Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38124544

RESUMO

Physical exercise has been shown to have an impact on memory and hippocampal function across different age groups. Nevertheless, the influence and mechanisms underlying how voluntary exercise during puberty affects memory are still inadequately comprehended. This research aims to examine the impacts of self-initiated physical activity throughout adolescence on spatial memory. Developing mice were exposed to a 4-wk voluntary wheel running exercise protocol, commencing at the age of 30 d. After engaging in voluntary wheel running exercise during development, there was an enhancement in spatial memory. Moreover, hippocampal dentate gyrus and CA3 neurons rather than CA1 neurons exhibited an increase in the miniature excitatory postsynaptic currents and miniature inhibitory postsynaptic currents. In addition, there was an increase in the expression of NR2A/NR2B subunits of N-methyl-D-aspartate receptors and α1GABAA subunit of gamma-aminobutyric acid type A receptors, as well as dendritic spine density, specifically within dentate gyrus and CA3 regions rather than CA1 region. The findings suggest that voluntary exercise during development can enhance spatial memory in mice by increasing synapse numbers and improving synaptic transmission in hippocampal dentate gyrus and CA3 regions, but not in CA1 region. This study sheds light on the neural mechanisms underlying how early-life exercise improves cognitive function.


Assuntos
Giro Denteado , Memória Espacial , Camundongos , Animais , Giro Denteado/metabolismo , Atividade Motora , Maturidade Sexual , Hipocampo/metabolismo , Transmissão Sináptica/fisiologia
2.
J Neuroinflammation ; 19(1): 34, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123512

RESUMO

BACKGROUND: The role of physical exercise in the prevention of Alzheimer's disease (AD) has been widely studied. Microglia play an important role in AD. Triggering receptor expressed in myeloid cells 2 (TREM2) is expressed on microglia and is known to mediate microglial metabolic activity and brain glucose metabolism. However, the relationship between brain glucose metabolism and microglial metabolic activity during running exercise in APP/PS1 mice remains unclear. METHODS: Ten-month-old male APP/PS1 mice and wild-type mice were randomly divided into sedentary groups or running groups (AD_Sed, WT_Sed, AD_Run and WT_Run, n = 20/group). Running mice had free access to a running wheel for 3 months. Behavioral tests, [18]F-FDG-PET and hippocampal RNA-Seq were performed. The expression levels of microglial glucose transporter (GLUT5), TREM2, soluble TREM2 (sTREM2), TYRO protein tyrosine kinase binding protein (TYROBP), secreted phosphoprotein 1 (SPP1), and phosphorylated spleen tyrosine kinase (p-SYK) were estimated by western blot or ELISA. Immunohistochemistry, stereological methods and immunofluorescence were used to investigate the morphology, proliferation and activity of microglia. RESULTS: Long-term voluntary running significantly improved cognitive function in APP/PS1 mice. Although there were few differentially expressed genes (DEGs), gene set enrichment analysis (GSEA) showed enriched glycometabolic pathways in APP/PS1 running mice. Running exercise increased FDG uptake in the hippocampus of APP/PS1 mice, as well as the protein expression of GLUT5, TREM2, SPP1 and p-SYK. The level of sTREM2 decreased in the plasma of APP/PS1 running mice. The number of microglia, the length and endpoints of microglial processes, and the ratio of GLUT5+/IBA1+ microglia were increased in the dentate gyrus (DG) of APP/PS1 running mice. Running exercise did not alter the number of 5-bromo-2'-deoxyuridine (BrdU)+/IBA1+ microglia but reduced the immunoactivity of CD68 in the hippocampus of APP/PS1 mice. CONCLUSIONS: Running exercise inhibited TREM2 shedding and maintained TREM2 protein levels, which were accompanied by the promotion of brain glucose metabolism, microglial glucose metabolism and morphological plasticity in the hippocampus of AD mice. Microglia might be a structural target responsible for the benefits of running exercise in AD. Promoting microglial glucose metabolism and morphological plasticity modulated by TREM2 might be a novel strategy for AD treatment.


Assuntos
Doença de Alzheimer , Microglia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cognição , Modelos Animais de Doenças , Glucose/metabolismo , Hipocampo/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
3.
Neuroendocrinology ; 112(9): 894-903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34847565

RESUMO

INTRODUCTION: Exercise becomes a stress when performed at an intensity above the lactate threshold (LT) because at that point the plasma adrenocorticotropic hormone (ACTH), a marker of stress response, increases. It is possible that the exercise-induced ACTH response is regulated at least by arginine vasopressin (AVP) and possibly by corticotropin-releasing hormone (CRH), but this remains unclear. To clarify the involvement of these factors, it is useful to intervene pharmacologically in the regulatory mechanisms, with a physiologically acceptable exercise model. METHODS: We used a special stress model of treadmill running (aerobic exercise) for male Wistar rats, which mimic the human physiological response, where plasma ACTH levels increase at just above the LT for 30 min. Animals were administered the AVP V1b receptor antagonist SSR149415 (SSR) and/or the CRH type 1 receptor antagonist CP154526 (CP) intraperitoneally before the exercise, which allowed the monitoring of exercise-induced ACTH response. Immunohistochemical evaluation of activated AVP and CRH neurons with exercise was performed for the animals' hypothalami. RESULTS: A single injection of either antagonist, SSR or CP, resulted in inhibited ACTH levels after exercise stress. Moreover, the combined injection of SSR and CP strongly suppressed ACTH secretion during treadmill running to a greater extent than each alone. The running-exercise-induced activation of both AVP and CRH neurons in the hypothalamus was also confirmed. CONCLUSION: These results lead us to hypothesize that AVP and CRH are cooperatively involved in exercise-induced ACTH response just above the LT. This may also reflect the stress response with moderate-intensity exercise in humans.


Assuntos
Hormônio Adrenocorticotrópico , Arginina Vasopressina , Hormônio Liberador da Corticotropina , Condicionamento Físico Animal , Hormônio Adrenocorticotrópico/metabolismo , Animais , Arginina Vasopressina/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Humanos , Hipotálamo/metabolismo , Masculino , Ratos , Ratos Wistar
4.
Andrologia ; 54(9): e14520, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35818990

RESUMO

The current study has been designed to explore the effects of running exercise training protocols (ETPs), with different intensities, on testicular redox and antioxidant capacities. Moreover, the crosstalk between oxidative stress (OS) and mitochondria-related apoptosis was analysed. To this end, 24 Wistar rats were subdivided into sedentary control, low- (LICT), moderate- (MICT), and high (HICT)-intensity continuous running ETP groups. Following 8 weeks, the Johnsen score, sperm count, testicular malondialdehyde (MDA) content, total oxidant status (TOS), and redox biomarkers, including glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) levels were evaluated. Additionally, the expression levels of Bcl-2, Bax, caspase-3, proteins involving in the mitochondria-related apoptosis, and the apoptotic index were analysed. The LICT and MICT running ETPs did not affect the spermatogenesis development, sperm count, and antioxidant and redox capacities. Accordingly, no significant changes were revealed in Bcl-2, Bax, and caspase-3 expression levels and apoptosis index compared to sedentary rats. In contrast, the HICT-induced rats showed a significant (p < 0.05) reduction in spermatogenesis development, sperm count, antioxidant and redox capacities versus control, LICT, and MICT groups. Moreover, the expression of Bcl-2 was decreased, while the Bax and caspase-3 expression levels were increased in the HICT-induced group. Finally, the apoptosis index was increased in the HICT group. In conclusion, the suppressed redox system after HICT can trigger the mitochondria-mediated ROS overload, result in OS condition in the testicular tissue, and reversely target the mitochondrial membrane permeability. All of these molecular alterations are suspected to initiate progressive mitochondria-related apoptosis after HICT.


Assuntos
Corrida , Testículo , Animais , Antioxidantes/farmacologia , Apoptose , Caspase 3/metabolismo , Masculino , Mitocôndrias , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Sêmen/metabolismo , Proteína X Associada a bcl-2/metabolismo
5.
Brain Behav Immun ; 97: 135-149, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245811

RESUMO

Persistent cognitive and mood impairments in Gulf War Illness (GWI) are associated with chronic neuroinflammation, typified by hypertrophied astrocytes, activated microglia, and increased proinflammatory mediators in the brain. Using a rat model, we investigated whether a simple lifestyle change such as moderate voluntary physical exercise would improve cognitive and mood function in GWI. Because veterans with GWI exhibit fatigue and post-exertional malaise, we employed an intermittent voluntary running exercise (RE) regimen, which prevented exercise-induced stress. The GWI rats were provided access to running wheels three days per week for 13 weeks, commencing ten weeks after the exposure to GWI-related chemicals and stress (GWI-RE group). Groups of age-matched sedentary GWI rats (GWI-SED group) and naïve rats were maintained parallelly. Interrogation of rats with behavioral tests after the 13-week RE regimen revealed improved hippocampus-dependent object location memory and pattern separation function and reduced anxiety-like behavior in the GWI-RE group compared to the GWI-SED group. Moreover, 13 weeks of RE in GWI rats significantly reversed activated microglia with short and less ramified processes into non-inflammatory/antiinflammatory microglia with highly ramified processes and reduced the hypertrophy of astrocytes. Moreover, the production of new neurons in the hippocampus was enhanced when examined eight weeks after the commencement of RE. Notably, increased neurogenesis continued even after the cessation of RE. Collectively, the results suggest that even a moderate, intermittent physical exercise has the promise to improve brain function in veterans with GWI in association with suppression of neuroinflammation and enhancement of hippocampal neurogenesis.


Assuntos
Síndrome do Golfo Pérsico , Animais , Astrócitos , Cognição , Hipocampo , Microglia , Neurogênese , Ratos
6.
J Therm Biol ; 99: 103005, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34420635

RESUMO

Skin blood flow and skin temperature play a fundamental role in the thermoregulatory processes and are expected to largely change in response to a prolonged running exercise. The skin temperature changes have been documented in the literature, mainly through infrared thermographic measurements performed before, after, and, in a limited number of studies, during the exercise. After an initial reduction probably ascribed to skin vasoconstriction, the further skin temperature modifications with time, measured in reference papers during a steady and prolonged run, do not show a common behaviour, probably due to different exercise intensities and environmental conditions reported in these studies. This research aimed to develop a simplified method for describing the skin temperature changes during running exercise through the theoretical solutions of the dynamic energy balance of the human body in the early and late time periods, i.e., close to the onset and the end of exercise. These two asymptotic solutions for the skin temperature, having a largely dissimilar trend, collide at a time instant likely associated with the switch from skin vasoconstriction to vasodilation. Examples of application of the proposed method, based on the intersection of asymptotes, were provided. It was also demonstrated its capability to interpret the experimental skin temperature variations with time for constant-load running exercises reported in the literature under different levels of exercise intensity and environmental conditions.


Assuntos
Regulação da Temperatura Corporal , Corrida/fisiologia , Temperatura Cutânea , Feminino , Humanos , Masculino , Modelos Biológicos , Pele/irrigação sanguínea , Vasoconstrição , Vasodilatação
7.
Neuroimage ; 222: 117269, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818618

RESUMO

Physical activity has been correlated with a reduced risk of cognitive decline, including that associated with vascular dementia, mild cognitive impairment (MCI) and Alzheimer's disease (AD); recent literature suggests this may in part result from benefits to the cerebrovascular network. Using a transgenic (Tg) mouse model of AD, we evaluated the effect of running on cortical and hippocampal vascular morphology, cerebral amyloid angiopathy, amyloid plaque load, and spatial memory. TgCRND8 mice present with progressive amyloid pathology, advancing from the cortex to the hippocampus in a time-dependent manner. We postulated that the characteristic progression of pathology could lead to differential, time-dependent effects of physical activity on vascular morphology in these brain regions at 6 months of age. We used two-photon fluorescent microscopy and 3D vessel tracking to characterize vascular and amyloid pathology in sedentary TgCRND8 mice compared those who have a history of physical activity (unlimited access to a running wheel, from 3 to 6 months of age). In sedentary TgCRND8 mice, capillary density was found to be lower in the cortex and higher in the hippocampus compared to non-transgenic (nonTg) littermates. Capillary length, vessel branching, and non-capillary vessel tortuosity were also higher in the hippocampus of sedentary TgCRND8 compared to nonTg mice. Three months of voluntary running resulted in normalizing cortical and hippocampal microvascular morphology, with no significant difference between TgCRND8 and nonTg mice. The benefits of physical activity on cortical and hippocampal vasculature in 6-month old TgCRND8 mice were not paralleled by significant changes on parenchymal and cerebral amyloid pathology. Short-term spatial memory- as evaluated by performance in the Y-maze- was significantly improved in running compared to sedentary TgCRND8 mice. These results suggest that long-term voluntary running contributes to the maintenance of vascular morphology and spatial memory in TgCRND8 mice, even in the absence of an effect on amyloid pathology.


Assuntos
Doença de Alzheimer/patologia , Amiloidose/patologia , Hipocampo/metabolismo , Memória de Curto Prazo/fisiologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/fisiopatologia , Animais , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Hipocampo/patologia , Camundongos Transgênicos , Placa Amiloide
8.
J Sleep Res ; 29(6): e12964, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31821667

RESUMO

The aim of the present study was to investigate the effects of night-time (21:00 hours) high-intensity, intermittent exercise on sleep architecture among well-trained athletes in a laboratory setting. In a randomized, counterbalanced order, 11 well-trained male runners completed a simulated trail-running exercise (TRAIL) on a motorized treadmill and a resting condition (REST; no exercise during the day). After each condition, nocturnal autonomic nervous system activity and core body temperature (CBT) were measured and sleep was analysed using polysomnography and actigraphy. Markers of muscle damage (maximal voluntary contraction [MVC], plasma creatine kinase concentration [CK] and perceived muscle soreness) were recorded before and immediately (POST), 24 hr (H24) and 48 hr (H48) after exercise. TRAIL induced a high level of fatigue and mild exercise-induced muscle damage, as determined by a reduction in MVC (-9.4%, p < .01, d = -1.36) and increases in [CK] (+176.0%, p < .01, d = 1.49) and perceived muscle soreness (+4.5 UA, p < .01, d = 2.17) compared with REST at H24. A trend for increased non-rapid eye movement (+4.2%; p = .10; d = 0.86) and reduced rapid eye movement (-4.4%; p = .07; d = -0.87) during sleep was observed for TRAIL compared with the REST condition. Moreover, compared with REST, TRAIL significantly increased CBT and nocturnal HR during the first part of the night. In conclusion, sleep architecture was modified after night-time, high-intensity exercise among well-trained runners.


Assuntos
Exercício Físico/fisiologia , Polissonografia/métodos , Corrida/fisiologia , Transtornos do Sono-Vigília/etiologia , Adulto , Humanos , Masculino
9.
Eur J Appl Physiol ; 120(1): 255-266, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31776697

RESUMO

PURPOSE: Blood rheology is a key determinant of blood flow and tissue perfusion. There are still large discrepancies regarding the effects of an acute running exercise on blood rheological properties and red blood cell (RBC) physiology. We investigated the effect of a 10 km running trial on markers of blood rheology and RBC physiology in endurance trained athletes. METHODS: Blood was sampled before and after the exercise to measure lactate and glucose, hematological and hemorheological parameters (blood viscosity, RBC deformability, and aggregation), eryptosis markers (phosphatidylserine and CD47 exposure, RBC reactive oxygen species), RBC-derived microparticles (RBC-MPs), and RBC electrophysiological activity. Weight was measured before and after exercise. Peripheral oxygen saturation and heart rate were monitored before and during the trial. RESULTS: Blood lactate and glucose levels increased after exercise and subjects significantly lost weight. All athletes experienced a significant fall in oxygen saturation. Mean corpuscular volume (MCV) was increased from 95.1 ± 3.2 to 96.0 ± 3.3 and mean corpuscular hemoglobin concentration (MCHC) decreased after exercise suggesting a slight RBC rehydration. Exercise increased RBC deformability from 0.344 ± 0.04 to 0.378 ± 0.07, decreased RBC aggregates strength and blood viscosity, while hematocrit (Hct) remained unaffected. While RBC electrophysiological recording suggested a modulation in RBC calcium content and/or chloride conductance, eryptosis markers and RBC-MPs were not modified by the exercise. CONCLUSION: A 10 km acute running exercise had no effect on RBC senescence and membrane blebbing. In contrast, this exercise increased RBC deformability, probably through rehydration process which resulted in a decrease in blood viscosity.


Assuntos
Eriptose , Frequência Cardíaca , Hemorreologia , Condicionamento Físico Humano/métodos , Corrida/fisiologia , Adulto , Atletas , Glicemia/metabolismo , Micropartículas Derivadas de Células/metabolismo , Eritrócitos/metabolismo , Feminino , Humanos , Ácido Láctico/sangue , Masculino , Consumo de Oxigênio , Condicionamento Físico Humano/efeitos adversos
10.
J Clin Biochem Nutr ; 62(2): 161-166, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29610556

RESUMO

Astaxanthin, a natural antioxidant, exists in non-esterified and esterified forms. Although it is known that astaxanthin can improve exercise endurance and cause metabolic improvement in skeletal muscle, the effects of the two different forms are unclear. We investigated the effects of the different forms of astaxanthin on endurance in mice. Eight-week-old ICR mice were divided into four groups: control; astaxanthin extracted from Haematococcus pluvialis in an esterified form; astaxanthin extracted from Phaffia rhodozyma in a non-esterified form; and astaxanthin synthesized chemically in a non-esterified form. After 5 weeks of treatment, each group was divided into sedentary and exercise groups. In the group fed astaxanthin from Haematococcus, the running time to exhaustion was longest, and the plasma and tissue concentrations of astaxanthin were significantly higher than those in the other groups. Astaxanthin from Haematococcus increased 5'-adenosine monophosphate-activated protein kinase levels in the skeletal muscle. Although the mice in the Haematococcus group ran for longer, hexanoyl lysine adduct levels in the skeletal muscle mitochondria were similar in the control and Haematococcus groups. Our results suggested that esterified astaxanthin promoted energy production and protected tissues from oxidative damage during exercise owing to its favorable absorption properties, leading to a longer running time.

11.
J Neurosci ; 36(31): 8112-22, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27488632

RESUMO

UNLABELLED: Running exercise (RE) improves cognition, formation of anterograde memories, and mood, alongside enhancing hippocampal neurogenesis. A previous investigation in a mouse model showed that RE-induced increased neurogenesis erases retrograde memory (Akers et al., 2014). However, it is unknown whether RE-induced forgetting is common to all species. We ascertained whether voluntary RE-induced enhanced neurogenesis interferes with the recall of spatial memory in rats. Young rats assigned to either sedentary (SED) or running exercise (RE) groups were first subjected to eight learning sessions in a water maze. A probe test (PT) conducted 24 h after the final training session confirmed that animals in either group had a similar ability for the recall of short-term memory. Following this, rats in the RE group were housed in larger cages fitted with running wheels, whereas rats in the SED group remained in standard cages. Animals in the RE group ran an average of 78 km in 4 weeks. A second PT performed 4 weeks after the first PT revealed comparable ability for memory recall between animals in the RE and SED groups, which was evidenced through multiple measures of memory retrieval function. The RE group displayed a 1.5- to 2.1-fold higher hippocampal neurogenesis than SED rats. Additionally, both moderate and brisk RE did not interfere with the recall of memory, although increasing amounts of RE proportionally enhanced neurogenesis. In conclusion, RE does not impair memory recall ability in a rat model despite substantially increasing neurogenesis. SIGNIFICANCE STATEMENT: Running exercise (RE) improves new memory formation along with an increased neurogenesis in the hippocampus. In view of a recent study showing that RE-mediated increased hippocampal neurogenesis promotes forgetfulness in a mouse model, we ascertained whether a similar adverse phenomenon exists in a rat model. Memory recall ability examined 4 weeks after learning confirmed that animals that had run a mean of 78 km and displayed a 1.5- to 2.1-fold increase in hippocampal neurogenesis demonstrated similar proficiency for memory recall as animals that had remained sedentary. Furthermore, both moderate and brisk RE did not interfere with memory recall, although increasing amounts of RE proportionally enhanced neurogenesis, implying that RE has no adverse effects on memory recall.


Assuntos
Extinção Psicológica/fisiologia , Hipocampo/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Corrida/fisiologia , Memória Espacial/fisiologia , Animais , Masculino , Memória de Curto Prazo/fisiologia , Condicionamento Físico Animal/métodos , Ratos , Ratos Sprague-Dawley , Análise e Desempenho de Tarefas , Volição
12.
Calcif Tissue Int ; 101(6): 631-640, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28779183

RESUMO

Although it has been recently shown that type 2 diabetics have an increased risk of hip fracture, the effects of exercise therapy to prevent this have not been clarified. We examined whether a treadmill running exercise contributes to the bone mineral density (BMD) and bone microarchitecture of the femur and what kind of exercise intensity and duration are optimum in type 2 diabetes mellitus using KK-Ay diabetic mice. The mice were divided into two running groups, one fast speed and short duration (FS), the other slow speed and long duration (SL), and a group of controls with no running (CO). The running exercise was started when the mice were 8 weeks of age, and continued once a day 5 days per week for 10 weeks. Ten weeks after the start of the running exercise, the BMD of the proximal region and mid-diaphysis in the SL were significantly higher in comparison with that in the CO, whereas there was no difference in bone microarchitecture among the three groups. Blood glucose, insulin levels, and visceral fat contents in the SL were significantly lower than those in the CO and FS. Bone resorption protein and C-reactive protein levels in the SL were significantly lower than those in the CO. These results suggest that slow, long duration loading is better for both bone and glycemic control than fast, short duration loading in type 2 diabetes.


Assuntos
Densidade Óssea/fisiologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Fêmur/patologia , Condicionamento Físico Animal/métodos , Animais , Masculino , Camundongos
13.
Nitric Oxide ; 66: 71-77, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28302517

RESUMO

Consumption of a high fat diet (HFD) and being overweight both induce functional deterioration and atrophy of the hippocampus. These alterations are associated with mental disorders such as depression and anxiety. Exercise combats obesity and enhances brain health. There is substantial evidence that neuronal nitric oxide synthase (nNOS) is a key regulator of affective behavior, and that increased brain nNOS leads to anxiety while environmental enrichment (EE), which reduces brain nNOS, has anxiolytic effects. In this study we investigated the effects of HFD with and without exercise on nNOS protein and gene expression levels in the brains of mice. Twelve weeks of HFD consumption increased body and mesenteric fat weight, as well as nNOS protein levels in the hippocampus and cerebral cortex. Six weeks of exercise training reduced body fat and rescued hippocampal and cortical nNOS expression levels in HFD-fed mice. Cerebellar nNOS expression was unaffected by HFD and exercise. Our results suggest that HFD-induced brain dysfunction may be regulated by hippocampal and/or cortical nNOS, and that exercise may have therapeutic potential for the treatment of HFD-induced depression and anxiety via the nNOS/NO pathway. In conclusion, exercise reverses HFD-induced changes in hippocampal and cortical nNOS protein levels in mice.


Assuntos
Córtex Cerebral/enzimologia , Dieta Hiperlipídica , Hipocampo/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Peso Corporal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico Sintase Tipo I/análise , Corrida/fisiologia
14.
Ergonomics ; 60(10): 1435-1444, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28306388

RESUMO

To investigate clothing-induced differences in human thermal response and running performance, eight male athletes participated in a repeated-measure study by wearing three sets of clothing (CloA, CloB, and CloC). CloA and CloB were body-mapping-designed with 11% and 7% increased capacity of heat dissipation respectively than CloC, the commonly used running clothing. The experiments were conducted by using steady-state running followed by an all-out performance running in a controlled hot environment. Participants' thermal responses such as core temperature (Tc), mean skin temperature ([Formula: see text]), heat storage (S), and the performance running time were measured. CloA resulted in shorter performance time than CloC (323.1 ± 10.4 s vs. 353.6 ± 13.2 s, p = 0.01), and induced the lowest [Formula: see text], smallest ΔTc, and smallest S in the resting and running phases. This study indicated that clothing made with different heat dissipation capacities affects athlete thermal responses and running performance in a hot environment. Practitioner Summary: A protocol that simulated the real situation in running competitions was used to investigate the effects of body-mapping-designed clothing on athletes' thermal responses and running performance. The findings confirmed the effects of optimised clothing with body-mapping design and advanced fabrics, and ensured the practical advantage of developed clothing on exercise performance.


Assuntos
Vestuário , Transtornos de Estresse por Calor/prevenção & controle , Corrida/fisiologia , Desempenho Atlético/fisiologia , Regulação da Temperatura Corporal , Teste de Esforço , Temperatura Alta , Humanos , Masculino , Temperatura Cutânea , Adulto Jovem
15.
J Phys Ther Sci ; 29(9): 1490-1493, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28931973

RESUMO

[Purpose] The purpose of this study was to determine whether place running exercises increase the pulmonary function of normal adults. [Subjects and Methods] Thirty normal adults in their 20s were randomly assigned to an experimental group (n=15) or a control group (n=15). Over the course of four weeks, the experimental group participated in place running exercise for 30 minutes five times per week. The control group only participated in moto-med exercise for 30 minutes five times per week. Subjects were assessed pre- and post-test by measuring the tidal volume, inspiratory reserve volume, expiratory reserve volume, and vital capacity. [Results] Our findings show significant improvements to vital capacity in the experimental group. The experimental group had higher pulmonary function than the control group. In the investigation of the differences between the intervention group and the control group before and after the experiment, significant differences were found for expiratory reserve volume and vital capacity. [Conclusion] Finally, the experimental group showed a greater improvement in pulmonary function than the control group, which indicates that place running exercises are effective at increasing the pulmonary function of normal adults.

16.
J Clin Biochem Nutr ; 54(2): 86-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24688216

RESUMO

Astaxanthin, a xanthophyll carotenoid, accelerates lipid utilization during aerobic exercise, although the underlying mechanism is unclear. The present study investigated the effect of astaxanthin intake on lipid metabolism associated with peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in mice. Mice were divided into 4 groups: sedentary, sedentary and astaxanthin-treated, exercised, and exercised and astaxanthin-treated. After 2 weeks of treatment, the exercise groups performed treadmill running at 25 m/min for 30 min. Immediately after running, intermuscular pH was measured in hind limb muscles, and blood was collected for measurements. Proteins were extracted from the muscle samples and PGC-1α and its downstream proteins were measured by western blotting. Levels of plasma fatty acids were significantly decreased after exercise in the astaxanthin-fed mice compared with those fed a normal diet. Intermuscular pH was significantly decreased by exercise, and this decrease was inhibited by intake of astaxanthin. Levels of PGC-1α and its downstream proteins were significantly elevated in astaxanthin-fed mice compared with mice fed a normal diet. Astaxanthin intake resulted in a PGC-1α elevation in skeletal muscle, which can lead to acceleration of lipid utilization through activation of mitochondrial aerobic metabolism.

17.
Pharmacol Biochem Behav ; 239: 173750, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494007

RESUMO

Although the antidepressant effects of running exercise have been widely reported, further research is still needed to determine the structural bases for these effects. Astrocyte processes physically contact many synapses and directly regulate the numbers of synapses, but it remains unclear whether running exercise can modulate astrocyte morphological complexity and astrocyte-contacted synapses in the hippocampus of the mice with depressive-like behavior. Male C57BL/6 J mice underwent four weeks of running exercise after four weeks of chronic unpredictable stress (CUS). The sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were used to assess anhedonia in mice. Western blotting was used to measure the expression of astrocyte- and synapse-related proteins. Immunofluorescence and 3D reconstruction were used to quantify the density and morphology of astrocytes, and astrocyte-contacted synapses in each hippocampal subregion. Four weeks of running exercise alleviated depressive-like symptoms in mice. The expression of astrocyte- and synapse-related proteins in the hippocampus; astrocyte process lengths, process numbers, and dendritic arborization; and the number of astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions were significantly decreased in the mice with depressive-like behavior, and running exercise successfully reserved these changes. Running exercise improved the decreases in astrocyte morphological complexity and astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions of the mice with depressive-like behavior, suggesting that the physical interactions between astrocytes and synapses can be increased by running exercise, which might be an important structural basis for the antidepressant effects of running exercise.


Assuntos
Astrócitos , Depressão , Modelos Animais de Doenças , Hipocampo , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Sinapses , Animais , Astrócitos/metabolismo , Masculino , Sinapses/patologia , Sinapses/fisiologia , Hipocampo/patologia , Hipocampo/metabolismo , Camundongos , Condicionamento Físico Animal/fisiologia , Depressão/terapia , Estresse Psicológico/terapia , Estresse Psicológico/metabolismo , Corrida/fisiologia
18.
Life Sci ; 339: 122397, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185243

RESUMO

The aim of this study is to investigate the impact of running exercise training protocols (ETPs) with varying intensities on inflammatory responses, with a specific focus on the interactions between inflammatory mediators, cytokines, and Leydig cell steroidogenic activity, as well as testosterone secretion. To this end, 24 Wistar rats were subdivided into sedentary control, low (LICT), moderate (MICT), and high (HICT) intensity continuous running ETP groups. After 8 weeks, the expression levels of Toll-like receptor-4 (TLR-4), nuclear factor-kappa-B (NF-KB), interleukin-6 (IL-6), interleukin-10 (IL-10), Tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and the testicular nitric oxide (NO) content were assessed and compared between groups. Moreover, the mean distributions of Leydig cells/mm2 of interstitial connective tissue, their steroidogenic activity, and serum level of testosterone were assessed. The LICT did not show any significant (p > 0.05) change in the expression levels of all aforementioned biomarkers. In contrast, both the MICT and HICT groups demonstrated a significant (p < 0.05) increase in the expression levels of TLR-4, NFK-B, IL-6, TNF-α, iNOS, and COX-2 at both the mRNA and protein levels. The testicular NO has increased in HICT and MICT groups. Despite a decrease in the distribution of Leydig cells in both the MICT and HICT groups, the HICT group exhibited a significant (p < 0.05) reduction in Leydig cell steroidogenic activity and serum testosterone levels. In conclusion, our findings revealed that ETPs can influence Leydig cell steroidogenic activity and testosterone secretion, contingent on their intensity. These effects are attributed to alterations in the expression levels of pro-inflammatory mediators and cytokines.


Assuntos
Citocinas , Corrida , Ratos , Masculino , Animais , Ratos Wistar , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa , Interleucina-6 , Mediadores da Inflamação/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Testosterona
19.
Adv Sci (Weinh) ; : e2400205, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965798

RESUMO

Physical exercise has beneficial effect on anxiety disorders, but the underlying molecular mechanism remains largely unknown. Here, it is demonstrated that physical exercise can downregulate the S-nitrosylation of gephyrin (SNO-gephyrin) in the basolateral amygdala (BLA) to exert anxiolytic effects. It is found that the level of SNO-gephyrin is significantly increased in the BLA of high-anxiety rats and a downregulation of SNO-gephyrin at cysteines 212 and 284 produced anxiolytic effect. Mechanistically, inhibition of SNO-gephyrin by either Cys212 or Cys284 mutations increased the surface expression of GABAAR γ2 and the subsequent GABAergic neurotransmission, exerting anxiolytic effect in male rats. On the other side, overexpression of neuronal nitric oxide synthase in the BLA abolished the anxiolytic-like effects of physical exercise. This study reveals a key role of downregulating SNO-gephyrin in the anxiolytic effects of physical exercise, providing a new explanation for protein post-translational modifications in the brain after exercise.

20.
J Phys Ther Sci ; 25(9): 1103-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24259924

RESUMO

[Purpose] The aim of the present study was to investigate the expression of neurotrophin-3 (NT-3) after applying spontaneous wheel running exercises (SWR) after experimental traumatic brain injury (TBI). [Subjects and Methods] Thirty male Sprague-Dawley rats were divided into 3 groups; 20 rats were subjected to controlled cortical impact for TBI, and then, animals were randomly collected from the SWR group and subjected to wheel running exercise for 3 weeks. Ten rats were not subjected to any injury or running exercise to compare with the effect of TBI and SWR. Immunohistochemistry, Western blotting, skilled ladder rung walking test, and 2,3,5-triphenyltetrazolium chloride staining analysis for the evaluation of NT-3 expression were used to assess brain damage and recovery. [Results] The TBI-induced decrease in NT-3 expression was recovered by wheel running exercise. Moreover, decreased ischemic volume and progressive neurobehavioral outcome were observed in the SWR group. [Conclusion] Spontaneous running exercise promotes brain recovery and motor function through an increase in expression of NT-3.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa