Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Methods ; 211: 68-72, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36781034

RESUMO

The Shwachman-Diamond syndrome (SDS) is a rare inherited ribosomopathy that is predominantly caused by mutations in the Shwachman-Bodian-Diamond Syndrome gene (SBDS). SBDS is a ribosomal maturation factor that is essential for the release of eukaryotic translation initiation factor 6 (eIF6) from 60S ribosomal subunits during the late stages of 60S maturation. Release of eIF6 is critical to permit inter-subunit interactions between the 60S and 40S subunits and to form translationally competent 80S monosomes. SBDS has three key domains that are highly flexible and adopt varied conformations in solution. To better understand the domain dynamics of SBDS upon binding to 60S and to assess the effects of SDS-disease specific mutations, we aimed to site-specifically label individual domains of SBDS. Here we detail the generation of a fluorescently labeled SBDS to monitor the dynamics of select domains upon binding to 60S. We describe the incorporation of 4-azido-l-phenylalanine (4AZP), a noncanonical amino acid in human SBDS. Site-specific labeling of SBDS using fluorophore and assessment of 60S binding activity are also described. Such labeling approaches to capture the interactions of individual domains of SBDS with 60S are also applicable to study the dynamics of other multi-domain proteins that interact with the ribosomal subunits.


Assuntos
Proteínas , Subunidades Ribossômicas Maiores de Eucariotos , Humanos , Subunidades Ribossômicas Maiores de Eucariotos/química , Síndrome de Shwachman-Diamond/metabolismo , Proteínas/química , Ribossomos/metabolismo , Mutação
2.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542939

RESUMO

The emergence of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis (M. tuberculosis) has become a major medical problem. S-adenosyl-L-homocysteine hydrolase (MtSAHH) was selected as the target protein for the identification of novel anti-TB drugs. Dual hierarchical in silico Structure-Based Drug Screening was performed using a 3D compound structure library (with over 150 thousand synthetic chemicals) to identify compounds that bind to MtSAHH's active site. In vitro experiments were conducted to verify whether the nine compounds selected as new drug candidates exhibited growth-inhibitory effects against mycobacteria. Eight of the nine compounds that were predicted by dual hierarchical screening showed growth-inhibitory effects against Mycobacterium smegmatis (M. smegmatis), a model organism for M. tuberculosis. Compound 7 showed the strongest antibacterial activity, with an IC50 value of 30.2 µM. Compound 7 did not inhibit the growth of Gram-negative bacteria or exert toxic effects on human cells. Molecular dynamics simulations of 40 ns using the MtSAHH-Compound 7 complex structure suggested that Compound 7 interacts stably with the MtSAHH active site. These in silico and in vitro results suggested that Compound 7 is a promising lead compound for the development of new anti-TB drugs.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/química , Avaliação Pré-Clínica de Medicamentos , Tuberculose/microbiologia , Homocisteína/farmacologia , Hidrolases/farmacologia , Simulação de Acoplamento Molecular
3.
Biochem Biophys Res Commun ; 682: 118-123, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37806249

RESUMO

Shwachman-Diamond syndrome (SDS) is an autosomal recessive inherited disorder caused by biallelic mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. SBDS protein is involved in ribosome biogenesis; therefore SDS is classified as a ribosomopathy. SBDS is localized at mitotic spindles and stabilizes microtubules. Previously, we showed that SBDS interacts with ring finger protein 2 (RNF2) and is degraded through RNF2-dependent ubiquitination. In this study, we investigated when and where SBDS interacts with RNF2 and the effects of the interaction on cells. We found that SBDS co-localized with RNF2 on centrosomal microtubules in the mitotic phase (M phase), whereas SBDS and RNF2 localized to the nucleolus and nucleoplasm in the interphase, respectively. The microtubule-binding assay revealed that SBDS interacted directly with microtubules and RNF2 interacted with SBDS bound to microtubules. In addition, SBDS was ubiquitinated and degraded by RNF2 during the M phase. Moreover, RNF2 overexpression accelerated mitotic progression. These findings suggest that SBDS delays mitotic progression, and RNF2 releases cells from suppression through the ubiquitination and subsequent degradation of SBDS. The interaction between SBDS and RNF2 at mitotic spindles might be involved in mitotic progression as a novel regulatory cascade.


Assuntos
Doenças da Medula Óssea , Insuficiência Pancreática Exócrina , Humanos , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/metabolismo , Proteínas/metabolismo , Síndrome de Shwachman-Diamond/complicações , Síndrome de Shwachman-Diamond/metabolismo , Fuso Acromático/metabolismo , Divisão Celular , Insuficiência Pancreática Exócrina/genética , Insuficiência Pancreática Exócrina/metabolismo , Complexo Repressor Polycomb 1/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835434

RESUMO

Shwachman-Diamond syndrome (SDS) represents one of the most common inherited bone marrow failure syndromes and is mainly caused by SBDS gene mutations. Only supportive treatments are available, with hematopoietic cell transplantation required when marrow failure occurs. Among all causative mutations, the SBDS c.258+2T>C variant at the 5' splice site (ss) of exon 2 is one of the most frequent. Here, we investigated the molecular mechanisms underlying aberrant SBDS splicing and showed that SBDS exon 2 is dense in splicing regulatory elements and cryptic splice sites, complicating proper 5'ss selection. Studies ex vivo and in vitro demonstrated that the mutation alters splicing, but it is also compatible with tiny amounts of correct transcripts, which would explain the survival of SDS patients. Moreover, for the first time for SDS, we explored a panel of correction approaches at the RNA and DNA levels and provided experimental evidence that the mutation effect can be partially counteracted by engineered U1snRNA, trans-splicing, and base/prime editors, ultimately leading to correctly spliced transcripts (from barely detectable to 2.5-5.5%). Among them, we propose DNA editors that, by stably reverting the mutation and potentially conferring positive selection to bone-marrow cells, could lead to the development of an innovative SDS therapy.


Assuntos
Síndrome de Shwachman-Diamond , Humanos , DNA/genética , Mutação , Sítios de Splice de RNA , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/terapia , Processamento Alternativo/genética , Edição de Genes
5.
Molecules ; 29(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38202781

RESUMO

The development of drugs targeting gene products associated with insulin resistance holds the potential to enhance our understanding of type 2 diabetes mellitus (T2DM). The virtual screening, based on a three-dimensional (3D) protein structure, is a potential technique to accelerate the development of molecular target drugs. Among the targets implicated in insulin resistance, the genetic characterization and protein function of Grb14 have been clarified without contradiction. The Grb14 gene displays significant variations in T2DM, and its gene product is known to inhibit the function of the insulin receptor (IR) by directly binding to the tyrosine kinase domain. In the present study, a virtual screening, based on a 3D structure of the IR tyrosine kinase domain (IRß) in complex with part of Grb14, was conducted to find compounds that can disrupt the complex formation between Grb14 and IRß. First, ten compounds were selected from 154,118 compounds via hierarchical in silico structure-based drug screening, composed of grid docking-based and genetic algorithm-based programs. The experimental validations suggested that the one compound can affect the blood glucose level. The molecular dynamics simulations and co-immunoprecipitation analysis showed that the compound did not completely suppress the protein-protein interaction between Grb14 and IR, though competitively bound to IR with the tyrosine kinase pseudosubstrate region in Grb14.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Receptor de Insulina/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Proteínas Tirosina Quinases , RNA
6.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770986

RESUMO

A broad range of enzymes are used to modify starch for various applications. Here, a thermophilic 4-α-glucanotransferase from Thermoproteus uzoniensis (TuαGT) is engineered by N-terminal fusion of the starch binding domains (SBDs) of carbohydrate binding module family 20 (CBM20) to enhance its affinity for granular starch. The SBDs are N-terminal tandem domains (SBDSt1 and SBDSt2) from Solanum tuberosum disproportionating enzyme 2 (StDPE2) and the C-terminal domain (SBDGA) of glucoamylase from Aspergillus niger (AnGA). In silico analysis of CBM20s revealed that SBDGA and copies one and two of GH77 DPE2s belong to well separated clusters in the evolutionary tree; the second copies being more closely related to non-CAZyme CBM20s. The activity of SBD-TuαGT fusions increased 1.2-2.4-fold on amylose and decreased 3-9 fold on maltotriose compared with TuαGT. The fusions showed similar disproportionation activity on gelatinised normal maize starch (NMS). Notably, hydrolytic activity was 1.3-1.7-fold elevated for the fusions leading to a reduced molecule weight and higher α-1,6/α-1,4-linkage ratio of the modified starch. Notably, SBDGA-TuαGT and-SBDSt2-TuαGT showed Kd of 0.7 and 1.5 mg/mL for waxy maize starch (WMS) granules, whereas TuαGT and SBDSt1-TuαGT had 3-5-fold lower affinity. SBDSt2 contributed more than SBDSt1 to activity, substrate binding, and the stability of TuαGT fusions.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Amido , Amido/química , Proteína 1 Semelhante a Receptor de Interleucina-1 , Sistema da Enzima Desramificadora do Glicogênio/genética , Amilopectina
7.
Biochem Biophys Res Commun ; 598: 119-123, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35158210

RESUMO

Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder caused by mutation in the Shwachman-Bodian-Diamond syndrome (SBDS) gene that has a variety of clinical features, including exocrine pancreatic insufficiency and hematological dysfunction. The SBDS protein is considered to be involved in ribosome biogenesis, ribosomal RNA metabolism, stabilization of mitotic spindles and cellular stress responses, yet the function of SBDS in detail is still incompletely understood. The multiple functions imply that certain proteins might associate with SBDS and affect its function. In this study, we identified Ring finger protein 2 (RNF2) as a candidate for the SBDS interactor by yeast two-hybrid screening. Moreover, we confirmed the interaction by GST-pull down assay using recombinant proteins and co-immunoprecipitation in HEK293T cells overexpressing RNF2. In addition, it is shown that RNF2 ubiquitinates SBDS and promotes its proteasomal degradation in HEK293T cells. These findings provide new insights into the regulation of SBDS.


Assuntos
Complexo Repressor Polycomb 1/metabolismo , Proteínas/metabolismo , Precursores Enzimáticos/metabolismo , Células HEK293 , Humanos , Elastase Pancreática/metabolismo , Complexo Repressor Polycomb 1/genética , Estabilidade Proteica , Proteínas/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
Mol Genet Genomics ; 296(6): 1263-1278, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34453201

RESUMO

Nascent ribosomal 60S subunits undergo the last maturation steps in the cytoplasm. The last one involves removing the anti-association factor eIF6 from the 60S ribosomal surface by the joint action of the Elongation Factor-like 1 (EFL1) GTPase and the SBDS protein. Herein, we studied the evolutionary relationship of the EFL1 and EF-2 protein families and the functional conservation within EFL1 orthologues. Phylogenetic analysis demonstrated that the EFL1 proteins are exclusive of eukaryotes and share an evolutionary origin with the EF-2 and EF-G protein families. EFL1 proteins originated by gene duplication from the EF-2 proteins and specialized in ribosome maturation while the latter retained their function in translation. Some organisms have more than one EFL1 protein resulting from alternative splicing, while others are encoded in different genes originated by gene duplication. However, the function of these alternative EFL1 proteins is still unknown. We performed GTPase activity and complementation assays to study the functional conservation of EFL1 homologs alone and together with their SBDS counterparts. None of the orthologues or cross-species combinations could replace the function of the corresponding yeast EFL1•SBDS binomial. The complementation of SBDS interspecies chimeras indicates that domain 2 is vital for its function together with EFL1 and the 60S subunit. The results suggest a functional species-specificity and possible co-evolution between EFL1, SBDS, and the 60S ribosomal subunit. These findings set the basis for further studies directed to understand the molecular evolution of these proteins and their impact on ribosome biogenesis and disease.


Assuntos
Fator 2 de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Proteínas/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos/genética , Eucariotos/genética , Evolução Molecular , Duplicação Gênica/genética , Humanos , Fator 2 de Elongação de Peptídeos/genética , Filogenia , Alinhamento de Sequência
9.
Am J Med Genet A ; 182(7): 1631-1636, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32412173

RESUMO

Shwachman-Diamond syndrome characterized by metaphyseal dysplasia, pancreatic insufficiency, and pancytopenia is caused by biallelic mutations in SBDS. Gene conversion between SBDS and its pseudogene SBDSP1 is the major cause. Here, we report two unrelated patients with Shwachman-Diamond syndrome who were shown to be compound heterozygotes for relatively frequent pathogenic alleles (the 258+2T>C allele and another allele composed of 183-184TA>CT and 201A>G) using an established polymerase chain reaction sequencing assay with SBDS-specific primers. Exome analysis of the patients showed discrepant results: 258+2T>C with variant allele frequency around 0.85, and no variants detected for the 183-184TA>CT allele. Parental exome analysis of the two families further supported this notion. Confronted with two patients with an unexpected segregation pattern, we performed a transcriptome analysis of peripheral blood-derived mRNA to demonstrate that the results were compatible with those obtained using SBDS-specific PCR primers. Both alleles could be accounted for by gene conversion events. The diagnostic discrepancy can be accounted for by a decreased efficiency in the computational mapping of the reads with 183-184TA>CT and 201A>G to the reference sequence of the SBDS locus during exome analysis. This report highlights the pitfall of exome analysis for genes with pseudogenes, such as SBDS and the alternative use of RNA-seq is recommended to circumvent this problem.


Assuntos
Sequenciamento do Exoma , Proteínas/genética , Pseudogenes/genética , Síndrome de Shwachman-Diamond/diagnóstico , Síndrome de Shwachman-Diamond/genética , Primers do DNA , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Humanos , Lactente , Recém-Nascido , Masculino , RNA Mensageiro/genética
10.
Am J Med Genet A ; 170A(5): 1155-64, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26866830

RESUMO

Shwachman-Diamond-Bodian syndrome (SDS) is a pleiotropic disorder in which the main features are bone marrow dysfunction and pancreatic insufficiency. Skeletal changes can occur, and in rare cases manifest as severe congenital thoracic dystrophy. We report a newborn boy with asphyxia, narrow thorax, and severe hypotonia initially suggesting a neuromuscular disease. The muscle biopsy showed myopathic changes with prominent variability in muscle fiber size and abnormal expression of developmental isoforms of myosin. The myofibrils showed focal loss and disorganization of myofilaments, and thickening of the Z-discs including some abortive nemaline rods. The boy became permanently dependent on assisted ventilation. Pancreatic insufficiency was subsequently diagnosed, explaining the malabsorption and failure to thrive. Except transitory thrombocytopenia and leukopenia, no major hematological abnormalities were noted. He had bilateral nephrocalcinosis with preserved renal function. Transitory liver dysfunction with elevated transaminase levels and parenchymal changes on ultrasound were registered. The clinical diagnosis was confirmed by detection of compound heterozygous mutations in SBDS using whole-exome sequencing: a recurrent intronic mutation causing aberrant splicing (c.258+2T>C) and a novel missense variant in a highly conserved codon (c.41A>G, p.Asn14Ser), considered to be damaging for the protein structure by in silico prediction programs. The carrier status of the parents has been confirmed. This case illustrates the challenges in differential diagnosis of pronounced neonatal hypotonia with asphyxia and highlights the muscular involvement in SDS. To our knowledge, this is the first report of myopathy evidenced in a patient with clinically and molecularly confirmed SDS.


Assuntos
Doenças da Medula Óssea/genética , Insuficiência Pancreática Exócrina/genética , Lipomatose/genética , Doenças Musculares/genética , Miofibrilas/genética , Proteínas/genética , Biópsia , Doenças da Medula Óssea/fisiopatologia , Insuficiência Pancreática Exócrina/fisiopatologia , Exoma/genética , Humanos , Recém-Nascido , Lipomatose/fisiopatologia , Masculino , Doenças Musculares/fisiopatologia , Mutação de Sentido Incorreto , Miofibrilas/patologia , Miosinas/biossíntese , Miosinas/genética , Análise de Sequência de DNA , Síndrome de Shwachman-Diamond
11.
Eur J Haematol ; 95(4): 308-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25402872

RESUMO

OBJECTIVES: Shwachman-Diamond syndrome is a rare disorder characterized by exocrine pancreatic insufficiency, skeletal abnormalities, and bone marrow failure, with high risk of leukemic evolution. The aim of the study was the immunophenotypic characterization of bone marrow cells from patients with Shwachman-Diamond syndrome to assess the maturation pathway of blood progenitor cells and to identify the presence of recurrent abnormalities. METHODS: Bone marrow samples from nineteen patients and eleven controls were analyzed by multiparameter flow cytometry. RESULTS: We found a low frequency of CD34+ cells (P = 0.0179) and myeloid progenitors (P = 0.025), in the bone marrow of patients with Shwachman-Diamond syndrome as compared to the controls. A significant reduction in the percentage of granulocytes (P = 0.002) and an increase of monocytes (P < 0.001) were also evident in the bone marrow of patients. CONCLUSIONS: On the basis of these observations, future prospective assessments may be useful to verify the contribution of bone marrow immunophenotype in the early identification of the evolution toward aplasia or myelodysplasia.


Assuntos
Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/metabolismo , Insuficiência Pancreática Exócrina/diagnóstico , Insuficiência Pancreática Exócrina/metabolismo , Hematopoese , Imunofenotipagem , Lipomatose/diagnóstico , Lipomatose/metabolismo , Adolescente , Adulto , Antígenos CD/metabolismo , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Doenças da Medula Óssea/genética , Estudos de Casos e Controles , Diferenciação Celular , Linhagem da Célula , Criança , Pré-Escolar , Insuficiência Pancreática Exócrina/genética , Feminino , Citometria de Fluxo , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lactente , Cariótipo , Lipomatose/genética , Masculino , Mutação , Síndrome de Shwachman-Diamond , Adulto Jovem
12.
Children (Basel) ; 11(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38929284

RESUMO

Shwachman Diamond Syndrome (SDS) is a multi-system disease characterized by exocrine pancreatic insufficiency with malabsorption, infantile neutropenia and aplastic anemia. Life-threatening complications include progression to acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS), critical deep-tissue infections and asphyxiating thoracic dystrophy. In most patients, SDS results from biallelic pathogenic variants in the SBDS gene, different combinations of which contribute to heterogenous clinical presentations. Null variants are not well tolerated, supporting the theory that the loss of SBDS expression is likely lethal in both mice and humans. A novel complex genotype (SBDS:c.[242C>G;258+2T>C];[460-1G>A]/WFS1:c.[2327A>T];[1371G>T]) was detected in a family with recurrent neonatal deaths. A female neonate died three hours after birth with hemolytic anemia, and a male neonate with severe anemia, thrombocytopenia and neutropenia succumbed on day 40 after Staphylococcus epidermidis infection. A subsequent review of the literature focused on fatal complications, complex SBDS genotypes and/or unusual clinical presentations and disclosed rare cases, of which some had unexpected combinations of genetic and clinical findings. The impact of pathogenic variants and associated phenotypes is discussed in the context of data sharing towards expanding scientific expert networks, consolidating knowledge and advancing an understanding of novel underlying genotypes and complex phenotypes, facilitating informed clinical decisions and disease management.

13.
Int J Hematol ; 119(4): 383-391, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240987

RESUMO

Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by exocrine pancreatic insufficiency and bone marrow failure. The depletion of SBDS protein by RNA interference has been shown to cause inhibition of cell proliferation in several cell lines. However, the precise mechanism by which the loss of SBDS leads to inhibition of cell growth remains unknown. To evaluate the impaired growth of SBDS-knockdown cells, we analyzed Epstein-Barr virus-transformed lymphoblast cells (LCLs) derived from two patients with SDS (c. 183_184TA > CT and c. 258 + 2 T > C). After 3 days of culture, the growth of LCL-SDS cell lines was considerably less than that of control donor cells. By annealing control primer-based GeneFishing PCR screening, we found that galectin-1 (Gal-1) mRNA expression was elevated in LCL-SDS cells. Western blot analysis showed that the level of Gal-1 protein expression was also increased in LCL-SDS cells as well as in SBDS-knockdown 32Dcl3 murine myeloid cells. We confirmed that recombinant Gal-1 inhibited the proliferation of both LCL-control and LCL-SDS cells and induced apoptosis (as determined by annexin V-positive staining). These results suggest that the overexpression of Gal-1 contributes to abnormal cell growth in SBDS-deficient cells.


Assuntos
Benzamidas , Doenças da Medula Óssea , Infecções por Vírus Epstein-Barr , Insuficiência Pancreática Exócrina , Galectina 1 , Tirosina , Animais , Humanos , Camundongos , Doenças da Medula Óssea/genética , Proliferação de Células , Insuficiência Pancreática Exócrina/genética , Insuficiência Pancreática Exócrina/metabolismo , Galectina 1/genética , Herpesvirus Humano 4 , Proteínas , Síndrome de Shwachman-Diamond , Tirosina/análogos & derivados
14.
Materials (Basel) ; 17(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39063728

RESUMO

Diamond is known as the ultimate semiconductor material for electric devices with excellent properties such as an ultra-wide bandgap (5.47 eV), high carrier mobility (electron mobility 4000 cm2/V·s, hole mobility 3800 cm2/V·s), high critical breakdown electric field (20 MV/cm), and high thermal conductivity (22 W/cm·K), showing good prospects in high-power applications. The lack of n-type diamonds limits the development of bipolar devices; most of the research focuses on p-type Schottky barrier diodes (SBDs) and unipolar field-effect transistors (FETs) based on terminal technology. In recent years, breakthroughs have been made through the introduction of new structures, dielectric materials, heterogeneous epitaxy, etc. Currently, diamond devices have shown promising applications in high-power applications, with a BV of 10 kV, a BFOM of 874.6 MW/cm2, and a current density of 60 kA/cm2 already realized. This review summarizes the research progress of diamond materials, devices, and specific applications, with a particular focus on the development of SBDs and FETs and their use in high-power applications, aiming to provide researchers with the relevant intuitive parametric comparisons. Finally, the paper provides an outlook on the parameters and development directions of diamond power devices.

15.
Cancers (Basel) ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39001453

RESUMO

Ribosomopathies are defined as inherited diseases in which ribosomal factors are mutated. In general, they present multiorgan symptoms. In spite of the fact that in cellular models, ribosomal insufficiency leads to a reduced rate of oncogenic transformation, patients affected by ribosomopathies present a paradoxical increase in cancer incidence. Several hypotheses that explain this paradox have been formulated, mostly on the assumption that altered ribosomes in a stem cell induce compensatory changes that lead to a cancer cell. For instance, the lack of a specific ribosomal protein can lead to the generation of an abnormal ribosome, an oncoribosome, that itself leads to altered translation and increased tumorigenesis. Alternatively, the presence of ribosomal stress may induce compensatory proliferation that in turns selects the loss of tumor suppressors such as p53. However, modern views on cancer have shifted the focus from the cancer cell to the tumor microenvironment. In particular, it is evident that human lymphocytes are able to eliminate mutant cells and contribute to the maintenance of cancer-free tissues. Indeed, many tumors develop in conditions of reduced immune surveillance. In this review, we summarize the current evidence and attempt to explain cancer and ribosomopathies from the perspective of the microenvironment.

16.
Materials (Basel) ; 17(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38673227

RESUMO

As the most stable phase of gallium oxide, ß-Ga2O3 can enable high-quality, large-size, low-cost, and controllably doped wafers by the melt method. It also features a bandgap of 4.7-4.9 eV, a critical electric field strength of 8 MV/cm, and a Baliga's figure of merit (BFOM) of up to 3444, which is 10 and 4 times higher than that of SiC and GaN, respectively, showing great potential for application in power devices. However, the lack of effective p-type Ga2O3 limits the development of bipolar devices. Most research has focused on unipolar devices, with breakthroughs in recent years. This review mainly summarizes the research progress fora different structures of ß-Ga2O3 power diodes and gives a brief introduction to their thermal management and circuit applications.

17.
Int J Biol Sci ; 19(2): 362-376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632465

RESUMO

Hepatocellular carcinoma (HCC) is the third-leading cause of cancer deaths globally. Although considerable progress has been made in the treatment, clinical outcomes of HCC patients are still poor. Therefore, it is necessary to find novel prognostic factors upon which prevention and treatment strategies can be formulated. Ficolin-3 (FCN3) protein is a member of the human ficolin family. It activates complement through pathways associated with mannose-binding lectin-associated serine proteases. Herein, we identified that FCN3 was downregulated in HCC tissues and decreased FCN3 expression was closely related to poor prognosis. Overexpression of FCN3 induced apoptosis and inhibited cell proliferation via the p53 signaling pathway. Mechanistically, FCN3 modulated the nuclear translocation of eukaryotic initiation factor 6 (EIF6) by binding ribosome maturation factor (SBDS), which induced ribosomal stress and activation of the p53 pathway. In addition, Y-Box Binding Protein 1 (YBX1) involved in the transcription and translation level regulation of FCN3 to SBDS. Besides, a negative feedback loop in the downstream of FCN3 involving p53, YBX1 and SBDS was identified.


Assuntos
Carcinoma Hepatocelular , Lectinas , Neoplasias Hepáticas , Proteína Supressora de Tumor p53 , Humanos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Lectinas/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Biomedicines ; 11(11)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38001969

RESUMO

The ribosome is a macromolecular complex composed of RNA and proteins that interact through an integrated and interconnected network to preserve its ancient core activities. In this review, we emphasize the pivotal role played by RNA-binding proteins as a driving force in the evolution of the current form of the ribosome, underscoring their importance in ensuring accurate protein synthesis. This category of proteins includes both ribosomal proteins and ribosome biogenesis factors. Impairment of their RNA-binding activity can also lead to ribosomopathies, which is a group of disorders characterized by defects in ribosome biogenesis that are detrimental to protein synthesis and cellular homeostasis. A comprehensive understanding of these intricate processes is essential for elucidating the mechanisms underlying the resulting diseases and advancing potential therapeutic interventions.

19.
Biomolecules ; 12(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009035

RESUMO

The final maturation step of the 60S ribosomal subunit requires the release of eukaryotic translation initiation factor 6 (human eIF6, yeast Tif6) to enter the pool of mature ribosomes capable of engaging in translation. This process is mediated by the concerted action of the Elongation Factor-like 1 (human EFL1, yeast Efl1) GTPase and its effector, the Shwachman-Bodian-Diamond syndrome protein (human SBDS, yeast Sdo1). Mutations in these proteins prevent the release of eIF6 and cause a disease known as Shwachman-Diamond Syndrome (SDS). While some mutations in EFL1 or SBDS result in insufficient proteins to meet the cell production of mature large ribosomal subunits, others do not affect the expression levels with unclear molecular defects. We studied the functional consequences of one such mutation using Saccharomyces cerevisiae Efl1 R1086Q, equivalent to human EFL1 R1095Q described in SDS patients. We characterised the enzyme kinetics and energetic basis outlining the recognition of this mutant to guanine nucleotides and Sdo1, and their interplay in solution. From our data, we propose a model where the conformational change in Efl1 depends on a long-distance network of interactions that are disrupted in mutant R1086Q, whereby Sdo1 and the guanine nucleotides no longer elicit the conformational changes previously described in the wild-type protein. These findings point to the molecular malfunction of an EFL1 mutant and its possible impact on SDS pathology.


Assuntos
GTP Fosfo-Hidrolases , Saccharomyces cerevisiae , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Nucleotídeos de Guanina/metabolismo , Humanos , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
20.
Front Genet ; 13: 896749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035165

RESUMO

Background: Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive ribosomopathy mainly characterized by exocrine pancreatic insufficiency, skeletal alterations, neutropenia, and a relevant risk of hematological transformation. At least 90% of SDS patients have pathogenic variants in SBDS, the first gene associated with the disease with very low allelic heterogeneity; three variants, derived from events of genetic conversion between SBDS and its pseudogene, SBDSP1, provided the alleles observed in about 62% of SDS patients. Methods: We performed a reanalysis of the available WES files of a group of SDS patients with biallelic SBDS pathogenic variants, studying the results by next bioinformatic and protein structural analysis. Parallelly, careful clinical attention was given to the patient focused in this study. Results: We found and confirmed in one SDS patient a germline heterozygous missense variant (c.100T>C; p.Phe34Leu) in the EIF6 gene. This variant, inherited from his mother, has a very low frequency, and it is predicted as pathogenic, according to several in silico prediction tools. The protein structural analysis also envisages the variant could reduce the binding to the nascent 60S ribosomal. Conclusion: This study focused on the hypothesis that the EIF6 germline variant mimics the effect of somatic deletions of chromosome 20, always including the locus of this gene, and similarly may rescue the ribosomal stress and ribosomal dysfunction due to SBDS mutations. It is likely that this rescue may contribute to the stable and not severe hematological status of the proband, but a definite answer on the role of this EIF6 variant can be obtained only by adding a functional layer of evidence. In the future, these results are likely to be useful for selected cases in personalized medicine and therapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa