RESUMO
BACKGROUND: Streptococcus suis (S.suis) is a neglected zoonotic disease that imposes a significant economic burden on healthcare and society. To our knowledge, studies estimating the cost of illness associated with S.suis treatment are limited, and no study focuses on treatment costs and potential key drivers in Thailand. This study aimed to estimate the direct medical costs associated with S.suis treatment in Thailand and identify key drivers affecting high treatment costs from the provider's perspective. METHODS: A retrospective analysis of the 14-year data from 2005-2018 of confirmed S.suis patients admitted at Chiang Mai University Hospital (CMUH) was conducted. Descriptive statistics were used to summarize the data of patients' characteristics, healthcare utilization and costs. The multiple imputation with predictive mean matching strategy was employed to deal with missing Glasgow Coma Scale (GCS) data. Generalized linear models (GLMs) were used to forecast costs model and identify determinants of costs associated with S.suis treatment. The modified Park test was adopted to determine the appropriate family. All costs were inflated applying the consumer price index for medical care and presented to the year 2019. RESULTS: Among 130 S.suis patients, the average total direct medical cost was 12,4675 Thai baht (THB) (US$ 4,016), of which the majority of expenses were from the "others" category (room charges, staff services and medical devices). Infective endocarditis (IE), GCS, length of stay, and bicarbonate level were significant predictors associated with high total treatment costs. Overall, marginal increases in IE and length of stay were significantly associated with increases in the total costs (standard error) by 132,443 THB (39,638 THB) and 5,490 THB (1,715 THB), respectively. In contrast, increases in GCS and bicarbonate levels were associated with decreases in the total costs (standard error) by 13,118 THB (5,026 THB) and 7,497 THB (3,430 THB), respectively. CONCLUSIONS: IE, GCS, length of stay, and bicarbonate level were significant cost drivers associated with direct medical costs. Patients' clinical status during admission significantly impacts the outcomes and total treatment costs. Early diagnosis and timely treatment were paramount to alleviate long-term complications and high healthcare expenditures.
Assuntos
Streptococcus suis , Humanos , Tailândia/epidemiologia , Estudos Retrospectivos , Bicarbonatos , Custos de Cuidados de Saúde , Hospitais UniversitáriosRESUMO
Streptococcus suis is an emerging bacterial pathogen of huge economic impact to the swine industry worldwide. The information regarding the carrier status of S. suis in the slaughtered pigs along with its genetic characterization is not available in Indian pig population, which needs to be addressed for the therapeutic and preventive measures. In the present study, 563 palatine tonsils of apparently healthy slaughtered pigs were probed for the prevalence, and genetic characterization of S. suis and prevalence were found to be 15.45% and 32.68% by bacteriological and molecular methods, respectively. In 87 isolates recovered, 6 cps-types were detected showing the predominance of serotype 7 (24.13%) and 5 (18.39%), whereas 11 cps-types were detected in tonsillar DNA involving cps-types 9 (28.26%) and 7 (14.13%) as the major serotypes with arcA+/sly+/epf+/mrp- being the prevalent genotype. The histopathological changes with the immunodetection of S. suis antigen confirmed its persistence in asymptomatic carriers. Of 87 bacterial isolates, 7 isolates (serotypes 7 & 2) were pathogenic to Swiss albino mice showing the classical lesions of meningitis and septicemia. The presence of virulent serotypes of S. suis in healthy slaughtered pigs suggests a great health risk to the people engaged in piggery operations and in-contact pigs.
Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Genótipo , Humanos , Camundongos , Tonsila Palatina/microbiologia , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Suínos , Doenças dos Suínos/diagnósticoRESUMO
Actinobacillus pleuropneumoniae (A.pp, Gram negative) and Streptococcus (S.) suis (Gram positive) can cause severe diseases in pigs. During infection, neutrophils infiltrate to counteract these pathogens with phagocytosis and/or neutrophil extracellular traps (NETs). NETs consist of a DNA-backbone spiked with antimicrobial components. The NET formation mechanisms in porcine neutrophils as a response to both of the pathogens are not entirely clear. The aim of this study was to investigate whether A.pp (serotype 2, C3656/0271/11) and S. suis (serotype 2, strain 10) induce NETs by NADPH oxidase- or CD18-dependent mechanisms and to characterize phenotypes of NETs in porcine neutrophils. Therefore, we investigated NET induction in porcine neutrophils in the presence and absence of NET inhibitors and quantified NETs after 3 h. Furthermore, NETosis and phagocytosis were investigated by transmission electron microscopy after 30 min to characterize different phenotypes. A.pp and S. suis induce NETs that are mainly ROS-dependent. A.pp induces NETs that are partially CD18-dependent. Thirty minutes after infection, both of the pathogens induced a vesicular NET formation with only slight differences. Interestingly, some neutrophils showed only NET-marker positive phagolysosomes, but no NET-marker positive vesicles. Other neutrophils showed vesicular NETs and only NET-marker negative phagolysosomes. In conclusion, both of the pathogens induce ROS-dependent NETs. Vesicular NETosis and phagocytosis occur in parallel in porcine neutrophils in response to S. suis serotype 2 and A.pp serotype 2.
Assuntos
Infecções Bacterianas , Armadilhas Extracelulares , Streptococcus suis , Animais , Neutrófilos , Espécies Reativas de Oxigênio , SuínosRESUMO
Streptococcus suis, a Gram-positive bacterium, is an important swine and human pathogen, with serotype 2 being the most prevalent strain found worldwide. Deafness, meningitis, and death (in severe cases) are observed in S. suis-infected cases. Development of the ligands that can bind to S. suis with high affinity and specificity could be beneficial for the diagnosis and treatment of S. suis infection. Herein, the nuclease-resistant RNA aptamers based on 2'-fluoropyrimidine modification against S. suis serotype 2, strain P1/7, were established using the cell- Systematic Evolution of Ligands by Exponential enrichment (SELEX) technique. One of the aptamers, R8-su12, could bind to the S. suis target strain as well as other S. suis serotypes, i.e., 1, 1/2, 9, and 14, but not to other bacteria tested, i.e., S. pneumoniae ATCC 49619, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853. Moreover, the R8-su12 RNA aptamer was also capable of inhibiting the biofilm formation of the S. suis target strain, making it potentially useful for the study of biofilm formation and the treatment of S. suis infection in humans and pigs in the future.
Assuntos
Aptâmeros de Nucleotídeos , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Aptâmeros de Nucleotídeos/farmacologia , Biofilmes , Sorogrupo , Infecções Estreptocócicas/microbiologia , Suínos , Doenças dos Suínos/microbiologiaRESUMO
Streptococcus suis (S. suis) is an important zoonotic pathogen that causes septicaemia, meningitis and streptococcal toxic shock-like syndrome in its host, and recent studies have shown that S. suis could be competent for natural genetic transformation. Transformation is an important mechanism for the horizontal transfer of DNA, but some elements that affect the transformation process need to be further explored. Upon entering the competent state, Streptococcus species stimulate the transcription of competence-related genes that are responsible for exogenous DNA binding, uptake and processing. In this study, we performed conserved promoter motif and qRT-PCR analyses and identified CrfP as a novel murein hydrolase that is widespread in S. suis and stimulated with a peptide pheromone in the competent state through a process controlled by ComX. A bioinformatics analysis revealed that CrfP consists of a CHAP hydrolase domain and two bacterial Src homology 3-binding (SH3b) domains. Further characterization showed that CrfP could be exported to extracellular bacterial cells and lytic S. suis strains of different serotypes, and this finding was verified by TEM and a turbidity assay. To investigate the potential effect of CrfP in vivo, a gene-deletion mutant (ΔcrfP) was constructed. Instead of stopping the natural transformation process, the inactivation of CrfP clearly reduced the effective transformation rate. Overall, these findings provide evidence showing that CrfP is important for S. suis serovar 2 competence.
Assuntos
Proteínas de Bactérias/genética , Hidrolases/genética , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Doenças dos Suínos/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Deleção de Genes , Hidrolases/metabolismo , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/enzimologia , Sus scrofa , Suínos , Transformação BacterianaRESUMO
Dry-cured hams, shoulders and loins of Iberian pigs are highly appreciated in national and international markets. Salting, additive addition and dehydration are the main strategies to produce these ready-to-eat products. Although the dry curing process is known to reduce the load of well-known food borne pathogens, studies evaluating the viability of other microorganisms in contaminated pork have not been performed. In this work, the efficacy of the dry curing process to eliminate three swine pathogens associated with pork carcass condemnation, Streptococcus suis, Streptococcus dysgalactiae and Trueperella pyogenes, was evaluated. Results of this study highlight that the dry curing process is a suitable method to obtain safe ready-to-eat products free of these microorganisms. Although salting of dry-cured shoulders had a moderate bactericidal effect, results of this study suggest that drying and ripening were the most important stages to obtain dry-cured products free of these microorganisms.
Assuntos
Arcanobacterium/isolamento & purificação , Conservação de Alimentos , Produtos da Carne/microbiologia , Viabilidade Microbiana , Carne Vermelha/microbiologia , Streptococcaceae/isolamento & purificação , Streptococcus suis/isolamento & purificação , Animais , Manipulação de Alimentos , Inocuidade dos Alimentos , Cloreto de Sódio , SuínosRESUMO
Pentraxin 3 (PTX3), a soluble pattern recognition receptor, plays an important role in innate immunity and has been implicated to be a candidate resistance gene against Streptococcus suis 2 infection. To discover the antibacterial effect of porcine PTX3 against S. suis 2, the 42-kDa PTX3 protein was expressed by Chinese hamster ovary cells (CHO), and an additional eukaryotic expression vector pVAX-ptx3 was constructed. The expressed porcine PTX3 mediated a range of antibacterial activities including increasing phagocytic capacity of primary porcine alveolar macrophages (PAM) against S. suis 2 and inhibiting adhesion of S. suis 2 to human epidermoid cancer cells (Hep-2). In mouse model, pre-intramuscular injecting with pVAX-ptx3 reduced mortality and reduced bacteria loads in blood, spleen, lung and brain compared with that of control group during 2-12 h following intraperitoneal injection (i.p.) with S. suis 2. Meanwhile, the expressions of IL-6 and IL-8 in blood were increased in pVAX-ptx3 group, whereas no obvious changes about IL-10. In piglet model, bacteria load in blood of pVAX-ptx3 group was significantly lower than that of control group after i.p. with S. suis 2, correspondingly, expression of IL-6 and IL-8 were significantly increased in pVAX-ptx3 group. In contrast, white blood cell (WBC) and neutrophil cell (NEU) count of peripheral blood in pVAX-ptx3 group were lower than that of control group. These studies described a novel antibacterial role for porcine PTX3 against S. suis 2 both in vitro and in vivo and suggested that porcine PTX3 may be a potential biological agent against S. suis 2 in pig and be used for the clinical prevention and treatment of streptococcosis caused by S. suis 2.
Assuntos
Proteína C-Reativa/farmacologia , Fatores Imunológicos/farmacologia , Componente Amiloide P Sérico/farmacologia , Streptococcus suis/efeitos dos fármacos , Estruturas Animais/microbiologia , Animais , Aderência Bacteriana/efeitos dos fármacos , Carga Bacteriana , Proteína C-Reativa/administração & dosagem , Proteína C-Reativa/genética , Proteína C-Reativa/isolamento & purificação , Células Epiteliais/microbiologia , Fatores Imunológicos/administração & dosagem , Injeções Intramusculares , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Camundongos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Componente Amiloide P Sérico/administração & dosagem , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/isolamento & purificação , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus suis/imunologia , Streptococcus suis/fisiologia , Análise de Sobrevida , SuínosRESUMO
Although naturally Streptococcus suis serotype 2 (SS2) causes meningitis resulting in death or sequela of neurological symptoms in pigs and humans, severely threatening public health in the world, it has been difficult to build up and confirm experimental meningitis mouse models with obvious neurological syndrome for about two decades, which strongly hampers the in-depth study on the control measures and mechanisms of SS2-induced meningitis. In this study, a typical meningitis mouse model of SS2 was successfully established, as confirmed by the behavioral indicators of balance beam test, suspension test, and gait analysis. With bacteria gathering in the brain, distinguishable unique features including meningeal thickening, vacuolization of the Nissl body, brain barrier damage, glial cell activation, and more infiltration of T cells, macrophages, and DCs are observed in SS2 meningitis mice with typical neurological signs. Some meningitis mice were also accompanied by identical nephritis, ophthalmia, and cochlearitis. Investigation of the metabolic features demonstrated the downregulated cholic acid and upregulated 2-hydroxyvaleric acid, tetrahydrocortisone, nicotinic acid, and lauric acid in blood serum of mice and piglets with meningitis. And feeding trials show that lauric acid can promote meningitis by promoting the infiltration of immune cells into brain. These findings demonstrated that infection of ICR (improved castle road) mice with SS2 was able to induce typical meningitis accompanied by immune cell infiltration and lauric acid upregulation. These data provide a basis for the deep study of SS2 meningitis.
Assuntos
Encéfalo , Ácidos Láuricos , Streptococcus suis , Animais , Streptococcus suis/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácidos Láuricos/farmacologia , Camundongos , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/patologia , Infecções Estreptocócicas/sangue , Metabolômica , Suínos , Meningites Bacterianas/patologia , Meningites Bacterianas/sangue , Meningites Bacterianas/metabolismo , Feminino , Metaboloma/efeitos dos fármacosRESUMO
Streptococcus suis is a bacterial pathogen that can cause significant economic losses in the swine industry due to high morbidity and mortality rates in infected animals. Vaccination with bacterins, which consist of inactivated bacteria and adjuvants to enhance the pig's immune response, is an effective approach to control S. suis infections in piglets. Here we provide a description of S. suis bacterins and the methods for vaccine preparation. Moreover, this chapter also describes the addition of recombinant Sao (rSao-L) protein to the S. suis bacterin, aiming to enhance the efficacy of the bacterins against S. suis in piglets. Furthermore, the methods for evaluating the immune response elicited by the bacterins are also covered in this chapter.
Assuntos
Streptococcus suis , Animais , Suínos , Streptococcus suis/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Vacinação/métodos , Vacinas Bacterianas/imunologia , Adjuvantes Imunológicos/farmacologia , Anticorpos Antibacterianos/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Vacinas Estreptocócicas/imunologia , Vacinas Estreptocócicas/administração & dosagemRESUMO
Streptococcus suis (S. suis) serotype 2 usually cause infection in swine. Recently, two large-scale outbreaks in China with severe streptococcal toxic shock syndrome (STSS) and high mortality raised worldwide concern to human S. suis infection. To reveal the molecular pathogenesis of S. suis 2 during human infection, in-vivo induced antigen technology (IVIAT) was applied to identify the in-vivo induced genes (ivi genes) of S. suis 05ZYH33. The ivi genes are specifically expressed or up-regulated in-vivo and always associated with the in-vivo survival and pathogenicity of pathogens. In present study, convalescent sera from S. suis 05ZYH33 infected patients were pooled and fully adsorbed with in-vitro grown S. suis 05ZYH33 and Escherichia coli BL21 (DE3). Genomic expression library of 05ZYH33 was repeatedly screened with colony immunoblot assay using adsorbed sera. Finally, 19 genes were assessed as ivi genes of 05ZYH33. Fifteen of 19 genes encode proteins with biological functions in substance transport and metabolism, cell structure biogenesis, cell cycle control, replication, translation and other functions. The 4 remaining genes encode proteins with unknown functions. Of the 19 ivi genes, five (SSU05_0247, 0437, 1577, 1664 and 2144) encode proteins with no immunoreactivity to control sera from healthy individuals never exposed to 05ZYH33. The successful identification of ivi genes not only sheds light on understanding the pathogenesis of S. suis 05ZYH33 during its human infection, but also provides potential targets for the developments of new vaccines, therapeutic drugs and diagnostic reagents against human S. suis infection.
Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Anticorpos Antibacterianos , Proteínas de Bactérias/imunologia , Humanos , Immunoblotting/métodosRESUMO
Streptococcus (S.) suis presents a serious threat to the pig industry as well as food safety and public health. Although several LAMP assays have been developed for the identification of S. suis, no universal assay is so far available for the field-suitable examination of clinical pig specimens. Based on the thrA housekeeping gene, a new loop-mediated isothermal amplification (LAMP) assay was developed and validated for the detection of S. suis in the brain and joints of pigs. For this LAMP assay, two different methods for the extraction of DNA from brain and joint swabs were compared. Using the LPTV boiling method, the detection limit of LAMP was 1.08 CFU/reaction, while the detection limit was 53.8 CFU/reaction using a commercial DNA extraction kit. The detection limits of thrA-LAMP in combination with the LPTV boiling method were 104-105 CFU/swab in the presence of brain tissue and 103-104 CFU/swab in the presence of joint tissue. The diagnostic quality criteria of LAMP were determined by the examination of 49 brain swabs and 34 joint swabs obtained during routine diagnostic necropsies. Applying the LPTV boiling method to brain swabs, the sensitivity, specificity, and positive and negative predictive values of thrA-LAMP were 88.0, 95.8, 95.7, and 88.5% using cultural investigation as a reference method, and 76.7, 100, 100, and 73.1% using real-time PCR as a reference method. Based on these results, the thrA-LAMP assay combined with the LPTV boiling method is suitable for rapid detection of S. suis from brain swabs.
RESUMO
Streptococcus suis is a zoonotic pathogen that causes disease in humans after exposure to infected pigs or pig-derived food products. In this study, we examined the serotype distribution, antimicrobial resistance phenotypes and genotypes, integrative and conjugative elements (ICEs), and associated genomic environments of S. suis isolates from humans and pigs in China from 2008 to 2019. We identified isolates of 13 serotypes, predominated by serotype 2 (40/96; 41.7%), serotype 3 (10/96; 10.4%), and serotype 1 (6/96; 6.3%). Whole-genome sequencing analysis revealed that these isolates possessed 36 different sequence types (STs), and ST242 and ST117 were the most prevalent. Phylogenetic analysis revealed possible animal and human clonal transmission, while antimicrobial susceptibility testing indicated high-level resistance to macrolides, tetracyclines, and aminoglycosides. These isolates carried 24 antibiotic resistance genes (ARGs) that conferred resistance to 7 antibiotic classes. The antibiotic resistance genotypes were directly correlated with the observed phenotypes. We also identified ICEs in 10 isolates, which were present in 4 different genetic environments and possessed differing ARG combinations. We also predicted and confirmed by PCR analysis the existence of a translocatable unit (TU) in which the oxazolidinone resistance gene optrA was flanked by IS1216E elements. One-half (5/10) of the ICE-carrying strains could be mobilized by conjugation. A comparison of the parental recipient with an ICE-carrying transconjugant in a mouse in vivo thigh infection model indicated that the ICE strain could not be eliminated with tetracycline treatment. S. suis therefore poses a significant challenge to global public health and requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation. IMPORTANCE S. suis is a serious zoonotic pathogen. In this study, we investigated the epidemiological and molecular characteristics of 96 S. suis isolates from 10 different provinces of China from 2008 to 2019. A subset of these isolates (10) carried ICEs that were able to be horizontally transferred among isolates of different S. suis serotypes. A mouse thigh infection model revealed that ICE-facilitated ARG transfer promoted resistance development. S. suis requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation.
Assuntos
Oxazolidinonas , Streptococcus suis , Humanos , Suínos , Animais , Camundongos , Streptococcus suis/genética , Filogenia , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologiaRESUMO
The Netherlands has been very successful in the last decade in reducing antimicrobial use in animals. On about a quarter of farms, antimicrobial use in weaned pigs remains relatively high. As Streptococcus suis (S. suis) infections are responsible for a high consumption of antimicrobials, a specific veterinary guideline to control S. suis was developed, but seemed to be poorly adopted by veterinarians. Guided by the theoretical domains framework, the aim of this study was to identify determinants influencing veterinarians' adherence to this guideline. We interviewed 13 pig veterinarians. Interviewees described multiple approaches to managing S. suis problems and adherence to the guideline. Mentioned determinants could be categorized into 12 theoretical domains. The following six domains were mentioned in all interviews: knowledge, skills, beliefs about capabilities, beliefs about consequences, social influences, and environmental context and resources. The insights derived from this study are relevant for understanding factors influencing veterinarians' adoption of scientific evidence and guidelines and can be used to develop evidence-based implementation strategies for veterinary guidelines.
RESUMO
Gamithromycin is a long-acting azalide antibiotic that has been developed recently for the treatment of swine respiratory diseases. In this study, the pharmacokinetic/pharmacodynamic (PK/PD) targets, PK/PD cutoff, and optimum dosing regimen of gamithromycin were evaluated in piglets against Streptococcus suis in China, including a subset with capsular serotype 2. Short post-antibiotic effects (PAEs) (0.5-2.6 h) and PA-SMEs (2.4-7.7 h) were observed for gamithromycin against S. suis. The serum matrix dramatically facilitated the intracellular uptake of gamithromycin by S. suis strains, thus contributing to the potentiation effect of serum on their susceptibilities, with a Mueller-Hinton broth (MHB)/serum minimum inhibitory concentration (MIC) ratio of 28.86 for S. suis. Dose-response relationship demonstrated the area under the concentration (AUC)/MIC ratio to be the predictive PK/PD index closely linked to activity (R 2 > 0.93). For S. suis infections, the net stasis, 1-log10, and 2-log10 kill effects were achieved at serum AUC24h/MIC targets of 17.9, 49.1, and 166 h, respectively. At the current clinical dose of 6.0 mg/kg, gamithromycin PK/PD cutoff value was determined to be 8 mg/L. A PK/PD-based dose assessment demonstrated that the optimum dose regimen of gamithromycin to achieve effective treatments for the observed wild-type MIC distribution of S. suis in China with a probability of target attainment (PTA) ≥ 90% was 2.53 mg/kg in this study. These results will aid in the development of clinical dose-optimization studies and the establishment of clinical breakpoints for gamithromycin in the treatment of swine respiratory infections due to S. suis.
RESUMO
Serious diseases caused by Streptococcus suis serotype 2 (S. suis 2) include septicaemia and meningitis, which are associated with high morbidity and mortality. Proliferation in the blood can result in a breach of the blood-brain barrier (BBB) and provide entry into the cerebrospinal fluid (CSF), where bacteria cause inflammation of the meningeal membranes resulting in meningitis. The molecular mechanisms of how this pathogen crosses the BBB remain unclear. Suilysin (SLY) has been identified as an important secreted virulence factor of S. suis 2 and may play a vital role in provoking meningitis. In this investigation, we demonstrate that SLY can increase the paracellular permeability of BBB, both in vivo and in vitro, via the activation of group III secretory phospholipase A2 (PLA2G3). Our results indicate that at lower, sublytic concentrations, the toxin can stimulate cerebral microvascular endothelial cells to release TNF-α, thereby inducing high level expressions of PLA2G3. Abnormal elevations of PLA2G3 might further injure tissues through direct cytolytic effectors or other responses.
RESUMO
Macrolide-resistant Streptococcus suis is highly prevalent worldwide. The acquisition of the erm(B) gene mediated by mobile genetic elements (MGEs) in particular integrative and conjugative elements (ICEs) is recognized as the main reason for the rapid spread of macrolide-resistant streptococcal strains. However, knowledge about different erm(B)-carrying elements responsible for the widespread of macrolide resistance and their transferability in S. suis remains poorly understood. In the present study, two erm(B)- and tet(O)-harboring putative ICEs, designated as ICESsuYSB17_rplL and ICESsuYSJ15_rplL, and a novel erm(B)- and aadE-spw-like-carrying genomic island (GI), named GISsuJHJ17_rpsI, were identified to be excised from the chromosome and transferred among S. suis strains with different serotypes. ICESsuYSB17_rplL and ICESsuYSJ15_rplL were integrated downstream the rplL gene, a conserve locus of the ICESa2603 family. GISsuJHJ17_rpsI, with no genes belonging to the conjugation module, was integrated into the site of rpsI. All transconjugants did not exhibit obvious fitness cost by growth curve and competition assays when compared with the recipient. The results demonstrate that different erm(B)-carrying elements were presented and highlight the role of these elements in the dissemination of macrolide resistance in S. suis.
RESUMO
BACKGROUND: Laboratory facilities for etiological diagnosis of central nervous system (CNS) infection are limited in developing countries; therefore, patients are treated empirically, and the epidemiology of the pathogens is not well-known. Tubercular meningitis is one of the common causes of meningitis, which has high morbidity and mortality, but lacks sensitive diagnostic assays. The objectives of this study were to determine the causes of meningitis in adult patients by using molecular assays, to assess the risk factors associated with them, and to explore whether biomarkers can differentiate tubercular meningitis from bacterial meningitis. METHODS: We conducted a cross-sectional study in the Department of Infectious Diseases, Bach Mai Hospital, Hanoi, Vietnam, from June 2012 to May 2014. All patients who were ≥ 16 years old and who had meningoencephalitis suggested by abnormal cerebrospinal fluid (CSF) findings (CSF total cell >5/mm3 or CSF protein ≥40 mg/dL) were included in the study. In addition to culture, CSF samples were tested for common bacterial and viral pathogens by polymerase chain reaction (PCR) and for biomarkers: C-reactive protein and adenosine deaminase (ADA). RESULTS: Total number of patients admitted to the department was 7506; among them, 679 were suspected to have CNS infection, and they underwent lumbar puncture. Five hundred eighty-three patients had abnormal CSF findings (meningoencephalitis); median age was 45 (IQR 31-58), 62.6% were male, and 60.9% were tested for HIV infection. Among 408 CSF samples tested by PCR, out of them, 358 were also tested by culture; an etiology was identified in 27.5% (n=112). S. suis (8.8%), N. meningitis (3.2%), and S. pneumoniae (2.7%) were common bacterial and HSV (2.2%), Echovirus 6 (0.7%), and Echovirus 30 (0.7%) were common viral pathogens detected. M. tuberculosis was found in 3.2%. Mixed pathogens were detected in 1.8% of the CSF samples. Rural residence (aOR 4.1, 95% CI 1.2-14.4) and raised CSF ADA (≥10 IU/L) (aOR 25.5, 95% CI 3.1-212) were associated with bacterial meningitis when compared with viral meningitis; similarly, raised CSF ADA (≥10 IU/L) (aOR 42.2, 95% CI 2.0-882) was associated with tubercular meningitis. CONCLUSIONS: Addition of molecular method to the conventional culture had enhanced the identification of etiologies of CNS infection. Raised CSF ADA (≥10 IU/L) was strongly associated with bacterial and tubercular meningitis. This biomarker might be helpful to diagnose tubercular meningitis once bacterial meningitis is ruled out by other methods.
RESUMO
Streptococcus suis (S. suis), a gram-positive facultative anaerobe, has emerged as a zoonotic pathogen of suppurative infections in various human organs. Never reported is human primary ventriculitis caused by S. suis. A 70-year-old Chinese woman with a history of eating undercooked pork tongue was admitted to our hospital due to vomiting, headache and high fever. Brain magnetic resonance imaging (MRI) revealed intraventricular empyema and hydrocephalus, while cerebrospinal fluid (CSF) analysis showed purulent changes. S. suis was cultured in the CSF and blood samples of the patient, and confirmed as serotype 2 by real-time polymerase chain reaction (PCR). Therefore, the diagnosis of primary ventriculitis caused by S. suis was established. She was treated with intravenous (IV) meropenem for six weeks. To solve hydrocephalus, external ventricular drain (EVD) was performed, followed by ventriculoperitoneal shunt. Finally, the patient achieved a good outcome after a 6-month follow-up. S. suis is a rare pathogen in northern China but can cause severe infection and complications. S. suis infection should be considered when a patient with bacterial infection has a history of eating undercooked pork. MRI can help detect ventriculitis. It is worth noting that rapid and prolongated administration of IV antibiotics and timely neurosurgical intervention can achieve desirable outcomes.
Assuntos
Ventriculite Cerebral , Infecções Estreptocócicas , Streptococcus suis , Idoso , Antibacterianos/uso terapêutico , Ventriculite Cerebral/tratamento farmacológico , Feminino , Humanos , Imageamento por Ressonância Magnética , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/tratamento farmacológicoRESUMO
The epidemic Streptococcus suis (S. suis) strain [Sequence type (ST) 7] was gradually evolving from the non-epidemic ST1 strain and got the ability for high expressing of suilysin (SLY). And the high expression of SLY was required for the epidemic strain to cause NLRP3 hyperactivation, which is essential for the induction of cytokines storm, dysfunction of multiple organs, and a high incidence of mortality, the characters of streptococcal toxic shock-like syndrome (STSLS). However, it remains to be elucidated whether acquiring high SLY expression due to genome evolution was sufficient for the non-epidemic strain to cause STSLS. Here, we found that the overexpression of SLY in ST1 strain (P1/7-SLY) could obviously increase the inflammasome activation, which was dependent on NLRP3 signalling. In contrast, the strain (P1/7-mSLY) overexpressing the mutant SLY (protein without hemolytic activity) could not significantly increase the inflammasome activation. Furthermore, similar to the epidemic strain, P1/7-SLY could cause STSLS in nlrp3+/+ mice but not in nlrp3-/- mice. In contrast, P1/7-mSLY could not cause STSLS in both nlrp3 +/+ mice and nlrp3-/- mice. In summary, we demonstrate that genetic evolution enabling S. suis strain to express high level of SLY may be an essential and sufficient condition for NLRP3 inflammasome hyperactivation, which could further cause cytokines storm and STSLS.
Assuntos
Proteínas Hemolisinas/genética , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Choque Séptico/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus suis/patogenicidade , Animais , Síndrome da Liberação de Citocina/imunologia , Evolução Molecular , Expressão Gênica , Proteínas Hemolisinas/metabolismo , Hemólise , Humanos , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Choque Séptico/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Streptococcus suis/metabolismo , Células THP-1RESUMO
In recent years, high-throughput sequencing has revolutionized disease diagnosis by its powerful ability to provide high resolution genomic information. The Oxford Nanopore MinION sequencer has unparalleled potential as a rapid disease diagnostic tool due to its high mobility, accessibility, and short turnaround time. However, there is a lack of rigorous quality assessment and control processes standardizing the testing on the MinION, which is necessary for incorporation into a diagnostic workflow. Thus, our study examined the use of the MinION sequencer for bacterial whole genome generation and characterization. Using Streptococcus suis as a model, we optimized DNA isolation and treatments to be used for MinION sequencing and standardized de novo assembly to quickly generate a full-length consensus sequence achieving a 99.4% average accuracy. The consensus genomes from MinION sequencing were able to accurately predict the multilocus sequence type in 8 out of 10 samples and identified antimicrobial resistance profiles for 100% of the samples, despite the concern of a high error rate. The inability to unequivocally predict sequence types was due to difficulty in differentiating high identity alleles, which was overcome by applying additional error correction methods to increase consensus accuracy. This manuscript provides methods for the use of MinION sequencing for identification of S. suis genome sequence, sequence type, and antibiotic resistance profile that can be used as a framework for identification and classification of other pathogens.