Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Reprod Biol Endocrinol ; 21(1): 53, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296437

RESUMO

BACKGROUND: Sertoli cell-only syndrome (SCOS) is the most serious pathological type of non-obstructive azoospermia. Recently, several genes related to SCOS have been identified, including FANCM, TEX14, NR5A1, NANOS2, PLK4, WNK3, and FANCA, but they cannot fully explain the pathogenesis of SCOS. This study attempted to explain spermatogenesis dysfunction in SCOS through testicular tissue RNA sequencing and to provide new targets for SCOS diagnosis and therapy. METHODS: We analyzed differentially expressed genes (DEGs) based on RNA sequencing of nine patients with SCOS and three patients with obstructive azoospermia and normal spermatogenesis. We further explored the identified genes using ELISA and immunohistochemistry. RESULTS: In total, 9406 DEGs were expressed (Log2|FC|≥ 1; adjusted P value < 0.05) in SCOS samples, and 21 hub genes were identified. Three upregulated core genes were found, including CASP4, CASP1, and PLA2G4A. Thus, we hypothesized that testis cell pyroptosis mediated by CASP1 and CASP4 might be involved in SCOS occurrence and development. ELISA verified that CASP1 and CASP4 activities in the testes of patients with SCOS were significantly higher than those in patients with normal spermatogenesis. Immunohistochemical results showed that CASP1 and CASP4 in the normal spermatogenesis group were mainly expressed in the nuclei of spermatogenic, Sertoli, and interstitial cells. CASP1 and CASP4 in the SCOS group were mainly expressed in the nuclei of Sertoli and interstitial cells because of the loss of spermatogonia and spermatocytes. CASP1 and CASP4 expression levels in the testes of patients with SCOS were significantly higher than those in patients with normal spermatogenisis. Furthermore, the pyroptosis-related proteins GSDMD and GSDME in the testes of patients with SCOS were also significantly higher than those in control patients. ELISA also showed that inflammatory factors (IL-1 ß, IL-18, LDH, and ROS) were significantly increased in the SCOS group. CONCLUSIONS: For the first time, we found that cell pyroptosis-related genes and key markers were significantly increased in the testes of patients with SCOS. We also observed many inflammatory and oxidative stress reactions in SCOS. Thus, we propose that testis cell pyroptosis mediated by CASP1 and CASP4 could participate in SCOS occurrence and development.


Assuntos
Azoospermia , Síndrome de Células de Sertoli , Masculino , Humanos , Testículo/metabolismo , Síndrome de Células de Sertoli/genética , Síndrome de Células de Sertoli/metabolismo , Síndrome de Células de Sertoli/patologia , Azoospermia/patologia , Piroptose/genética , Espermatogênese/genética , Proteínas Serina-Treonina Quinases/metabolismo , DNA Helicases/metabolismo , Fatores de Transcrição/metabolismo
2.
Am J Hum Genet ; 103(2): 200-212, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075111

RESUMO

Infertility affects around 7% of men worldwide. Idiopathic non-obstructive azoospermia (NOA) is defined as the absence of spermatozoa in the ejaculate due to failed spermatogenesis. There is a high probability that NOA is caused by rare genetic defects. In this study, whole-exome sequencing (WES) was applied to two Estonian brothers diagnosed with NOA and Sertoli cell-only syndrome (SCOS). Compound heterozygous loss-of-function (LoF) variants in FANCM (Fanconi anemia complementation group M) were detected as the most likely cause for their condition. A rare maternally inherited frameshift variant p.Gln498Thrfs∗7 (rs761250416) and a previously undescribed splicing variant (c.4387-10A>G) derived from the father introduce a premature STOP codon leading to a truncated protein. FANCM exhibits enhanced testicular expression. In control subjects, immunohistochemical staining localized FANCM to the Sertoli and spermatogenic cells of seminiferous tubules with increasing intensity through germ cell development. This is consistent with its role in maintaining genomic stability in meiosis and mitosis. In the individual with SCOS carrying bi-allelic FANCM LoF variants, none or only faint expression was detected in the Sertoli cells. As further evidence, we detected two additional NOA-affected case subjects with independent FANCM homozygous nonsense variants, one from Estonia (p.Gln1701∗; rs147021911) and another from Portugal (p.Arg1931∗; rs144567652). The study convincingly demonstrates that bi-allelic recessive LoF variants in FANCM cause azoospermia. FANCM pathogenic variants have also been linked with doubled risk of familial breast and ovarian cancer, providing an example mechanism for the association between infertility and cancer risk, supported by published data on Fancm mutant mouse models.


Assuntos
Azoospermia/genética , DNA Helicases/genética , Perda de Heterozigosidade/genética , Adulto , Animais , Neoplasias da Mama/genética , Códon sem Sentido/genética , Feminino , Mutação da Fase de Leitura/genética , Inativação Gênica/fisiologia , Predisposição Genética para Doença/genética , Homozigoto , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Linhagem , Fenótipo , Espermatozoides/patologia , Testículo/patologia , Sequenciamento do Exoma/métodos
3.
J Assist Reprod Genet ; 38(3): 559-572, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33428073

RESUMO

Almost 50% of infertility cases are due to male factors, and spermatogenesis failure is one of the most severe forms of male infertility. Sertoli cell-only syndrome (SCOS) also known as germ cell aplasia is characterized by azoospermia in which the seminiferous tubules of testicular biopsy are lined only with Sertoli cells. The definitive diagnosis of SCOS is by diagnostic testicular biopsy. Although SCOS may be a result of Klinefelter syndrome, most of the SCOS men have a normal karyotype. Along with genetic aberrations, signaling pathways and endocrine processes might be major factors in the development of SCOS. Sperm retrieval and intracytoplasmic sperm injection (ICSI) are available treatments for SCOS. However, some SCOS patients do not have therapeutic options to help them having a biological child. This review aims to summarize our present knowledge about SCOS and to highlight the importance of future researches in the diagnosis and treatment of this disorder.


Assuntos
Síndrome de Células de Sertoli/etiologia , Síndrome de Células de Sertoli/prevenção & controle , Gerenciamento Clínico , Humanos , Masculino , Síndrome de Células de Sertoli/patologia
4.
Genes (Basel) ; 15(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38927643

RESUMO

Azoospermia is a form of male infertility characterized by a complete lack of spermatozoa in the ejaculate. Sertoli cell-only syndrome (SCOS) is the most severe form of azoospermia, where no germ cells are found in the tubules. Recently, FANCM gene variants were reported as novel genetic causes of spermatogenic failure. At the same time, FANCM variants are known to be associated with cancer predisposition. We performed whole-exome sequencing on a male patient diagnosed with SCOS and a healthy father. Two compound heterozygous missense mutations in the FANCM gene were found in the patient, both being inherited from his parents. After the infertility assessment, the patient was diagnosed with diffuse astrocytoma. Immunohistochemical analyses in the testicular and tumor tissues of the patient and adequate controls showed, for the first time, not only the existence of a cytoplasmic and not nuclear pattern of FANCM in astrocytoma but also in non-mitotic neurons. In the testicular tissue of the SCOS patient, cytoplasmic anti-FANCM staining intensity appeared lower than in the control. Our case report raises a novel possibility that the infertile carriers of FANCM gene missense variants could also be prone to cancer development.


Assuntos
Astrocitoma , Mutação de Sentido Incorreto , Síndrome de Células de Sertoli , Humanos , Masculino , Astrocitoma/genética , Astrocitoma/patologia , Astrocitoma/diagnóstico , Síndrome de Células de Sertoli/genética , Síndrome de Células de Sertoli/patologia , Adulto , Sequenciamento do Exoma , DNA Helicases/genética , Azoospermia/genética , Azoospermia/patologia , Azoospermia/diagnóstico
5.
Mol Neurobiol ; 61(7): 4732-4749, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38127186

RESUMO

C9orf72 genetic mutation is the most common genetic cause of ALS/FTD accompanied by abnormal protein insufficiency. Induced pluripotent stem cell (iPSC)-derived two-dimensional (2D) and three-dimensional (3D) cultures are providing new approaches. Therefore, this study established neuronal cell types and generated spinal cord organoids (SCOs) derived from C9orf72 knockdown human iPSCs to model ALS disease and screen the unrevealed phenotype. Wild-type (WT) iPSC lines from three healthy donor fibroblasts were established, and pluripotency and differentiation ability were identified by RT-PCR, immunofluorescence and flow cytometry. After infection by the lentivirus with C9orf72-targeting shRNA, stable C9-knockdown iPSC colonies were selected and differentiated into astrocytes, motor neurons and SCOs. Finally, we analyzed the extracted RNA-seq data of human C9 mutant/knockout iPSC-derived motor neurons and astrocytes from the GEO database and the inflammatory regulation-related genes in function and pathways. The expression of inflammatory factors was measured by qRT-PCR. The results showed that both WT-iPSCs and edited C9-iPSCs maintained a similar ability to differentiate into the three germ layers, astrocytes and motor neurons, forming SCOs in a 3D culture system. The constructed C9-SCOs have features of spinal cord development and multiple neuronal cell types, including sensory neurons, motor neurons, and other neurons. Based on the bioinformatics analysis, proinflammatory factors were confirmed to be upregulated in C9-iPSC-derived 2D cells and 3D cultured SCOs. The above differentiated models exhibited low C9orf72 expression and the pathological characteristics of ALS, especially neuroinflammation.


Assuntos
Esclerose Lateral Amiotrófica , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Organoides , Medula Espinal , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Organoides/metabolismo , Organoides/patologia , Medula Espinal/patologia , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Inflamação/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Modelos Biológicos , Neurônios/metabolismo , Neurônios/patologia
6.
Cell Rep ; 43(2): 113769, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38363675

RESUMO

Although the composition and assembly of stress granules (SGs) are well understood, the molecular mechanisms underlying SG disassembly remain unclear. Here, we identify that heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) is associated with SGs and that its absence specifically enhances the disassembly of arsenite-induced SGs depending on the ubiquitination-proteasome system but not the autophagy pathway. hnRNPA2B1 interacts with many core SG proteins, including G3BP1, G3BP2, USP10, and Caprin-1; USP10 can deubiquitinate G3BP1; and hnRNPA2B1 depletion attenuates the G3BP1-USP10/Caprin-1 interaction but elevates the G3BP1 ubiquitination level under arsenite treatment. Moreover, the disease-causing mutation FUSR521C also disassembles faster from SGs in HNRNPA2B1 mutant cells. Furthermore, knockout of hnRNPA2B1 in mice leads to Sertoli cell-only syndrome (SCOS), causing complete male infertility. Consistent with this, arsenite-induced SGs disassemble faster in Hnrnpa2b1 knockout (KO) mouse Sertoli cells as well. These findings reveal the essential roles of hnRNPA2B1 in regulating SG disassembly and male mouse fertility.


Assuntos
Arsenitos , Masculino , Animais , Camundongos , Arsenitos/toxicidade , DNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Fertilidade
7.
Transl Androl Urol ; 12(7): 1127-1136, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37554526

RESUMO

Background: Sertoli cell-only syndrome (SCOS) or germ cell aplasia is one of the most serious histopathological subtypes within the scope of non-obstructive azoospermia (NOA). Understanding the molecular mechanism of SCOS and identifying new non-invasive markers for clinical application is crucial to guide proper sperm procurement and avoid unnecessary interventions. This study sought to identify the differentially expressed genes (DEGs) of SCOS by using gene sequencing identity and verify the key marker genes to provide basic data for subsequent research on SCOS. Methods: A total of 50 testicular samples were collected in this study from 25 patients with SCOS and 25 patients with normal spermatogenesis. In total, 5 pairs of testis samples were used for the RNA-sequencing (RNA-seq). We identified the DEGs between the SCOS and normal spermatogenesis patients and conducted a Gene Ontology (GO) analysis and a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The expression of the main target gene phosducin-like 2 (PDCL2) was examined by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Results: In total, 3,133 upregulated DEGs and 1,406 downregulated DEGs were identified by the RNA-seq. The highly enriched processes involved in spermatogenesis included the mitotic cell cycle, cell cycle, and oocyte maturation. The expression of PDCL2 was verified as a downregulation marker in SCOS by qRT-PCR and IHC. Conclusions: This study identified the DEGs of SCOS, and the bioinformatics analysis results identified the potential target key genes and pathways for SCOS. PDCL2 is a key gene involved in SCOS and may serve as a non-invasive downregulation marker of SCOS.

8.
Brain Sci ; 13(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37891734

RESUMO

Neurocritical care focuses on monitoring cerebral blood flow (CBF) to prevent secondary brain injuries before damage becomes irreversible. Thus, there is a critical unmet need for continuous neuromonitoring methods to quantify CBF within the vulnerable cortex continuously and non-invasively. Animal models and imaging biomarkers can provide valuable insights into the mechanisms and kinetics of head injury, as well as insights for potential treatment strategies. For this purpose, we implemented an optical technique for continuous monitoring of blood flow changes after a closed head injury in a mouse model, which is based on laser speckle contrast imaging and a fiber camera-based approach. Our results indicate a significant decrease (~10%, p-value < 0.05) in blood flow within 30 min of a closed head injury. Furthermore, the low-frequency oscillation analysis also indicated much lower power in the trauma group compared to the control group. Overall, blood flow has the potential to be a biomarker for head injuries in the early phase of a trauma, and the system is useful for continuous monitoring with the potential for clinical translation.

9.
Life (Basel) ; 13(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37374039

RESUMO

Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.

10.
Front Plant Sci ; 13: 1044420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605965

RESUMO

Jackfruit (Artocarpus heterophyllus Lam.) is the national fruit of Bangladesh and produces fruit in the summer season only. However, jackfruit is not commercially grown in Bangladesh because of an extremely high variation in fruit quality, short seasonal fruiting (June-August) and susceptibility to abiotic stresses. Conversely, a year-round high yielding (ca. 4-fold higher than the seasonal variety) jackfruit variety, BARI Kanthal-3 developed by the Bangladesh Agricultural Research Institute (BARI) derived from a wild accession found in Ramgarh of Chattogram Hiltracts of Bangladesh, provides fruits from September to June. This study aimed to generate a draft whole-genome sequence (WGS) of BARI Kanthal-3 to obtain molecular insights including genes associated with year-round fruiting trait of this important unique variety. The estimated genome size of BARI Kanthal-3 was 1.04-gigabase-pair (Gbp) with a heterozygosity rate of 1.62%. De novo assembly yielded a scaffolded 817.7 Mb genome while a reference-guided approach, yielded 843 Mb of genome sequence. The estimated GC content was 34.10%. Variant analysis revealed that BARI Kanthal-3 included 5.7 M (35%) and 10.4 M (65%) simple and heterozygous single nucleotide polymorphisms (SNPs), and about 90% of all these polymorphisms are in inter-genic regions. Through BUSCO assessment, 97.2% of the core genes were represented in the assembly with 1.3% and 1.5% either fragmented or missing, respectively. By comparing identified orthologous gene groups in BARI Kanthal-3 with five closely and one distantly related species of 10,092 common orthogroups were found across the genomes of the six species. The phylogenetic analysis of the shared orthogroups showed that A. heterophyllus was the closest species to BARI Kanthal-3 and orthogroups related to flowering time were found to be more highly prevalent in BARI Kanthal-3 compared to the other Arctocarpus spp. The findings of this study will help better understanding the evolution, domestication, phylogenetic relationships, year-round fruiting of this highly nutritious fruit crop as well as providing a resource for molecular breeding.

11.
Am J Transl Res ; 14(9): 6067-6081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247266

RESUMO

Discoidin domain receptor 2 (DDR2) belongs to the receptor tyrosine kinase (RTK) family, other RTKs have been reported to regulate phagocytic function of Sertoli cells (SCs), yet little is known about the function of DDR2 in Sertoli cells. In the present study, we aim to explore the function and mechanism of ectopic discoidin domain receptor 2 (DDR2) expression in Sertoli cells of Sertoli cell-only syndrome (SCOS) testes. We found that discoidin domain receptor 2 (DDR2) was absent in Sertoli cells of normal testis but was expressed in Sertoli cells of SCOS testes. This Sertoli cell DDR2 expression was induced by impaired androgen receptor (AR) signaling, but was inhibited by increased AR signaling from testosterone administration. The Sertoli cell DDR2 expression led to an increase in phagocytosis through up-regulation of Scavenger receptor class B member 1 (SR-BI) levels. However, loss of DDR2 by knock-out or knock-down weakened the phagocytotic capacity of Sertoli cells. Furthermore, the expression of DDR2 in Sertoli cells activated matrix metallopeptidase 9 (MMP-9) to consume abnormal collagen increase in seminiferous tubules which was responsible for the block of testosterone transportation and AR loss and to compensate for the impaired blood-testis-barrier (BTB). Our data suggest that the AR/DDR2 cascade may serve as a negative feedback mechanism to help compensate for the homeostasis of seminiferous epithelium in SCOS testis.

12.
Genet Test Mol Biomarkers ; 25(10): 654-659, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34672775

RESUMO

Background: Male infertility is a major health concern in couples of childbearing ages. Nonobstructive azoospermia (NOA) is an extreme form of male infertility that affects ∼1% of adult men, and the etiology remains unknown in most cases. Sertoli cell-only syndrome (SCOS) is the most severe type of NOA. Aims: To explore novel human candidate variants that cause SCOS. Methods: (1) Whole exome sequencing (WES) of 20 men with SCOS, (2) Sanger sequencing of the HELQ gene in an additional 163 men with SCOS, (3) in vitro functional assays, and (4) in vivo studies. Results: WES of 20 patients with SCOS led to the identification of two heterozygous missense mutations (M1 and M2) in two unrelated Chinese patients with infertility. Using subsequent Sanger sequencing covering all the coding regions of the HELQ gene for 163 additional SCOS cases, we identified four additional heterozygous mutations (M3-M6) in unrelated patients. In vitro functional analyses revealed that two of these mutations (M5, c.2538T > G and M6, c.2945G > T) might affect the function of the HELQ protein. Two heterozygous mutant mouse models with mutations similar to those of two patients (M5 and M6) did not show any considerable spermatogenic defects. Conclusion: Assuming that the mouse models accurately reflect the impact of the mutations, heterozygous HELQ variants alone did not lead to the development of the SCOS phenotype in mice. However, we cannot rule out the risk variants in Chinese or other human populations, and a larger dataset is needed to confirm the association between HELQ mutations with SCOS.


Assuntos
Azoospermia/genética , DNA Helicases/genética , Síndrome de Células de Sertoli/genética , Adulto , Animais , Azoospermia/diagnóstico , Azoospermia/patologia , Biópsia , Análise Mutacional de DNA , Modelos Animais de Doenças , Heterozigoto , Humanos , Masculino , Camundongos Transgênicos , Síndrome de Células de Sertoli/diagnóstico , Síndrome de Células de Sertoli/patologia , Espermatogênese/genética , Testículo/patologia , Sequenciamento do Exoma
13.
Front Cell Dev Biol ; 9: 681839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179010

RESUMO

Comparative epigenomics provides new insights on evolutionary biology in relation with complex interactions between species and their environments. In the present study, we focus on deciphering the conservation and divergence of DNA methylomes during Trichinella evolution. Whole-genome bisulfite sequencing and RNA-seq were performed on the two clades of Trichinella species, in addition to whole-genome sequencing. We demonstrate that methylation patterns of sing-copy orthologous genes (SCOs) of the 12 Trichinella species are host-related and can mirror known phylogenetic relationships. Among these SCOs, we identify a panel of genes exhibiting hyper-/hypo-methylated features in gene-bodies or respective promoters that play pivotal roles in transcriptome regulation. These hyper-/hypo-methylated SCOs are also of functional significance across developmental stages, as they are highly enriched species-specific and stage-specific expressed genes both in Ad and ML stages. We further identify a set of parasitism-related functional genes that exhibit host-related differential methylation and expression among those SCOs, including p53-like transcription factor and Cdc37 that are of functional significance for elucidating differential parasitology between the two clades of Trichinella. This comparative epigenome study can help to decipher the environmental effects on differential adaptation and parasitism of the genus Trichinella.

14.
Mol Genet Genomic Med ; 8(7): e1258, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32410375

RESUMO

BACKGROUND: Ubiquitin-Specific Peptidase 26 (USP26), located on the X chromosome, encodes a deubiquitinating enzyme expressed mainly in testis, where it regulates protein turnover during spermatogenesis and modulates the ubiquitination levels of the Androgen Receptor (AR), and as a consequence, affects AR signaling. METHODS: The patient was thoroughly characterized clinically. He was genetically tested by chromosome analysis and whole exome sequencing (WES). RESULTS: The patient was diagnosed with Sertoli cell-only syndrome pattern (SCOS). The WES analysis revealed only the variation in USP26: causing p.P469S in a highly evolutionary conserved amino acid as the possible cause for SCOS. The literature search identified 34 single variations and 14 clusters of variations in USP26 that were associated with male infertility. Only one of the 22 variations and of one cluster of three mutations tested for ubiquitination activity was found as damaging. Only one out of six variations tested for effect on AR function was found as damaging. Thus, the association of USP26 with male fertility was questioned. CONCLUSIONS: The finding in our patient and the discussion on the reviewed literature support a possible role for USP26 in male fertility.


Assuntos
Azoospermia/genética , Cisteína Endopeptidases/genética , Mutação , Adulto , Azoospermia/patologia , Humanos , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/patologia
15.
J Bone Oncol ; 24: 100305, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32775179

RESUMO

INTRODUCTION: Small cell osteosarcoma (SCOS) is a rare subtype of osteosarcoma, with limited studies mainly focusing on histological features. Our study aims to analyze our own patients and those reported in the literature to increase the recognition of this rare disease, to evaluate patient survival and to further determine potential prognostic factors. MATERIAL AND METHODS: Twenty patients with SCOS were treated in our hospital between 2010 and 2019. Their follow-up data were collected retrospectively. A total of 336 literature cases from 58 manuscripts were retrieved by means of a PubMed search with the key word "small cell osteosarcoma". Data pertaining to treatment and follow-up were extracted. We performed a pooled analysis for the survival of patients and the risk factors for local recurrence (LR), as well as metastatic disease (MD), in a total of 160 patients using the Kaplan-Meier method and Cox regression method. RESULTS: We reported our experience in diagnosing and treating SCOS. In our cases, elevated alkaline phosphatase (P = 0.013) and lactate dehydrogenase (P = 0.001) significantly impaired overall survival. In the pooled analysis, SCOS was diagnosed at the median age of 17 years and affected both sexes almost equally. The median follow-up duration was 19.5 months. In the pooled analysis cases, the 5-year overall survival rate was 38.6%, and 36.4% of patients survived 10 years. However, an increasing trend was detected, indicating recent improvements in management. The surgical margin status (P = 0.024) and metastases (P = 0.008) significantly impaired overall survival, and the response to chemotherapy was related to disease-free survival (P = 0.012). LR and MD were significantly correlated (P = 0.002) and could be observed after 5 years of follow-up. LR was significantly dependent on response to chemotherapy (P = 0.020). The development of MD seemed to be affected by response to chemotherapy (P = 0.060). Correlations between imaging features and prognosis were not detected. CONCLUSIONS: This study suggested that positive margins, poor response to chemotherapy and MD are negative prognostic factors for SCOS, implied the potential role of laboratory examinations in the survival prediction and supported the need for prolonged or more intensive surveillance in patients with MD or LR. More well-documented literatures are encouraged to allow further confirmations.

16.
Transl Androl Urol ; 8(4): 405-408, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31555565

RESUMO

A case is reported which describes the severity of testicular histological damage that can be induced by a high-grade varicocele in a male with secondary infertility. A chart review of a patient's case was performed. A 34-year-old male with a three-and-a-half-year-old son who was conceived spontaneously with timed intercourse, with a grade three left varicocele, who's semen parameters progressed to non-obstructive azoospermia (NOA). He did not regain sperm in the ejaculate three or six months post left subinguinal microsurgical varicocele repair. He underwent bilateral microdissection testicular sperm extraction (microTESE) without identification of sperm in the testicular samples. A testicular biopsy from the time of microTESE revealed a Sertoli cell only pattern. A high-grade varicocele has the potential to induce sufficient testicular damage to result in the most severe testicular histological architecture associated with non-obstructive azoospermia (NOA), Sertoli cell only syndrome (SCOS).

17.
Hum Fertil (Camb) ; 20(3): 217-220, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28635411

RESUMO

Genetic mechanisms are implicated in some cases of male infertility. Recently, it was demonstrated that male mice lacking the gene for RAD21L exhibited azoospermia caused by meiotic arrest. Mouse RAD21L is a functionally relevant meiotic α-kleisin that is essential for male fertility. Therefore, we hypothesized that RAD21L mutations or polymorphisms may be associated with male infertility, especially azoospermia secondary to meiotic arrest. To determine if RAD21L defects are associated with azoospermia in groups of patients with meiotic arrest, we performed direct sequencing of the RAD21L coding regions in 38 Japanese patients with meiotic arrest and in 200 normal controls. Three coding single-nucleotide polymorphisms (SNP1-SNP3) were detected in the meiotic arrest patient group. Sertoli cell-only syndrome is considered a common cause of non-obstructive azoospermia. For comparison, the RAD21L coding regions in which SNP1-SNP3 were detected were sequenced in 140 patients with Sertoli cell-only syndrome. Statistical analyses were used to compare the two groups of patients with the control group. Genotype and allele frequencies of SNP2 and SNP3 were notably higher in the two patient groups compared with the control group (Bonferroni adjusted p value <0.016). These results suggest a critical role for RAD21L in human spermatogenesis.


Assuntos
Azoospermia/genética , Proteínas de Ciclo Celular/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Síndrome de Células de Sertoli/genética , Povo Asiático , Genótipo , Humanos , Masculino
18.
Bioresour Technol ; 176: 249-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25461010

RESUMO

This study investigated the co-fermentation of molasses and sweetpotato vine hydrolysate (SVH) by Trichosporon fermentans. T. fermentans showed low lipid accumulation on pure molasses; however, its lipid content increased by 35% when 10% SVH was added. The strong influence of SVH on lipid production was further demonstrated by the result of sensitivity analysis on effects of factors based on an artificial neural network model because the relative importance value of SVH dosage for lipid production was only lower than that of fermentation time. Scanning electron microscope observation and flow cytometry of yeast cells grown in culture with and without SVH showed that less deformation cells were involved in the culture with SVH. The activity of malic enzyme, which plays a key role in fatty acid synthesis, increased from 2.4U/mg to 3.7U/mg after SVH added. All results indicated SVH is a good supplement for lipid fermentation on molasses.


Assuntos
Ipomoea batatas/química , Melaço , Trichosporon/metabolismo , Reatores Biológicos , Fermentação , Citometria de Fluxo , Metabolismo dos Lipídeos , Microscopia Eletrônica de Varredura , Redes Neurais de Computação , Trichosporon/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa