Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(5): 2542-2553, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38262936

RESUMO

Defluorination is essential to eliminate the antibiotic resistance and detrimental effects of florfenicol (C12H14Cl2FNO4S, FF), which is achievable by sulfidated nanoscale zerovalent iron (S-nZVI), yet a comprehensive understanding of the mechanism is lacking. Herein, we used experimental data and density functional theory calculations to demonstrate four dechlorination-promoted defluorination pathways of FF, depending on S-nZVI or not. FF was defluorinated in a rapid and then slow but continuous manner, accompanying a consecutive dechlorination to deschloro (dFF) and dideschloro FF (ddFF). Unexpectedly, the predominant defluorination occurs by spontaneous hydrolysis of ddFF to form the hydrolyzed byproduct (HO-ddFF), i.e., independent of S-nZVI, which is initiated by intramolecular attack from carbonyl O to alkyl F and is thus limited for FF and dFF owing to the diminished nucleophilicity by electron-withdrawing Cl. The removal of Cl also makes the reductive defluorination of ddFF by S-nZVI amenable. The other two minor but more rapid defluorination pathways occur in synergy with the dechlorination of FF and dFF, which are mediated by the reactive carbanion intermediates and generate HO-dFF and HO-ddFF, respectively. The reliability of these dechlorination-facilitated defluorination pathways was verified by the consistency of theoretical calculations with experimental data, providing valuable insights into the degradation of fluorinated contaminants.


Assuntos
Tianfenicol/análogos & derivados , Tricloroetileno , Poluentes Químicos da Água , Ferro , Teoria da Densidade Funcional , Reprodutibilidade dos Testes
2.
Environ Res ; 245: 117981, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142729

RESUMO

The degradation of organic pollution by sulfur-modified nano zero-valent iron(S-nZVI) combined with advanced oxidation systems has been extensively studied. However, the low utilization of nZVI and low reactive oxygen species (ROS) yield in the system have limited its wide application. Herein, a natural organic acid commonly found in citrus fruits, citric acid (CA), was combined with the conventional S-nZVI@Ps system to enhance the degradation of norfloxacin (NOR). The addition of CA increased the NOR removal by about 31% compared with the conventional S-nZVI@Ps system under the same experimental conditions. Among them, the enhanced effect of CA is mainly reflected in its ability to promote the release of Fe2+ and accelerate the cycling of Fe2+ and Fe3+ to further improve the utilization of nZVI and the generation of ROS; it also promotes the dissolution of the active substance (FeS) on the surface of S-nZVI to further improve the degradation rate of NOR. More importantly, the chelate of CA and Fe2+ (CA-Fe2+) had higher reactivity than alone Fe2+. Free radical quenching and electron spin resonance (ESR) experiments indicated that the main ROS for the degradation of NOR in the CA/S-nZVI@Ps system were SO4•- and OH•. CA-bound sulfur-modifying effects on NOR degradation was systematically investigated, and the degradation mechanism of NOR in CA/S-nZVI@Ps system was explored by various techniques. Additionally, the effect of common anions in water matrix on the degradation of NOR in CA/S-nZVI@Ps system and its degradation of various pollutants were also studied. This study provides a new perspective to enhance the degradation of pollutants by S-nZVI combined with advanced oxidation system, which can help to solve the application boundary problem of S-nZVI.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Norfloxacino , Ácido Cítrico , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/análise , Citratos , Enxofre
3.
Environ Geochem Health ; 46(7): 222, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849580

RESUMO

In previous studies, iron-based nanomaterials, especially biochar (BC)-supported sulfidized nanoscale zero-valent iron (S-nZVI/BC), have been widely used for the remediation of soil contaminants. However, its potential risks to the soil ecological environment are still unknown. This study aims to explore the effects of 3% added S-nZVI/BC on soil environment and microorganisms during the remediation of Cd contaminated yellow-brown soil of paddy field. The results showed that after 49 d of incubation, S-nZVI/BC significantly reduced physiologically based extraction test (PBET) extractable Cd concentration (P < 0.05), and increased the immobilization efficiency of Cd by 16.51% and 17.43% compared with S-nZVI and nZVI/BC alone, respectively. Meanwhile, the application of S-nZVI/BC significantly increased soil urease and sucrase activities by 0.153 and 0.446 times, respectively (P < 0.05), improving the soil environmental quality and promoting the soil nitrogen cycle and carbon cycle. The results from the analysis of the 16S rRNA genes indicated that S-nZVI/BC treatment had a minimal effect on the bacterial community and did not appreciably alter the species of the original dominant bacterial phylum. Importantly, compared to other iron-based nanomaterials, incorporating S-nZVI/BC significantly increased the soil organic carbon (OC) content and decreased the excessive release of iron (P < 0.05). This study also found a significant negative correlation between OC content and Fe(II) content (P < 0.05). It might originate from the reducing effect of Fe-reducing bacteria, which consumed OC to promote the reduction of Fe(III). Accompanying this process, the redistribution of Cd and Fe mineral phases in the soil as well as the generation of secondary Fe(II) minerals facilitated Cd immobilization. Overall, S-nZVI/BC could effectively reduce the bioavailability of Cd, increase soil nutrients and enzyme activities, with less toxic impacts on the soil microorganisms.


Assuntos
Cádmio , Carvão Vegetal , Ferro , Microbiologia do Solo , Poluentes do Solo , Carvão Vegetal/química , Cádmio/química , Ferro/química , Oryza , Solo/química , Bactérias/metabolismo , Recuperação e Remediação Ambiental/métodos , RNA Ribossômico 16S , Biodegradação Ambiental
4.
J Environ Sci (China) ; 144: 1-14, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802222

RESUMO

Nanoscale zero-valent iron (NZVI), which has the advantages of small particle size, large specific surface area, and high reactivity, is often injected into contaminated aquifers in the form of slurry. However, the prone to passivation and agglomeration as well as poor stability and mobility of NZVI limit the further application of this technology in fields. Therefore, sulfided NZVI loaded on reduced graphene oxide (S-NZVI/rGO) and guar gum (GG) with shear-thinning properties as stabilizers were used to synthesize S-NZVI/rGO@GG slurries. SEM, TEM, and FT-IR confirmed that the dispersion and anti-passivation of NZVI were optimized in the coupled system. The stability and mobility of the slurry were improved by increasing the GG concentration, enhancing the pH, and decreasing the ionic strength and the presence of Ca2+ ions, respectively. A modified advection-dispersion equation (ADE) was used to simulate the transport experiments considering the strain and physicochemical deposition/release. Meanwhile, colloidal filtration theory (CFT) demonstrated that Brownian motion plays a dominant role in the migration of S-NZVI/rGO@GG slurry, and the maximum migration distance can be increased by appropriately increasing the injection rate. Extended-Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory showed that the excellent stability and migration of S-NZVI/rGO@GG slurry mainly came from the GG spatial forces. This study has important implications for the field injection of S-NZVI/rGO@GG slurry. According to the injection parameters, the injection range of S-NZVI/rGO@GG slurry is effectively controlled, which lays the foundation for the promotion of application in actual fields.


Assuntos
Galactanos , Grafite , Ferro , Mananas , Gomas Vegetais , Grafite/química , Gomas Vegetais/química , Galactanos/química , Mananas/química , Ferro/química , Modelos Químicos , Nanopartículas Metálicas/química
5.
Environ Res ; 231(Pt 1): 116080, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164285

RESUMO

Biochar derived from bamboo was used to support sulfide nanoscale zero-valent iron (S-nZVI@BC) for simultaneous removal of Cd(II) and As (III) from aqueous media. Scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD) characterization confirmed the successful synthesis of the S-nZVI@BC. Adsorption kinetics and isotherms indicated that co-adsorption of Cd(II) and As(III) onto S-nZVI@BC was well represented by pseudo-second-order model (R2Cd(II) = 0.990, R2As(III) = 0.995) and Langmuir model (R2Cd(II) = 0.954, R2As(III) = 0.936). The maximum adsorption was 162.365 and 276.133 mg/g for Cd(II) and As(III), respectively, in a co-adsorption system, which was significantly higher than that in a single adsorption system (103.195 and 223.736 mg/g, respectively). Batch experiments showed that the Cd(II)-to-As(III) concentration ratio significantly affected the co-adsorption with the optimal ratio of 1:2. Ca2+ and Mg2+ significantly inhibited Cd(II) removal. In contrast, phosphate and humic acid significantly inhibited As(III) removal. Electrochemical analysis indicated S-nZVI@BC had a lower corrosion potential and resistance than nZVI@BC, making it more conducive to electron transfer and chemical reaction. Electrostatic adsorption, complexation, co-precipitation, and redox were the primary mechanisms for Cd(II) and As(III) removal. Overall, the present study provides new insights into the synergistic removal of Cd(II) and As(III) by S-nZVI@BC, which is a very promising adsorbent for the effective removal of Cd(II) and As(III) from contaminated wastewater.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Cádmio/análise , Adsorção , Poluentes Químicos da Água/análise
6.
J Hazard Mater ; 469: 134031, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518701

RESUMO

Sulfidated nano-scale zerovalent iron (S-nZVI) has emerged as an advanced functional nanomaterial for efficiently remediating Cr(VI) contamination in aqueous environments. However, there is an insufficient understanding of its coherent process, removal pathway, and hydrochemical reactive mechanisms, presenting potential challenges for its future environmental applications. To address this gap, this study successfully synthesized S-nZVI through a chemical precipitation method and effectively applied it for the removal of Cr(VI). Additional characterization revealed that the removal of Cr(VI) followed a sequence of rapid chemisorption and intraparticle diffusion processes, concomitant with an increase in pH and a decrease in oxidation-reduction potential. The remediation mechanism encompassed a synergistic reduction of Cr(VI) to Cr(III) and simultaneous immobilization via Cr2FeO4 coprecipitation. The highest Cr(VI) removal capacity of 75 mg/g was attained during dynamic removal experiments in the sand column packed with S-nZVI. Further computational analysis, employing density functional theory calculations based on the experimental data, revealed the involvement of multiple molecular orbitals of Cr(VI) in the removal process. It also elucidated a step-by-step reduction pathway for Cr(VI) characterized by decreasing free energy. These findings provide evidence-based insights into Cr(VI) remediation using S-nZVI and can serve as valuable technical support for future environmental management of heavy metals.

7.
Sci Total Environ ; 931: 172846, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703858

RESUMO

The development of low-cost, highly efficient adsorbent materials is of significant importance for environmental remediation. In this study, a novel material, sulfurized nano zero-valent iron loaded biomass carbon (S-nZVI/BC), was successfully synthesized by a simple manufacturing process. The preparation of S-nZVI/BC does not require the use of expensive and hazardous chemicals. Instead, residual sludge, a solid waste product, is used as feedstock. The sludge is rich in Sulfate-Reducing Bacteria (SRB), which can provide carbon and sulfur sources for the synthesis of S-nZVI/BC. It was observed that S-nZVI particles formed in situ were dispersed within BC and covered by it. Additionally, S-nZVI/BC inherited the large specific surface area and porosity of BC. The adsorption capacity of S-nZVI/BC can reach 857.55 mg g-1 Hg (II) during the remediation of mercury-polluted water. This research offers new perspectives for developing composites in terms of the low cost and harmlessness of raw materials.


Assuntos
Biomassa , Ferro , Mercúrio , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/análise , Adsorção , Enxofre/química , Recuperação e Remediação Ambiental/métodos , Bactérias Redutoras de Enxofre/metabolismo , Sulfatos/química
8.
J Hazard Mater ; 452: 131197, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989782

RESUMO

The aim of this study was to investigate the effects of hydrophilic sulfur-modified nanoscale zero-valent iron (S-nZVI) as a biocatalyst for denitrification. We found that the denitrifying bacteria Cupriavidus necator (C. necator) promoted Fe corrosion during biocatalytic denitrification, reducing surface passivation and sulfur species leaching from S-nZVI. As a result, S-nZVI exhibited a higher synergistic factor (fsyn = 2.43) for biocatalytic NO3- removal than nanoscale zero-valent iron (nZVI, fsyn = 0.65) at an initial nitrate concentration of 25 mg L-1-N. Based on kinetic profiles, SO42- was the preferred electron acceptor over NO3- when using C. necator and S-nZVI for biocatalytic denitrification. Up-flow column experiments demonstrated that biocatalytic denitrification using S-nZVI achieved a total nitrogen removal capacity of up to 2004 mg L-1 for 127 d. Notably, microbiome taxonomic profiling showed that the addition of S-nZVI to the groundwater promoted the growth of Geobacter, Desulfosporosinus, Streptomyces, and Simplicispira spp in the column experiments. Most of those microbes can reduce sulfate, promote denitrification, and match the batch kinetic profile obtained using C. necator. Our results not only discover the great potential of S-nZVI as a biocatalyst for enhancing denitrification via microbial activation but also provide a deep understanding of the complicated abiotic-biotic interaction.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ferro , Desnitrificação , Nitratos , Bactérias , Nitrogênio
9.
Chemosphere ; 344: 140343, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788746

RESUMO

This study aimed to investigate the immobilization efficiency of sulfidated nanoscale zero valent iron on Cr(VI) in soil. Reactions between sulfidated nanoscale zero valent iron and Cr(VI) in soil system and effects of sulfidated nanoscale zero valent iron on microbes had been demonstrated. Solid characterization results confirmed the incorporation of sulfur into nanoscale zero valent iron. Furthermore, the main oxidation products of iron after the reactions were magnetite, goethite and lepidocrocite. Fe-Cr complexes indicated that Cr(VI) was reduced to Cr(III). The results of 16 S rRNA gene analysis indicated that the sulfidated nanoscale zero valent iron had a limited bactericidal effect but further stimulated the sulfite reductase gene population, representing its positive effect for the soil remediation. The study showed that some microflora such as Protobacteria were promoted, while others community such as Firmicutes, were depressed. Furthermore, Cr mainly converted from a high toxic state such as exchangeable (EX) to less bioavailable state such as iron-manganese oxides bound (OX) and organic matter-bound (OM), thus reducing the toxicity of Cr when sulfidated nanoscale zero valent iron was added. High immobilization efficiency of the Cr(VI) compared to nanoscale zero valent iron indicated an improvement on selectivity and reactivity after sulfidation. Overall, sulfidated nanoscale zero valent iron was promising for the immobilization of Cr(VI) immobilization soil.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes Químicos da Água , Ferro , Solo , Poluentes do Solo/análise , Cromo/análise , Poluentes Químicos da Água/análise
10.
Environ Pollut ; 338: 122710, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832776

RESUMO

Heavy metal complexes receive less attention, but they are more difficult to remove than the free heavy metals. Moreover, the high-salinity wastewaters from various industries hinder the removal of heavy metal complexes. Removal of the metal complexes is a top priority but a challenging task. Herein, a new strategy for removing Cu-EDTA from high-salinity wastewater with sulfide-modified nanozerovalent iron (S-NZVI) was proposed. The S-NZVI exhibited a considerable adsorption capacity for Cu-EDTA (∼83 mg Cu/g) at a high salt concentration (25 g/L NaCl). Similarly, the S-NZVI maintained excellent adsorption performance (∼83 mg Cu/g) in the presence of CaCl2, MgCl2, Na2SO4, and NaNO3 (25 g/L). The S-NZVI showed extremely high efficiency for Cu-EDTA removal; 50 mg/L of Cu-EDTA was almost completely removed in 1 min, and the kobs was approximately 1.5 g/(mg min). The S-NZVI showed an extensive pH working range, and within the pH range of 2-9, the Cu-EDTA was removed completely within 5 min. The excellent removal performance of the S-NZVI was due to the high reactivity and high affinity of NZVI for Cu, as well as the special substitution of Fe2+ and the interfacial reactions between S-NZVI and the copper complexes. Compared with other studies of Cu complex removal, removal with S-NZVI was a simpler process with higher efficiency. In brief, S-NZVI efficiently removed Cu complexes from harsh water environments and was reused many times. The process was simple and efficient and has broad application prospects.


Assuntos
Complexos de Coordenação , Metais Pesados , Poluentes Químicos da Água , Ferro/química , Águas Residuárias , Cobre/análise , Salinidade , Ácido Edético , Descontaminação , Poluentes Químicos da Água/análise , Sulfetos , Adsorção
11.
Environ Sci Pollut Res Int ; 30(6): 14240-14252, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36149563

RESUMO

Sulfidated nanoscale zerovalent iron (S-nZVI) supported on a flower spherical Mg(OH)2 with different Mg/Fe ration were successfully synthesized. The synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The results showed that S-nZVI particles were well dispersed on the petals of the flower spherical Mg(OH)2. The influence of factors, including the initial solution pH, Mg/Fe, S/Fe were studied. The trichloroethylene (TCE) adsorption data on Mg(OH)2 and S-nZVI @Mg(OH)2 fit well to a Langmuir isotherm model, and the maximum adsorption of S-nZVI @Mg(OH)2 was 253.55 mg/g, which was 2.6-fold of S-nZVI. Meanwhile, the S-nZVI @Mg(OH)2 composite expanded the pH selection range of S-nZVI from 2 to 11. Cycling experiments showed that removal rate was 58.3% for the 5th cycle. TCE removal was due to synergistic action of reduction coupled with adsorption. During this process, 65.43% of total remove TCE from ion chromatography data was reduced and 34.57% of total remove TCE was adsorbed finally. At the same time, adsorption favors reduction. These observations indicated that the S-nZVI @Mg(OH)2 can be considered as potential adsorbents to remove TCE for environment remediation.


Assuntos
Recuperação e Remediação Ambiental , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/química , Ferro/química , Adsorção , Difração de Raios X , Poluentes Químicos da Água/química
12.
J Hazard Mater ; 458: 132028, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459757

RESUMO

Post-sulfidated nanoscale zero-valent iron with a controlled FeSX shell thickness deposited on biochar (S-nZVI/BC) was synthesized to degrade tetrabromobisphenol A (TBBPA). Detailed characterizations revealed that the increasing sulfidation degree altered shell thickness/morphology, S content/speciation/distribution, hydrophobicity, and electron transfer capacity. Meanwhile, the BC improved electron transfer capacity and hydrophobicity and inhibited the surface oxidation of S-nZVI. These properties endowed S-nZVI/BC with highly reactive (∼8.9-13.2 times) and selective (∼58.4-228.9 times) over nZVI/BC in TBBPA transformation. BC modification improved the reactivity and selectivity of S-nZVI by 1.77 and 1.96 times, respectively. The difference of S-nZVI/BC in reactivity was related to hydrophobicity and electron transfer, particularly FeSX shell thickness and morphology. Optimal shell thickness of ∼32 nm allowed the maximum association between Fe0 core and exterior FeSX, resulting in superior reactivity. A thicker shell with abundant networks increased the roughness but decreased the surface area and electron transfer. The higher [S/Fe]surface and [S/Fe]particle were conducive to the selectivity, and [S/Fe]particle was more influential than [S/Fe]surface on selectivity upon similar hydrophobicity. The solvent kinetic isotope effects (SKIEs) exhibited that increasing [S/Fe]dose tuned the relative contributions of atomic H and electron in TBBPA debromination but failed to alter the dominant debromination pathway (i.e., direct electron transfer) in (S)-nZVI/BC systems. Mechanism of electron transfer rather than atomic H contributed to higher selectivity. This work demonstrated that S-nZVI/BC was a prospective material for the remediation of TBBPA-contaminated groundwater.

13.
Materials (Basel) ; 15(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683196

RESUMO

In this study, sulfidized nanoscale zerovalent iron (S-nZVI) supported by oyster shell (OS) powder (S-nZVI@OS) was synthesized by controlling the initial S/Fe ratios (0.1-0.5) to explore the potential synergistic effects during the adsorption and reduction of Cr (VI). X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses showed that Fe (0) and FeS were well dispersed on the OS surface. Furthermore, the stability of S-nZVI@OS composite was higher than that of nZVI, which was proved by the material ageing experiment. The effects of different S/Fe molar ratios, time, temperature, the initial concentration of Cr (VI), and initial pH on the removal efficiency were also studied. The results indicated that with the increase of the S/Fe molar ratio, the removal capacity of Cr (VI) first increased rapidly and then decreased slowly. Batch experiments showed that an optimal S/Fe molar ratio of 0.2 offered a Cr (VI) removal capacity of about 164.7 mg/g at pH 3.5. The introduction of S can not only promote Cr (VI) reduction but also combine with Cr (III) by forming precipitate on S-nZVI@OS mainly as CrxFe(1-x) OOH and Cr2S3. The adsorption thermodynamics and kinetics demonstrated that the Langmuir model and pseudo-second-order kinetics model can describe the adsorption isotherms and kinetics. These results suggest that S-nZVI@OS is an effective and safe material for removing Cr (VI) from aqueous solutions.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35627834

RESUMO

Trichloroethylene (TCE) is one of the most widely distributed pollutants in groundwater and poses serious risks to the environment and human health. In this study, sulfidated nanoscale zero-valent iron (S-nZVI) materials with different Fe/S molar ratios were synthesized by one-step methods. These materials degraded TCE in groundwater and followed a pathway that did not involve the production of toxic byproducts such as dichloroethenes (DCEs) and vinyl chloride (VC). The effects of sulfur content on TCE dechlorination by S-nZVI were thoroughly investigated in terms of TCE-removal efficiency, H2 evolution, and reaction rate. X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) characterizations confirmed Fe(0) levels in S-nZVI were larger than for zero-valent iron (nZVI). An Fe/S molar ratio of 10 provided the highest TCE-removal efficiencies. Compared with nZVI, the 24-h TCE removal efficiencies of S-nZVI (Fe/S = 10) increased from 30.2% to 92.6%, and the Fe(0) consumed during a side-reaction of H2 evolution dropped from 77.0% to 12.8%. This indicated the incorporation of sulfur effectively inhibited H2 evolution and allowed more Fe(0) to react with TCE. Moreover, the pseudo-first-order kinetic rate constants of S-nZVI materials increased by up to 485% compared to nZVI. In addition, a TCE degradation was proposed based on the variation of detected degradation products. Noting that acetylene, ethylene, and ethane were detected rather than DCEs and VC confirmed that TCE degradation followed ß-elimination with acetylene as the intermediate. These results demonstrated that sulfide modification significantly enhanced nZVI performance for TCE degradation, minimized toxic-byproduct formation, and mitigated health risks. This work provides some insight into the remediation of chlorinated-organic-compound-contaminated groundwater and protection from secondary pollution during remediation by adjusting the degradation pathway.


Assuntos
Água Subterrânea , Tricloroetileno , Alcinos , Água Subterrânea/química , Humanos , Ferro/química , Enxofre , Tricloroetileno/química
15.
Environ Pollut ; 306: 119363, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489535

RESUMO

Sulfidized nanoscale zero-valent iron (S-nZVI) is a promising material for in situ soil remediation. However, its transformation (i.e., aging) and effects on the microbial community in soil ecosystems are largely unknown. In this study, S-nZVI having low (S-nZVI (L)) and high sulfur-doping (S-nZVI (H)) were incubated in soil microcosms and bare nZVI was used as a control. Their aged products were characterized using microspectroscopic analyses and the changes in the corresponding soil microbial community were determined using high-throughput sequencing analyses. The results indicate that severe corrosion of both bare and S-nZVI occurred over 56 days of aging with significant morphological and mineral changes. Magnetite, lepidocrocite, and goethite were detected as the main aged products. In addition, sulfate ions, pyrite, and iron polysulfide were formed in the aged products of S-nZVI. Cr(VI) removal test results indicated that S-nZVI(L) achieved the best results after aging, likely because of the optimal FeS arrangement on its nanoparticle surfaces. The presence of nZVI and S-nZVI increased the abundance of some magnetotactic microorganisms and altered bacterial and fungal community structures and compositions. Moreover, the addition of S-nZVI enriched some bacterial and fungal genera related to sulfur cycling because of the presence of sulfide-bearing material. The findings reveal the transformation of S-nZVI during aging and its effects on microbial communities in soil ecosystems, thereby helping to the evaluation of S-nZVI application in soil remediation.


Assuntos
Recuperação e Remediação Ambiental , Microbiota , Ferro/química , Solo/química , Enxofre
16.
Environ Sci Pollut Res Int ; 29(6): 8281-8293, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34482464

RESUMO

Sulfide-modified nanoscale zero-valent iron (S-nZVI) has been considered an efficient material to remove heavy metals and organic contaminants. The experiments of bisphenol S (BPS) degradation by persulfate (PS) activated with S-nZVI (S-nZVI/PS) or nZVI (nZVI/PS) were carried out in this paper. The results show that, compared to the bare nZVI/PS system, the S-nZVI/PS system shows higher activity in BPS degradation, especially at high BPS concentration. The reaction rate constant kobs of BPS removal by the S-nZVI/PS system (0.142 min-1) was much higher than that in nZVI/PS system (0.089 min-1) because more oxidation species were generated in the S-nZVI/PS system. The results of electron paramagnetic resonance (EPR) and radical quenching tests show that both hydroxyl radical (·OH) and sulfate radical (SO4·-) were involved in the degradation of BPS and had a great contribution to BPS removal. Moreover, the effects of S/Fe molar ratio, S-nZVI dosage, initial pH, and initial concentration of PS or BPS on S-nZVI/PS were also studied. The results show that the S/Fe molar ratio has significant influence on the BPS degradation; over 97.7% of the removal efficiency was achieved at 0.035 of S/Fe molar ratio. And the removal efficiency of BPS degradation increased with the increase of the dosage of S-nZVI, PS concentration. Furthermore, BPS could be efficiently removed in solutions with a wide range of initial pH (3.13-9.35). The observed results show that it is promising in the removal of micro-pollutants from water by persulfate activated with S-nZVI.


Assuntos
Ferro , Poluentes Químicos da Água , Fenóis , Sulfetos , Sulfonas , Poluentes Químicos da Água/análise
17.
Chemosphere ; 308(Pt 1): 136253, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057347

RESUMO

Sulfidated nano zero-valent iron (S-nZVI) was used to remove various pollutants from wastewater. However, the instability, poor dispersibility, and low electron transfer efficiency of S-nZVI limit its application. Herein, graphene oxide supported sulfidated nano zero-valent iron (S-nZVI@GO) was successfully synthesized using graphene oxide (GO) as a carrier. The properties of S-nZVI@GO were characterized by scanning electron microscopy coupled to X-ray photoelectron spectroscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) concerning the surface morphology, crystalline structure, and elemental components. S-nZVI@GO displayed an excellent capacity for antimony (Sb) removal under aerobic conditions (96.7%), with a high adsorption capacity (Qmax = 311.75 mg/g). It maintained a high removal rate (over 90%) during a wide pH range (3-9). More importantly, S-nZVI@GO activated the molecular oxygen in water via a single-electron pathway to produce •O2- and H2O2, and then oxidized trivalent antimony (Sb(III)) to pentavalent antimony (Sb(V)) and further separated it by synergistic adsorption and co-precipitation. Therefore, S-nZVI@GO shows excellent potential for Sb contamination remediation.

18.
Sci Total Environ ; 793: 148579, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34182442

RESUMO

Achieving Cd removal standards is a difficult task due to the strict Cd discharge standards for industrial wastewater. Moreover, the low concentration of Cd remaining in industrial wastewater after pretreatment often exists in a complex state, and the wastewater has a high salinity. Hereupon, we propose to use a small amount of sulfur-modified zero-valent iron (S-NZVI) to remove residual low-concentration Cd complexes in high-salinity wastewater. EDTA-Cd (2000 µg/L) was completely removed when the dose of S-NZVI was only 0.05 g/L. Moreover, the removal process was almost unaffected by salinity. Even when the salinity was 5%, the adsorption capacity still reached 39.5 mg/g, and the concentration of residual Cd was less than 50 µg/L, which meets the China Environmental Protection Administration emission standards (less than 0.1 mg/L). In addition, S-NZVI can almost completely remove EDTA-Cd in the pH range of 2-7. It shows good removal performance for the other four Cd carboxyl complexes (DTPA, citrate, glycine, and tartrate). Furthermore, S-NZVI also shows good performance in the case of high concentrations of coexisting ions (CaCl2, MgCl2, Na2SO4, NaNO3) and organics (Na2EDTA, imidazole, thiourea, acetone). However, the performance of S-NZVI is certainly inhibited by the presence of complexing substances or reducing substances. The mechanism EDTA-Cd removal by S-NZVI is that S-NZVI leaches Fe3+ into the solution, and the Fe3+ completes the replacement of EDTA-Cd. The LMCT produced by EDTA-Fe under natural light promotes the replacement process, and finally, the released Cd2+ is captured by S-NZVI and removed as CdS and Fe-O-Cd.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Cádmio , Descontaminação , Ferro/análise , Salinidade , Enxofre , Poluentes Químicos da Água/análise
19.
J Hazard Mater ; 416: 125924, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492856

RESUMO

The chitosan-stabilized biochar supported S-nZVI (CS@BC/S-nZVI) composite with low aggregation and superior antioxidation were successfully synthesized by liquid-phase reduction method for the outstanding removal of Cr(VI) from wastewater and characterized by SEM, BET, FTIR, XRD, and XPS. The optimized synthesis parameters of CS@BC/S-nZVI were determined as a 0.14 molar ratio of S/Fe and a 0.25 mass ratio of BC/Fe. The CS@BC/S-nZVI possessed a specific surface area of 199.246 m2/g and an average pore size and pore volume of 1.186 nm and 0.272 cc/g. The CS@BC/S-nZVI could remain reductive activity after Cr(VI) removal and present a remarkable tolerance to the coexisting ions during Cr(VI) removal. The adsorption data were fitted well by the pseudo-second order model and the Langmuir model. The removal of Cr(VI) by CS@BC/S-nZVI was an exothermic process with prominent Cr(VI) removal capacities of 244.07 mg/g at 120 min and 221.84 mg/g at 15 min at 25 â„ƒ. Further mechanism analysis proved that the binding of Cr(VI) to CS@BC/S-nZVI was mainly a synergistic effect of reduction and electrostatic attraction. Overall, these findings shed new light on the research of a novel S-nZVI compound and revealed the potential practical application of CS@BC/S-nZVI in the future heavy metal removal from wastewater.


Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Cromo , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 759: 143481, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33221003

RESUMO

Alginate has been widely employed to increase the performance of nanoscale zerovalent iron (nZVI)-based materials for site remediation. Yet, the effects of alginate on reactivity of sulfidated nZVI (an efficient reductant material) towards contaminants have been understood poorly. In this study, we have developed a one-step synthesis of alginate-coated sulfidated nZVI (S-nZVI@alginate) under air atmosphere and evaluated the reactivity of S-nZVI@alginate towards tetrabromobisphenol A (TBBPA) debromination. Surface analysis shows that S-nZVI has been successfully coated by alginate through the interaction of OH and COO- groups of alginate with Fe species. The coating of alginate increases particle stability and dispersion under various conditions and facilitates FeS precipitation on the particle surface. Reactivity experiments show that the coating of alginate significantly enhances TBBPA debromination by S-nZVI. The optimized alginate to Fe weight ratio of S-nZVI@alginate is 0.06, with ~3-fold greater TBBPA debromination rate than S-nZVI. S-nZVI@alginate can completely debrominate TBBPA into bisphenol A via a four-sequential step debromination pathway while S-nZVI not. Its superior reactivity may be attributed to that the formation of alginate-Fe complex can lower the redox potential of Fe species to accelerate electron transfer on the particle surface. The TBBPA debromination rate by S-nZVI@alginate is initially enhanced followed by a decrease with an increase in TBBPA concentration, while it can increase 3.3-, 8.9- and 5.6-fold by increasing S-nZVI@alginate dosage, decreasing pH and adding co-contaminant Cd2+, respectively. S-nZVI@alginate has greater performance in aging and reusability tests than S-nZVI, and achieves rapid TBBPA removal from wastewater, which may be due to the role of alginate on inhibiting surface oxidation of Fe and S species. Taken together, these results suggest that S-nZVI@alginate provides better reactivity, longevity and reusability than S-nZVI, having the great potential for application into site remediation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa