environments by finely adjusting their metabolic pathways through evolutionary processes. A prime adaptation target to allow autotrophy in extreme conditions is the enzyme Rubisco, which plays a central role in the conversion of inorganic to organic carbon. Here, we present an extensive compilation of Rubisco kinetic traits from a wide range of species of bacteria, archaea, algae, and plants, sorted by phylogenetic group, Rubisco type, and extremophile type. Our results show that Rubisco kinetics for the few extremophile organisms reported up to date are placed at the margins of the enzyme's natural variability. Form ID Rubisco from thermoacidophile rhodophytes and form IB Rubisco from halophile terrestrial plants exhibit higher specificity and affinity for CO2 than their non-extremophilic counterparts, as well as higher carboxylation efficiency, whereas form ID Rubisco from psychrophile organisms possess lower affinity for O2. Additionally, form IB Rubisco from thermophile cyanobacteria shows enhanced CO2 specificity when compared to form IB non-extremophilic cyanobacteria. Overall, these findings highlight the unique characteristics of extremophile Rubisco enzymes and provide useful clues to guide next explorations aimed at finding more efficient Rubiscos.

17.
Plant J ; 117(2): 483-497, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37901950

RESUMO

Plants grown under low magnesium (Mg) soils are highly susceptible to encountering light intensities that exceed the capacity of photosynthesis (A), leading to a depression of photosynthetic efficiency and eventually to photooxidation (i.e., leaf chlorosis). Yet, it remains unclear which processes play a key role in limiting the photosynthetic energy utilization of Mg-deficient leaves, and whether the plasticity of A in acclimation to irradiance could have cross-talk with Mg, hence accelerating or mitigating the photodamage. We investigated the light acclimation responses of rapeseed (Brassica napus) grown under low- and adequate-Mg conditions. Magnesium deficiency considerably decreased rapeseed growth and leaf A, to a greater extent under high than under low light, which is associated with higher level of superoxide anion radical and more severe leaf chlorosis. This difference was mainly attributable to a greater depression in dark reaction under high light, with a higher Rubisco fallover and a more limited mesophyll conductance to CO2 (gm ). Plants grown under high irradiance enhanced the content and activity of Rubisco and gm to optimally utilize more light energy absorbed. However, Mg deficiency could not fulfill the need to activate the higher level of Rubisco and Rubisco activase in leaves of high-light-grown plants, leading to lower Rubisco activation and carboxylation rate. Additionally, Mg-deficient leaves under high light invested more carbon per leaf area to construct a compact leaf structure with smaller intercellular airspaces, lower surface area of chloroplast exposed to intercellular airspaces, and CO2 diffusion conductance through cytosol. These caused a more severe decrease in within-leaf CO2 diffusion rate and substrate availability. Taken together, plant plasticity helps to improve photosynthetic energy utilization under high light but aggravates the photooxidative damage once the Mg nutrition becomes insufficient.


Assuntos
Anemia Hipocrômica , Brassica napus , Brassica napus/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Magnésio , Dióxido de Carbono , Fotossíntese/fisiologia , Folhas de Planta/metabolismo
18.
Plant J ; 118(4): 940-952, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321620

RESUMO

The introduction of the carboxysome-based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.


Assuntos
Dióxido de Carbono , Cloroplastos , Produtos Agrícolas , Ribulose-Bifosfato Carboxilase , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Fotossíntese/fisiologia , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Cianobactérias/genética , Plantas Geneticamente Modificadas
19.
Mol Cell ; 67(5): 744-756.e6, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28803776

RESUMO

How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/metabolismo , Rhodobacter sphaeroides/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Reagentes de Ligações Cruzadas/química , Medição da Troca de Deutério , Estabilidade Enzimática , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas , Rhodobacter sphaeroides/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Relação Estrutura-Atividade , Fatores de Tempo , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/genética
20.
Biochem J ; 481(15): 1043-1056, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39093337

RESUMO

Rubisco activity is highly regulated and frequently limits carbon assimilation in crop plants. In the chloroplast, various metabolites can inhibit or modulate Rubisco activity by binding to its catalytic or allosteric sites, but this regulation is complex and still poorly understood. Using rice Rubisco, we characterised the impact of various chloroplast metabolites which could interact with Rubisco and modulate its activity, including photorespiratory intermediates, carbohydrates, amino acids; as well as specific sugar-phosphates known to inhibit Rubisco activity - CABP (2-carboxy-d-arabinitol 1,5-bisphosphate) and CA1P (2-carboxy-d-arabinitol 1-phosphate) through in vitro enzymatic assays and molecular docking analysis. Most metabolites did not directly affect Rubisco in vitro activity under both saturating and limiting concentrations of Rubisco substrates, CO2 and RuBP (ribulose-1,5-bisphosphate). As expected, Rubisco activity was strongly inhibited in the presence of CABP and CA1P. High physiologically relevant concentrations of the carboxylation product 3-PGA (3-phosphoglyceric acid) decreased Rubisco activity by up to 30%. High concentrations of the photosynthetically derived hexose phosphates fructose 6-phosphate (F6P) and glucose 6-phosphate (G6P) slightly reduced Rubisco activity under limiting CO2 and RuBP concentrations. Biochemical measurements of the apparent Vmax and Km for CO2 and RuBP (at atmospheric O2 concentration) and docking interactions analysis suggest that CABP/CA1P and 3-PGA inhibit Rubisco activity by binding tightly and loosely, respectively, to its catalytic sites (i.e. competing with the substrate RuBP). These findings will aid the design and biochemical modelling of new strategies to improve the regulation of Rubisco activity and enhance the efficiency and sustainability of carbon assimilation in rice.


Assuntos
Cloroplastos , Simulação de Acoplamento Molecular , Oryza , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/química , Cloroplastos/metabolismo , Cloroplastos/enzimologia , Oryza/metabolismo , Oryza/enzimologia , Fotossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Dióxido de Carbono/metabolismo , Ribulosefosfatos/metabolismo , Frutosefosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa