Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Animal ; 17(6): 100815, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37167820

RESUMO

The use of alternative feed ingredients from the Agro-industry could be an efficient tool to improve the sustainability of dairy cow production. Since the richness in polyphenols, olive oil pomace (OOP), produced during olive oil milling, seems a promising by-product to ameliorate milk's nutritional value. The aim of this study was to test the use of OOP produced by means of a new technology (biphasic with stone deprivation) in dairy cow feeding strategy to evaluate the effect on animal performances, rumen microbiota, biohydrogenation processes and milk quality by a multidisciplinary approach. Forty multiparous Italian-Friesian dairy cows, at middle lactation, were randomly allotted into two homogenous groups and fed respectively a commercial diet (CON) and the experimental diet (OOPD) obtained by adding OOP to CON as partial replacement of maize silage. The two diets were formulated to be isoproteic and isoenergetic. The same diets were tested also in an in vitro trial aimed to evaluate their rumen degradability (% DEG). The dietary supplementation with OOP did not affect DM intake, rumen % DEG and milk production. The milk's nutritional quality was improved by increasing several important functional fatty acids (FAs; i.e., linoleic acid, conjugated linoleic acid, oleic acid, vaccenic acid). This finding was related to a decrease in rumen liquor biohydrogenation rate of unsaturated FAs. The stochiometric relation between volatile FA production in the rumen and methanogenesis suggested that OOP lowers the methane potential production (CON = 0.050 mol/L vs OOPD = 0.024 mol/L, SEM = 0.005, P = 0.0011). Rumen microbiota and fungi community did not be strongly altered by OOP dietary inclusion because few bacteria were affected at the genus level only. Particularly, Acetobacter, Prevotellaceae_UCG-004, Prevotellaceae_UCG-001, Eubacterium coprostanoligenes, Lachnospira, Acetitomaulatum, Lachnospiraceae_NK3A20 group were more abundant with OOPD condition (P < 0.05). Data reported in this study confirm that the use of OOP in dairy cow feeding can be an interesting strategy to improve milk nutritional quality increasing functional FA content without compromising the rumen degradability of the diet or causing strong perturbation of rumen ecosystem and maintaining animal performances.


Assuntos
Microbiota , Leite , Animais , Bovinos , Feminino , Ração Animal/análise , Dieta/veterinária , Ácidos Graxos/metabolismo , Fermentação , Lactação , Azeite de Oliva/metabolismo , Rúmen/metabolismo , Silagem/análise
2.
Front Microbiol ; 13: 1079056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699590

RESUMO

Buffalo exhibits great efficiency in utilizing low-quality roughage, which can be due to the combined effect of host physiological feature and roughage diet fed. The present study was designed to compare the ruminal fiber degradation and the bacterial community attached to straws in buffalo and Holstein when fed with the same high-roughage diet using in situ ruminal incubation technique. Rice and wheat straws were selected as the incubation substrates and sampled at 0, 4, 12, 24, 48, 72, 120, and 216 h of incubation time to measure the kinetics of dry matter (DM) and neutral detergent fiber (NDF) disappearance. Additional two bags were incubated and sampled at 4 and 48 h of incubation time to evaluate the bacterial community attached to straws. The results showed that buffalo exhibited a greater (p ≤ 0.05) fraction of rapidly soluble and washout nutrients and effective ruminal disappearance for both DM and NDF of straw than Holstein, together with a greater (p ≤ 0.05) disappearance rate of potentially degradable nutrient fraction for NDF. Principal coordinate analysis indicated that both host and incubation time altered the bacterial communities attached to straws. Buffalo exhibited greater (p ≤ 0.05) 16S rRNA gene copies of bacteria and greater (p ≤ 0.05) relative abundance of Ruminococcus attached to straw than Holstein. Prolonging incubation time increased (p ≤ 0.05) the 16S rRNA gene copies of bacteria, and the relative abundance of phyla Proteobacteria and Fibrobacters by comparing 4 vs. 48 h of incubation time. In summary, buffalo exhibits greater ruminal fiber degradation than Holstein through increasing bacterial population and enriching Ruminococcus, while prolonging incubation time facilitates fiber degradation through enriching phyla Proteobacteria and Fibrobacteres.

3.
Biochem Biophys Rep ; 20: 100698, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31763465

RESUMO

A proteome-wide protein-protein interaction (PPI) network of Methanobrevibacter ruminantium M1 (MRU), a predominant rumen methanogen, was constructed from its metabolic genes using a gene neighborhood algorithm and then compared with closely related rumen methanogens Using proteome-wide PPI approach, we constructed network encompassed 2194 edges and 637 nodes interacting with 634 genes. Network quality and robustness of functional modules were assessed with gene ontology terms. A structure-function-metabolism mapping for each protein has been carried out with efforts to extract experimental PPI concomitant information from the literature. The results of our study revealed that some topological properties of its network were robust for sharing homologous protein interactions across heterotrophic and hydrogenotrophic methanogens. MRU proteome has shown to establish many PPI sub-networks for associated metabolic subsystems required to survive in the rumen environment. MRU genome found to share interacting proteins from its PPI network involved in specific metabolic subsystems distinct to heterotrophic and hydrogenotrophic methanogens. Across these proteomes, the interacting proteins from differential PPI networks were shared in common for the biosynthesis of amino acids, nucleosides, and nucleotides and energy metabolism in which more fractions of protein pairs shared with Methanosarcina acetivorans. Our comparative study expedites our knowledge to understand a complex proteome network associated with typical metabolic subsystems of MRU and to improve its genome-scale reconstruction in the future.

4.
Sci Total Environ ; 671: 324-328, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30933788

RESUMO

The effects of supplemental nitrate administered alone or with a denitrifying ruminal bacterium, designated Paenibacillus 79R4 (79R4) intentionally selected for enhanced nitrate- and nitrite-metabolizing ability, on select rumen fermentation characteristics was examined in vivo. Rumen and blood samples were collected from cannulated Holstein steers one day prior to and one day after initiation of treatments applied as three consecutive intra-ruminal administrations of nitrate, to achieve the equivalent of 83 mg sodium nitrate/kg body weight day, given alone or with the nitrite-selected 79R4 (provided to achieve 106 cells/mL rumen fluid). Results revealed a day effect on methane-producing activity, with rates of methane production by ruminal microbes being more rapid when collected one day before than one day after initiation of treatments. Nitrate-metabolizing activity of the rumen microbes was unaffected by day, treatment or their interaction. A day by treatment interaction was observed on nitrite-metabolizing activity, with rates of nitrite metabolism by rumen microbes being most rapid in populations collected one day after initiation of treatment from steers treated with nitrate plus 79R4. A day by treatment interaction was also observed on plasma methemoglobin concentrations, with concentrations being lower from steers one day after initiation of treatments than from collected one day prior to treatment initiation and concentrations being lowest in steers treated with nitrate plus 79R4. A major effect of treatment was observed on accumulations of most prominent and branched chain volatile fatty acids produced and amounts of hexose fermented in the rumen of animals administered nitrate, with concentrations being decreased in steers administered nitrate alone when compared to steers treated with nitrate plus the 79R4. These results demonstrate that the nitrite-selected Paenibacillus 79R4 may help prevent nitrite toxicity in nitrate-treated ruminants while maintaining benefits of reduced methane emissions and preventing inhibition of fermentation efficiency by the microbial ecosystem.


Assuntos
Metano/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Paenibacillus/química , Probióticos/farmacologia , Rúmen/fisiologia , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Fermentação , Inativação Metabólica , Masculino , Probióticos/química , Rúmen/microbiologia
5.
Indian J Microbiol ; 48(2): 216-27, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23100715

RESUMO

Metagenomics- the application of the genomics technologies to nonculturable microbial communities, is coming of age. These approaches can be used for the screening and selection of nonculturable rumen microbiota for assessing their role in gastrointestinal (GI) nutrition, plant material fermentation and the health of the host. The technologies designed to access this wealth of genetic information through environmental nucleic acid extraction have provided a means of overcoming the limitations of culture-dependent microbial genetic exploitation. The molecular procedures and techniques will result in reliable insights into the GI microbial structure and activity of the livestock gut microbes in relation to functional interactions, temporal and spatial relationships among different microbial consortia and dietary ingredients. Future developments and applications of these methods promise to provide the first opportunity to link distribution and identity of rumen microbes in their natural habitats with their genetic potential and in situ activities.

6.
Vet Anim Sci ; 6: 86-94, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32734058

RESUMO

Methanobacterium formicicum (Methanobacteriaceae family) is an endosymbiotic methanogenic Archaean found in the digestive tracts of ruminants and elsewhere. It has been significantly implicated in global CH4 emission during enteric fermentation processes. In this review, we discuss current genomic and metabolic aspects of this microorganism for the purpose of the discovery of novel veterinary therapeutics. This microorganism encompasses a typical H2 scavenging system, which facilitates a metabolic symbiosis across the H2 producing cellulolytic bacteria and fumarate reducing bacteria. To date, five genome-scale metabolic models (iAF692, iMG746, iMB745, iVS941 and iMM518) have been developed. These metabolic reconstructions revealed the cellular and metabolic behaviors of methanogenic archaea. The characteristics of its symbiotic behavior and metabolic crosstalk with competitive rumen anaerobes support understanding of the physiological function and metabolic fate of shared metabolites in the rumen ecosystem. Thus, systems biological characterization of this microorganism may provide a new insight to realize its metabolic significance for the development of a healthy microbiota in ruminants. An in-depth knowledge of this microorganism may allow us to ensure a long term sustainability of ruminant-based agriculture.

7.
Microbiologyopen ; 6(3)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28109059

RESUMO

We used the goat as a model to study the effects of rumen microbial composition and epithelial TLR signaling on maintaining rumen stability during exogenous butyrate interference. Six cannulated goats received a rapid intraruminal infusion of 0.1 mol/L potassium phosphate buffer with (BT, n = 3) or without (CO, n = 3) 0.3 g/kg·BW·day sodium butyrate for 28 days. The ruminal pH and the concentration of total SCFA were not affected by the interference. 16S rRNA gene amplicon sequencing revealed a change in microbial composition after the butyrate infusion. LEfSe analysis showed a shift of the biomarker species from butyrate-producing bacteria to acetate-and propionate-producing bacteria. Quantitative PCR-based comparisons showed that significant increases in TLR2, TLR5, and MyD88 expression were accompanied by a significant decrease in IL-1ß and IFN-γ expression in the ruminal epithelium. Constrained correlation analysis showed that the relative abundance of Roseburia was positively correlated with the expression of TLR5. Taken together, our study shows that microbial composition plays an important role in maintaining the stability of the microbial ecosystem in rumen, and indicates that the microbe-TLR-cytokine axis was involved in maintaining the stability of the gastrointestinal ecosystem.


Assuntos
Ecossistema , Epitélio/imunologia , Epitélio/microbiologia , Rúmen/imunologia , Rúmen/microbiologia , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Butiratos/administração & dosagem , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Perfilação da Expressão Gênica , Cabras , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Receptores Toll-Like/genética
8.
Sci Total Environ ; 545-546: 556-68, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26760275

RESUMO

Ruminant livestock systems contribute significantly to emission of methane, a potent greenhouse gas as they waste a portion of the ingested energy (2-15%) as methane and a large proportion (75-95%) of the ingested nitrogen as ammonia. Recently, numerous researches have been conducted to evaluate plant secondary metabolites, including essential oils (EO), as natural feed additives in ruminant nutrition and to exploit their potential to improve rumen fermentation efficiency. Essential oils appeared to be very promising compounds as they selectively reduced methane production and protein breakdown in both in vitro and in vivo studies. However, in some studies, the use of EO as feed additives was accompanied with decreased feed degradability and lowered volatile fatty acid. These adverse effects could be attributed to their broad and often non-specific antimicrobial activities within the rumen. Future research should be directed to identification of the active and useful EO compounds, optimization of EO doses, and use of a whole-farm approach with a focus on animal welfare, performance and economic benefits.


Assuntos
Ração Animal/análise , Criação de Animais Domésticos/métodos , Dieta/veterinária , Óleos Voláteis/análise , Rúmen/fisiologia , Ruminantes/fisiologia , Animais , Dieta/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa