Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 27(3): 1002-1014, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-32955796

RESUMO

Carbon materials slightly doped with heteroatoms such as nitrogen (N-RFC) or sulfur (S-RFC) are investigated as active catalysts for the electrochemical bielectronic oxygen reduction reaction (ORR) to H2 O2 . Mesoporous carbons with wide, accessible pores were prepared by pyrolysis of a resorcinol-formaldehyde resin using a PEO-b-PS block copolymer as a sacrificial templating agent and the nitrogen and sulfur doping were accomplished in a second thermal treatment employing 1,10-phenanthroline and dibenzothiophene as nitrogen and sulfur precursors, respectively. The synthetic strategy allowed to obtain carbon materials with very high surface area and mesopore volume without any further physicochemical post treatment. Voltammetric rotating ring-disk measurements in combination with potentiostatic and galvanostatic bulk electrolysis measurements in 0.5 m H2 SO4 demonstrated a pronounced effect of heteroatom doping and mesopores volume on the catalytic activity and selectivity for H2 O2 . N-RFC electrode was employed as electrode material in a 45 h electrolysis showing a constant H2 O2 production of 298 mmol g-1 h-1 (millimoles of H2 O2 divided by mass of catalyst and electrolysis time), with a faradic efficiency (FE) up to 61 % and without any clear evidence of degradation. The undoped carbon RFC showed a lower production rate (218 mmol g-1 h-1 ) but a higher FE of 76 %, while the performances drastically dropped when S-RFC (production rate 11 mmol g-1 h-1 and FE=39 %) was used.

2.
Pharm Res ; 34(9): 1934-1943, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28623473

RESUMO

PURPOSE: To investigate the influence of the polymerization technique and the content of hydroxyl groups on the performance of new bile acid sequestrants based on PAMPMTA-co-PHEA (PAMPTMA: poly((3-acrylamidopropyl)trimethylammonium chloride); PHEA: poly(2-hydroxyethyl acrylate)) hydrogels. METHODS: PAMPMTA-co-PHEA hydrogels were prepared using either free radical polymerization or supplemental activator and reducing agent atom transfer radical polymerization. The chemical structure and composition of the hydrogels was confirmed by both FTIR and ssNMR. The binding of sodium cholate as the model bile salt was evaluated in simulated intestinal fluid using HPLC. The degradation of the polymers was evaluated in vitro in solutions mimicking the gastrointestinal tract environment. RESULTS: The binding showed that an increase of the amount of HEA in the hydrogel lead to a decrease of the binding capacity. In addition, it was demonstrated for the first time that the hydrogels produced by SARA ATRP presented a higher binding capacity than similar ones produced by FRP. Finally, it was observed that copolymers of PAMPTMA-co-PHEA showed no sign of degradation in solutions mimicking both the stomach and the intestine environment. CONCLUSIONS: The use of an advanced polymerization technique, such as the SARA ATRP, could be beneficial for the preparation of BAS with enhanced performance.


Assuntos
Ácidos e Sais Biliares/metabolismo , Hidrogéis/química , Hidrogéis/farmacologia , Poli-Hidroxietil Metacrilato/análogos & derivados , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Sítios de Ligação , Humanos , Hidrogéis/síntese química , Oxirredução , Poli-Hidroxietil Metacrilato/síntese química , Poli-Hidroxietil Metacrilato/química , Poli-Hidroxietil Metacrilato/farmacologia , Polimerização , Compostos de Amônio Quaternário/síntese química , Colato de Sódio/metabolismo
3.
Colloids Surf B Biointerfaces ; 169: 107-117, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29753951

RESUMO

Well-defined oligo(ethylene glycol) methyl ether methacrylate (OEOMA) based block copolymers with cationic segments composed by N,N-(dimethylamino) ethyl methacrylate (DMAEMA) and/or 2-(diisopropylamino) ethyl methacrylate (DPA) were developed under biorelevant reaction conditions. These brush-type copolymers were synthesized through supplemental activator and reducing agent (SARA) atom transfer radical polymerization (ATRP) using sodium dithionite as SARA agent. The synthesis was carried out using an eco-friendly solvent mixture, very low copper catalyst concentration, and mild reaction conditions. The structure of the block copolymers was characterized by size exclusion chromatography (SEC) analysis and 1H nuclear magnetic resonance (NMR) spectroscopy. The pH-dependent protonation of these copolymers enables the efficient complexation with plasmid DNA (pDNA), yielding polyplexes with sizes ranging from 200 up to 700 nm, depending on the molecular weight of the copolymers, composition and concentration used. Agarose gel electrophoresis confirmed the successful pDNA encapsulation. No cytotoxicity effect was observed, even for N/P ratios higher than 50, for human fibroblasts and cervical cancer cell lines cells. The in vitro cellular uptake experiments demonstrated that the pDNA-loaded block copolymers were efficiently delivered into nucleus of cervical cancer cells. The polymerization approach, the unique structure of the block copolymers and the efficient DNA encapsulation presented can open new avenues for development of efficient tailor made gene delivery systems under biorelevant conditions.


Assuntos
Núcleo Celular/genética , DNA/genética , Técnicas de Transferência de Genes , Plasmídeos/genética , Polímeros/química , Linhagem Celular , Sobrevivência Celular , DNA/química , Eletroforese em Gel de Ágar , Etilenoglicóis/química , Etilenoglicóis/farmacocinética , Humanos , Metilmetacrilato/química , Metilmetacrilato/farmacocinética , Tamanho da Partícula , Plasmídeos/química , Polimerização , Polímeros/síntese química , Polímeros/farmacocinética , Propriedades de Superfície
4.
J Colloid Interface Sci ; 500: 69-78, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28399464

RESUMO

Poly(ethylene terephthalate) (PET) substrates were modified by means of surface-initiated supplemental activator and reducing agent atom transfer radical polymerization (SI-SARA-ATRP) of 4-vinylpyridine (4VP). Substrates were pretreated in order to graft chloromethylbenzene (CMB) units capable of initiating the radical polymerization reaction of 4VP units. Surface characterization techniques, including Water Contact Angle (WCA), Attenuated Total Reflection (ATR), X-ray photoelectron spectroscopy (XPS), Atomic Force Microscopy (AFM) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) showed a successful grafting of a stable, smooth and homogenous layer of p4VP. This process offers the advantages of a rapid, simplified and low cost strategy to chemically modify polymer substrates with covalently bonded layer of the pH responsive p4VP for different applications. Moreover, by using TOF-SIMS profiling, we were able to track a density gradient along the z-axis generated by the interpenetrating phases of the different layers of the final modified surface. Fact that we correlated to the various positions of initiation sites within the polyethylenimine (PEI) used for PET aminolysis prior to CMB grafting. Our strategy will be used in future work to graft other polymers for different applications where industrial scale viable options are needed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa