Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Neurosurg Focus ; 48(4): E2, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32234983

RESUMO

OBJECTIVE: Despite numerous imaging studies highlighting the importance of the thalamus in a patient's surgical prognosis, human electrophysiological studies involving the limbic thalamic nuclei are limited. The objective of this study was to evaluate the safety and accuracy of robot-assisted stereotactic electrode placement in the limbic thalamic nuclei of patients with suspected temporal lobe epilepsy (TLE). METHODS: After providing informed consent, 24 adults with drug-resistant, suspected TLE undergoing evaluation with stereoelectroencephalography (SEEG) were enrolled in the prospective study. The trajectory of one electrode planned for clinical sampling of the operculoinsular cortex was modified to extend it to the thalamus, thereby preventing the need for additional electrode placement for research. The anterior nucleus of the thalamus (ANT) (n = 13) and the medial group of thalamic nuclei (MED) (n = 11), including the mediodorsal and centromedian nuclei, were targeted. The postimplantation CT scan was coregistered to the preoperative MR image, and Morel's thalamic atlas was used to confirm the accuracy of implantation. RESULTS: Ten (77%) of 13 patients in the ANT group and 10 (91%) of 11 patients in the MED group had electrodes accurately placed in the thalamic nuclei. None of the patients had a thalamic hemorrhage. However, trace asymptomatic hemorrhages at the cortical-level entry site were noted in 20.8% of patients, who did not require additional surgical intervention. SEEG data from all the patients were interpretable and analyzable. The trajectories for the ANT implant differed slightly from those of the MED group at the entry point-i.e., the precentral gyrus in the former and the postcentral gyrus in the latter. CONCLUSIONS: Using judiciously planned robot-assisted SEEG, the authors demonstrate the safety of electrophysiological sampling from various thalamic nuclei for research recordings, presenting a technique that avoids implanting additional depth electrodes or compromising clinical care. With these results, we propose that if patients are fully informed of the risks involved, there are potential benefits of gaining mechanistic insights to seizure genesis, which may help to develop neuromodulation therapies.


Assuntos
Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia , Epilepsias Parciais/cirurgia , Robótica , Adulto , Núcleos Anteriores do Tálamo/cirurgia , Estimulação Encefálica Profunda/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Técnicas Estereotáxicas/efeitos adversos
2.
Neurosurg Focus ; 48(4): E16, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32234989

RESUMO

OBJECTIVE: For patients with nonlesional refractory focal epilepsy (NLRFE), localization of the epileptogenic zone may be more arduous than for other types of epilepsy and frequently requires information from multiple noninvasive presurgical modalities and intracranial EEG (icEEG). In this prospective, blinded study, the authors assessed the clinical added value of magnetic source imaging (MSI) in the presurgical evaluation of patients with NLRFE. METHODS: This study prospectively included 57 consecutive patients with NLRFE who were considered for epilepsy surgery. All patients underwent noninvasive presurgical evaluation and then MSI. To determine the surgical plan, discussion of the results of the presurgical evaluation was first undertaken while discussion participants were blinded to the MSI results. MSI results were then presented. MSI influence on the initial management plan was assessed. RESULTS: MSI results influenced patient management in 32 patients. MSI results led to the following changes in surgical strategy in 14 patients (25%): allowing direct surgery in 6 patients through facilitating the detection of subtle cortical dysplasia in 4 patients and providing additional concordant diagnostic information to other presurgical workup in another 2 patients; rejection of surgery in 3 patients originally deemed surgical candidates; change of plan from direct surgery to icEEG in 2 patients; and allowing icEEG in 3 patients deemed not surgical candidates. MSI results led to changed electrode locations and contact numbers in another 18 patients. Epilepsy surgery was performed in 26 patients influenced by MSI results and good surgical outcome was achieved in 21 patients. CONCLUSIONS: This prospective, blinded study showed that information provided by MSI allows more informed icEEG planning and surgical outcome in a significant percentage of patients with NLRFE and should be included in the presurgical workup in those patients.


Assuntos
Epilepsia Resistente a Medicamentos/cirurgia , Epilepsias Parciais/cirurgia , Epilepsia/cirurgia , Procedimentos Neurocirúrgicos , Adolescente , Adulto , Criança , Eletroencefalografia/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos/métodos , Adulto Jovem
3.
Neurosurg Focus ; 47(3): E12, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31473671

RESUMO

Although French psychiatrist-turned-neurosurgeon Jean Talairach (1911-2007) is perhaps best known for the stereotaxic atlas he produced with Pierre Tournoux and Gábor Szikla, he has left his mark on most aspects of modern stereotactic and functional neurosurgery. In the field of psychosurgery, he expressed critique of the practice of prefrontal lobotomy and subsequently was the first to describe the more selective approach using stereotactic bilateral anterior capsulotomy. Turning his attention to stereotaxy, Talairach spearheaded the team at Hôpital Sainte-Anne in the construction of novel stereotaxic apparatus. Cadaveric investigation using these tools and methods resulted in the first human stereotaxic atlas where the use of the anterior and posterior commissures as intracranial reference points was established. This work revolutionized the approach to cerebral localization as well as leading to the development of numerous novel stereotactic interventions by the Sainte-Anne team, including tumor biopsy, interstitial irradiation, thermal ablation, and endonasal procedures. Together with epileptologist Jean Bancaud, Talairach invented the field of stereo-electroencephalography and developed a robust scientific methodology for the assessment and treatment of epilepsy. In this article the authors review Talairach's career trajectory in its historical context and in view of its impact on modern stereotactic and functional neurosurgery.


Assuntos
Atlas como Assunto/história , Mapeamento Encefálico/história , Neurocirurgiões/história , Técnicas Estereotáxicas/história , História do Século XX , História do Século XXI , Humanos , Masculino
4.
Neurosurg Focus ; 47(6): E11, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786552

RESUMO

OBJECTIVE: Low registration errors are an important prerequisite for reliable navigation, independent of its use in cranial or spinal surgery. Regardless of whether navigation is used for trajectory alignment in biopsy or implant procedures, or for sophisticated augmented reality applications, all depend on a correct registration of patient space and image space. In contrast to fiducial, landmark, or surface matching-based registration, the application of intraoperative imaging allows user-independent automatic patient registration, which is less error prone. The authors' aim in this paper was to give an overview of their experience using intraoperative CT (iCT) scanning for automatic registration with a focus on registration accuracy and radiation exposure. METHODS: A total of 645 patients underwent iCT scanning with a 32-slice movable CT scanner in combination with navigation for trajectory alignment in biopsy and implantation procedures (n = 222) and for augmented reality (n = 437) in cranial and spine procedures (347 craniotomies and 42 transsphenoidal, 56 frameless stereotactic, 59 frame-based stereotactic, and 141 spinal procedures). The target registration error was measured using skin fiducials that were not part of the registration procedure. The effective dose was calculated by multiplying the dose length product with conversion factors. RESULTS: Among all 1281 iCT scans obtained, 1172 were used for automatic patient registration (645 initial registration scans and 527 repeat iCT scans). The overall mean target registration error was 0.86 ± 0.38 mm (± SD) (craniotomy, 0.88 ± 0.39 mm; transsphenoidal, 0.92 ± 0.39 mm; frameless, 0.74 ± 0.39 mm; frame-based, 0.84 ± 0.34 mm; and spinal, 0.80 ± 0.28 mm). Compared with standard diagnostic scans, a distinct reduction of the effective dose could be achieved using low-dose protocols for the initial registration scan with mean effective doses of 0.06 ± 0.04 mSv for cranial, 0.50 ± 0.09 mSv for cervical, 4.12 ± 2.13 mSv for thoracic, and 3.37 ± 0.93 mSv for lumbar scans without impeding registration accuracy. CONCLUSIONS: Reliable automatic patient registration can be achieved using iCT scanning. Low-dose protocols ensured a low radiation exposure for the patient. Low-dose scanning had no negative effect on navigation accuracy.


Assuntos
Encefalopatias/diagnóstico por imagem , Tomografia Computadorizada Multidetectores/métodos , Neuronavegação/métodos , Doenças da Coluna Vertebral/diagnóstico por imagem , Cirurgia Assistida por Computador/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encefalopatias/cirurgia , Criança , Pré-Escolar , Craniotomia , Feminino , Marcadores Fiduciais , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos , Doenças da Coluna Vertebral/cirurgia , Técnicas Estereotáxicas , Adulto Jovem
5.
Neurosurg Focus ; 45(3): E4, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30173609

RESUMO

Epileptic spasms (ES) are a common manifestation of intractable epilepsy in early life and can lead to devastating neurodevelopmental consequences. Epilepsy surgery for ES is challenging because of inherent difficulties in localizing the epileptogenic zone in affected infants and children. However, recent clinical series of resective neurosurgery for ES suggest that not only is surgery a viable option for appropriately selected patients, but postoperative seizure outcomes can be similar to those achieved in other types of focal epilepsy. Increased awareness of ES as a potentially focal epilepsy, along with advances in neuroimaging and invasive monitoring technologies, have led to the ability to surgically treat many patients with ES who were previously not considered surgical candidates. In this study, the authors review the current state of epilepsy surgery for ES. Specifically, they address how advances in neuroimaging and invasive monitoring have facilitated patient selection, presurgical evaluation, and ultimately, resection planning.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/cirurgia , Imagem Multimodal/métodos , Procedimentos Neurocirúrgicos/métodos , Eletroencefalografia/métodos , Humanos , Neuroimagem/métodos
6.
Neurosurg Focus ; 45(3): E8, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30173610

RESUMO

OBJECTIVE Stereoelectroencephalography (sEEG) and MR-guided laser interstitial thermal therapy (MRgLITT) have both emerged as minimally invasive alternatives to open surgery for the localization and treatment of medically refractory lesional epilepsy. Although some data are available about the use of these procedures individually, reports are almost nonexistent on their use in conjunction. The authors' aim was to report early outcomes regarding efficacy and safety of sEEG followed by MRgLITT for localization and ablation of seizure foci in the pediatric population with medically refractory lesional epilepsy. METHODS A single-center retrospective review of pediatric patients who underwent sEEG followed by MRgLITT procedures was performed. Demographic, intraoperative, and outcome data were compiled and analyzed. RESULTS Four pediatric patients with 9 total lesions underwent sEEG followed by MRgLITT procedures between January and September 2017. The mean age at surgery was 10.75 (range 2-21) years. Two patients had tuberous sclerosis and 2 had focal cortical dysplasia. Methods of stereotaxy consisted of BrainLab VarioGuide and ROSA robotic guidance, with successful localization of seizure foci in all cases. The sEEG procedure length averaged 153 (range 67-235) minutes, with a mean of 6 (range 4-8) electrodes and 56 (range 18-84) contacts per patient. The MRgLITT procedure length averaged 223 (range 179-252) minutes. The mean duration of monitoring was 6 (range 4-8) days, and the mean total hospital stay was 8 (range 5-11) days. Over a mean follow-up duration of 9.3 (range 5.1-16) months, 3 patients were seizure free (Engel class I, 75%), and 1 patient saw significant improvement in seizure frequency (Engel class II, 25%). There were no complications. CONCLUSIONS These early data demonstrate that sEEG followed by MRgLITT can be used safely and effectively to localize and ablate epileptogenic foci in a minimally invasive paradigm for treatment of medically refractory lesional epilepsy in pediatric populations. Continued collection of data with extended follow-up is needed.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Eletroencefalografia/métodos , Terapia a Laser/métodos , Imageamento por Ressonância Magnética/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Técnicas Estereotáxicas , Adolescente , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/terapia , Feminino , Humanos , Masculino , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
7.
Neurosurg Focus ; 42(5): E7, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28463617

RESUMO

OBJECTIVE During the last 3 decades, robotic technology has rapidly spread across several surgical fields due to the continuous evolution of its versatility, stability, dexterity, and haptic properties. Neurosurgery pioneered the development of robotics, with the aim of improving the quality of several procedures requiring a high degree of accuracy and safety. Moreover, robot-guided approaches are of special interest in pediatric patients, who often have altered anatomy and challenging relationships between the diseased and eloquent structures. Nevertheless, the use of robots has been rarely reported in children. In this work, the authors describe their experience using the ROSA device (Robotized Stereotactic Assistant) in the neurosurgical management of a pediatric population. METHODS Between 2011 and 2016, 116 children underwent ROSA-assisted procedures for a variety of diseases (epilepsy, brain tumors, intra- or extraventricular and tumor cysts, obstructive hydrocephalus, and movement and behavioral disorders). Each patient received accurate preoperative planning of optimal trajectories, intraoperative frameless registration, surgical treatment using specific instruments held by the robotic arm, and postoperative CT or MR imaging. RESULTS The authors performed 128 consecutive surgeries, including implantation of 386 electrodes for stereo-electroencephalography (36 procedures), neuroendoscopy (42 procedures), stereotactic biopsy (26 procedures), pallidotomy (12 procedures), shunt placement (6 procedures), deep brain stimulation procedures (3 procedures), and stereotactic cyst aspiration (3 procedures). For each procedure, the authors analyzed and discussed accuracy, timing, and complications. CONCLUSIONS To the best their knowledge, the authors present the largest reported series of pediatric neurosurgical cases assisted by robotic support. The ROSA system provided improved safety and feasibility of minimally invasive approaches, thus optimizing the surgical result, while minimizing postoperative morbidity.


Assuntos
Neurocirurgia/instrumentação , Procedimentos Neurocirúrgicos , Robótica , Adolescente , Neoplasias Encefálicas/cirurgia , Criança , Pré-Escolar , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Epilepsia/cirurgia , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Neuronavegação/métodos , Procedimentos Neurocirúrgicos/instrumentação , Procedimentos Neurocirúrgicos/métodos , Técnicas Estereotáxicas/instrumentação
8.
Neurosurg Focus ; 42(5): E8, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28463615

RESUMO

OBJECTIVE The purpose of this study was to compare the accuracy of Neurolocate frameless registration system and frame-based registration for robotic stereoelectroencephalography (SEEG). METHODS The authors performed a 40-trajectory phantom laboratory study and a 127-trajectory retrospective analysis of a surgical series. The laboratory study was aimed at testing the noninferiority of the Neurolocate system. The analysis of the surgical series compared Neurolocate-based SEEG implantations with a frame-based historical control group. RESULTS The mean localization errors (LE) ± standard deviations (SD) for Neurolocate-based and frame-based trajectories were 0.67 ± 0.29 mm and 0.76 ± 0.34 mm, respectively, in the phantom study (p = 0.35). The median entry point LE was 0.59 mm (interquartile range [IQR] 0.25-0.88 mm) for Neurolocate-registration-based trajectories and 0.78 mm (IQR 0.49-1.08 mm) for frame-registration-based trajectories (p = 0.00002) in the clinical study. The median target point LE was 1.49 mm (IQR 1.06-2.4 mm) for Neurolocate-registration-based trajectories and 1.77 mm (IQR 1.25-2.5 mm) for frame-registration-based trajectories in the clinical study. All the surgical procedures were successful and uneventful. CONCLUSIONS The results of the phantom study demonstrate the noninferiority of Neurolocate frameless registration. The results of the retrospective surgical series analysis suggest that Neurolocate-based procedures can be more accurate than the frame-based ones. The safety profile of Neurolocate-based registration should be similar to that of frame-based registration. The Neurolocate system is comfortable, noninvasive, easy to use, and potentially faster than other registration devices.


Assuntos
Procedimentos Neurocirúrgicos , Técnicas Estereotáxicas/instrumentação , Cirurgia Assistida por Computador , Tato/fisiologia , Encefalopatias/cirurgia , Eletrodos Implantados , Eletroencefalografia/métodos , Humanos , Procedimentos Neurocirúrgicos/instrumentação , Procedimentos Neurocirúrgicos/métodos , Estudos Retrospectivos , Robótica , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos
9.
J Neurosurg ; : 1-9, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30660122

RESUMO

OBJECTIVEAs decisions regarding tumor diagnosis and subsequent treatment are increasingly based on molecular pathology, the frequency of brain biopsies is increasing. Robotic devices overcome limitations of frame-based and frameless techniques in terms of accuracy and usability. The aim of the present study was to present a novel, minimally invasive, robot-guided biopsy technique and compare the results with those of standard burr hole biopsy.METHODSA tubular minimally invasive instrument set was custom-designed for the iSYS-1 robot-guided biopsies. Feasibility, accuracy, duration, and outcome were compared in a consecutive series of 66 cases of robot-guided stereotactic biopsies between the minimally invasive (32 patients) and standard (34 patients) procedures.RESULTSApplication of the minimally invasive instrument set was feasible in all patients. Compared with the standard burr hole technique, accuracy was significantly higher both at entry (median 1.5 mm [range 0.2-3.2 mm] vs 1.7 mm [range 0.8-5.1 mm], p = 0.008) and at target (median 1.5 mm [range 0.4-3.4 mm] vs 2.0 mm [range 0.8-3.9 mm], p = 0.019). The incision-to-suture time was significantly shorter (median 30 minutes [range 15-50 minutes] vs 37.5 minutes [range 25-105 minutes], p < 0.001). The skin incision was significantly shorter (median 16.3 mm [range 12.7-23.4 mm] vs 28.4 mm [range 20-42.2 mm], p = 0.002). A diagnostic tissue sample was obtained in all cases.CONCLUSIONSApplication of the novel instrument set was feasible in all patients. According to the authors' data, the minimally invasive robot-guidance procedure can significantly improve accuracy, reduce operating time, and improve the cosmetic result of stereotactic biopsies.

10.
J Neurosurg Pediatr ; 23(3): 297-302, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30611155

RESUMO

OBJECTIVE The aim of this study was to compare the accuracy of optical frameless neuronavigation (ON) and robot-assisted (RA) stereoelectroencephalography (SEEG) electrode placement in children, and to identify factors that might increase the risk of misplacement. METHODS The authors undertook a retrospective review of all children who underwent SEEG at their institution. Twenty children were identified who underwent stereotactic placement of a total of 218 electrodes. Six procedures were performed using ON and 14 were placed using a robotic assistant. Placement error was calculated at cortical entry and at the target by calculating the Euclidean distance between the electrode and the planned cortical entry and target points. The Mann-Whitney U-test was used to compare the results for ON and RA placement accuracy. For each electrode placed using robotic assistance, extracranial soft-tissue thickness, bone thickness, and intracranial length were measured. Entry angle of electrode to bone was calculated using stereotactic coordinates. A stepwise linear regression model was used to test for variables that significantly influenced placement error. RESULTS Between 8 and 17 electrodes (median 10 electrodes) were placed per patient. Median target point localization error was 4.5 mm (interquartile range [IQR] 2.8­6.1 mm) for ON and 1.07 mm (IQR 0.71­1.59) for RA placement. Median entry point localization error was 5.5 mm (IQR 4.0­6.4) for ON and 0.71 mm (IQR 0.47­1.03) for RA placement. The difference in accuracy between Stealth-guided (ON) and RA placement was highly significant for both cortical entry point and target (p < 0.0001 for both). Increased soft-tissue thickness and intracranial length reduced accuracy at the target. Increased soft-tissue thickness, bone thickness, and younger age reduced accuracy at entry. There were no complications. CONCLUSIONS RA stereotactic electrode placement is highly accurate and is significantly more accurate than ON. Larger safety margins away from vascular structures should be used when placing deep electrodes in young children and for trajectories that pass through thicker soft tissues such as the temporal region. ABBREVIATIONS CTA = CT angiography; IQR = interquartile range; MEG = magnetoencephalography; ON = optical frameless neuronavigation; RA = robot-assisted; SEEG = stereoelectroencephalography.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/patologia , Neuronavegação/métodos , Dispositivos Ópticos , Robótica , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Eletrodos Implantados , Eletroencefalografia , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Estudos Retrospectivos , Técnicas Estereotáxicas , Tomógrafos Computadorizados
11.
J Neurosurg ; : 1-8, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31100733

RESUMO

OBJECTIVEThe accuracy of stereoelectroencephalography (SEEG) electrode implantation is an important factor in maximizing its safety. The authors established a quality assurance (QA) process to aid advances in implantation accuracy.METHODSThe accuracy of three consecutive modifications of a frameless implantation technique was quantified in three cohorts comprising 22, 8, and 23 consecutive patients. The modifications of the technique aimed to increase accuracy of the bolt placement.RESULTSThe lateral shift of the axis of the implanted bolt at the level of the planned entry point was reduced from a mean of 3.0 ± 1.6 mm to 1.4 ± 0.8 mm. The lateral shift of the axis of the implanted bolt at the level of the planned target point was reduced from a mean of 3.8 ± 2.5 mm to 1.6 ± 0.9 mm.CONCLUSIONSThis QA framework helped to isolate and quantify the factors introducing inaccuracy in SEEG implantation, and to monitor ongoing accuracy and the effect of technique modifications.

12.
J Neurosurg ; 130(1): 213-219, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29451446

RESUMO

OBJECTIVE The aim of this study was to implement cumulative summation (CUSUM) analysis as an early-warning detection and quality assurance system for preclinical testing of the iSYS1 novel robotic trajectory guidance system. METHODS Anatomically accurate 3D-printed skull phantoms were created for 3 patients who underwent implantation of 21 stereoelectroencephalography electrodes by surgeons using the current standard of care (frameless technique). Implantation schema were recreated using the iSYS1 system, and paired accuracy measures were compared with the previous frameless implantations. Entry point, target point, and implantation angle accuracy were measured on postimplantation CT scans. CUSUM analysis was undertaken prospectively. RESULTS The iSYS1 trajectory guidance system significantly improved electrode entry point accuracies from 1.90 ± 0.96 mm (mean ± SD) to 0.76 ± 0.57 mm (mean ± SD) without increasing implantation risk. CUSUM analysis was successful as a continuous measure of surgical performance and acted as an early-warning detection system. The surgical learning curve, although minimal, showed improvement after insertion of the eighth electrode. CONCLUSIONS The iSYS1 trajectory guidance system did not show any increased risk during phantom preclinical testing when used by neurosurgeons who had no experience with its use. CUSUM analysis is a simple technique that can be applied to all stages of the IDEAL (idea, development, exploration, assessment) framework as an extra patient safety mechanism. Further clinical trials are required to prove the efficacy of the device.


Assuntos
Eletrodos Implantados , Segurança do Paciente , Procedimentos Cirúrgicos Robóticos , Técnicas Estereotáxicas , Competência Clínica , Eletroencefalografia , Humanos , Curva de Aprendizado , Modelos Anatômicos , Impressão Tridimensional
13.
J Neurosurg Pediatr ; 22(5): 1-8, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30117789

RESUMO

OBJECTIVEStereoelectroencephalography (SEEG) has increased in popularity for localization of epileptogenic zones in drug-resistant epilepsy because safety, accuracy, and efficacy have been well established in both adult and pediatric populations. Development of robot-guidance technology has greatly enhanced the efficiency of this procedure, without sacrificing safety or precision. To date there have been very limited reports of the use of this new technology in children. The authors present their initial experience using the ROSA platform for robot-guided SEEG in a pediatric population.METHODSBetween February 2016 and October 2017, 20 consecutive patients underwent robot-guided SEEG with the ROSA robotic guidance platform as part of ongoing seizure localization and workup for medically refractory epilepsy of several different etiologies. Medical and surgical history, imaging and trajectory plans, as well as operative records were analyzed retrospectively for surgical accuracy, efficiency, safety, and epilepsy outcomes.RESULTSA total of 222 leads were placed in 20 patients, with an average of 11.1 leads per patient. The mean total case time (± SD) was 297.95 (± 52.96) minutes and the mean operating time per lead was 10.98 minutes/lead, with improvements in total (33.36 minutes/lead vs 21.76 minutes/lead) and operative (13.84 minutes/lead vs 7.06 minutes/lead) case times/lead over the course of the study. The mean radial error was 1.75 (± 0.94 mm). Clinically useful data were obtained from SEEG in 95% of cases, and epilepsy surgery was indicated and performed in 95% of patients. In patients who underwent definitive epilepsy surgery with at least a 3-month follow-up, 50% achieved an Engel class I result (seizure freedom). There were no postoperative complications associated with SEEG placement and monitoring.CONCLUSIONSIn this study, the authors demonstrate that rapid adoption of robot-guided SEEG is possible even at a SEEG-naïve institution, with minimal learning curve. Use of robot guidance for SEEG can lead to significantly decreased operating times while maintaining safety, the overall goals of identification of epileptogenic zones, and improved epilepsy outcomes.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/cirurgia , Eletroencefalografia/métodos , Epilepsia/cirurgia , Robótica , Convulsões/cirurgia , Adolescente , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Estudos Retrospectivos , Convulsões/fisiopatologia , Técnicas Estereotáxicas
14.
J Neurosurg ; 131(6): 1938-1946, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544338

RESUMO

OBJECTIVE: Stereoelectroencephalography (SEEG) was first developed in the 1950s by Jean Talairach using 2D angiography and a frame-based, orthogonal approach through a metallic grid. Since then, various other frame-based and frameless techniques have been described. In this study the authors sought to compare the traditional orthogonal Talairach 2D angiographic approach with a frame-based 3D robotic procedure that included 3D angiographic interoperative imaging guidance. MRI was used for both procedures during surgery, but MRI preplanning was done only in the robotic 3D technique. METHODS: All study patients suffered from drug-resistant focal epilepsy and were treated at the same center by the same neurosurgical team. Fifty patients who underwent the 3D robotic procedure were compared to the same number of historical controls who had previously been successfully treated with the Talairach orthogonal procedure. The effectiveness and absolute accuracy, as well as safety, of the two procedures were compared. Moreover, in the 3D robotic group, the reliability of the preoperative MRI to avoid vascular structures was evaluated by studying the rate of trajectory modification following the coregistration of the intraoperative 3D angiographic data onto the preoperative MRI-based trajectory plans. RESULTS: Effective accuracy (96.5% vs 13.7%) and absolute accuracy (1.15 mm vs 4.00 mm) were significantly higher in the 3D robotic group than in the Talairach orthogonal group. Both procedures showed excellent safety results (no major complications). The rate of electrode modification after 3D angiography was 43.8%, and it was highest for frontal and insular locations. CONCLUSIONS: The frame-based, 3D angiographic, robotic procedure described here provided better accuracy for SEEG implantations than the traditional Talairach approach. This study also highlights the potential safety advantage of trajectory planning using intraoperative frame-based 3D angiography over preoperative MRI alone.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia/métodos , Imageamento Tridimensional/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Técnicas Estereotáxicas , Adolescente , Adulto , Eletroencefalografia/normas , Feminino , Humanos , Imageamento Tridimensional/normas , Masculino , Procedimentos Cirúrgicos Robóticos/normas , Técnicas Estereotáxicas/normas , Adulto Jovem
15.
J Neurosurg Pediatr ; 22(6): 601-609, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30141751

RESUMO

OBJECTIVEHemispherotomy is currently the most frequently performed surgical option for refractory epilepsy associated with large perinatal or childhood ischemic events. Such an approach may lead to good seizure control, but it has inherent functional consequences linked to the disconnection of functional cortices. The authors report on 6 consecutive patients who presented with severe epilepsy associated with hemiplegia due to stroke and who benefitted from a new, stereoelectroencephalography-guided partial disconnection technique.METHODSThe authors developed a new disconnection technique termed "tailored suprainsular partial hemispherotomy" (TSIPH). Disconnection always included premotor and motor cortex with variable anterior and posterior extent.RESULTSAt a mean follow-up of 28 months, there were no deaths and no patient had hydrocephalus. Motor degradation was observed in all patients in the 2 weeks after surgery, but all patients completely recovered. The 6 patients were seizure free (Engel class IA) at the last follow-up. No neuropsychological aggravation was observed.CONCLUSIONSTSIPH appears to be a conservative alternative to classic hemispherotomy, leading to favorable outcome in this series.


Assuntos
Córtex Cerebral/cirurgia , Epilepsia/cirurgia , Hemisferectomia/métodos , Acidente Vascular Cerebral/cirurgia , Adolescente , Adulto , Criança , Eletroencefalografia , Epilepsia/etiologia , Feminino , Seguimentos , Humanos , Masculino , Estudos Retrospectivos , Acidente Vascular Cerebral/complicações , Resultado do Tratamento
16.
J Neurosurg Pediatr ; 23(3): 288-296, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544342

RESUMO

OBJECTIVEThe goal in the study was to describe the clinical outcomes associated with robot-assisted stereoelectroencephalography (SEEG) in children.METHODSThe authors performed a retrospective, single-center study in consecutive children with medically refractory epilepsy who were undergoing robot-assisted SEEG. Kaplan-Meier survival analysis was used to calculate the probability of seizure freedom. Both univariate and multivariate methods were used to analyze the preoperative and operative factors associated with seizure freedom.RESULTSFifty-seven children underwent a total of 64 robot-assisted procedures. The patients' mean age was 12 years, an average of 6.4 antiepileptic drugs (AEDs) per patient had failed prior to implantation, and in 56% of the patients the disease was considered nonlesional. On average, children had 12.4 electrodes placed per implantation, with an implantation time of 9.6 minutes per electrode and a 10-day postoperative stay. SEEG analysis yielded a definable epileptogenic zone in 51 (89%) patients; 42 (74%) patients underwent surgery, half of whom were seizure free at last follow-up, 19.6 months from resection. In a multivariate generalized linear model, resective surgery, older age, and shorter SEEG-related hospital length of stay were associated with seizure freedom. In a Cox proportional hazards model including only the children who underwent resective surgery, older age was the only significant factor associated with seizure freedom. Complications related to bleeding were the major contributors to morbidity. One patient (1.5%) had a symptomatic hemorrhage resulting in a permanent neurological deficit.CONCLUSIONSThe authors report one of the largest pediatric-specific SEEG series demonstrating that the modern surgical management of medically refractory epilepsy in children can lead to seizure freedom in many patients, while also highlighting the challenges posed by this difficult patient population.


Assuntos
Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia/métodos , Procedimentos Cirúrgicos Robóticos , Técnicas Estereotáxicas , Adolescente , Fatores Etários , Análise de Variância , Criança , Intervalo Livre de Doença , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrodos Implantados/estatística & dados numéricos , Eletroencefalografia/efeitos adversos , Feminino , Humanos , Estimativa de Kaplan-Meier , Tempo de Internação , Masculino , Hemorragia Pós-Operatória/complicações , Recidiva , Estudos Retrospectivos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Procedimentos Cirúrgicos Robóticos/estatística & dados numéricos , Robótica , Técnicas Estereotáxicas/efeitos adversos , Resultado do Tratamento
17.
J Neurosurg ; : 1-9, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544358

RESUMO

OBJECTIVEIn this study, the authors investigated high-frequency oscillation (HFO) networks during seizures in order to determine how HFOs spread from the focal cerebral cortex and become synchronized across various areas of the brain.METHODSAll data were obtained from stereoelectroencephalography (SEEG) signals in patients with drug-resistant temporal lobe epilepsy (TLE). The authors calculated intercontact cross-coefficients between all pairs of contacts to construct HFO networks in 20 seizures that occurred in 5 patients. They then calculated HFO network topology metrics (i.e., network density and component size) after normalizing seizure duration data by dividing each seizure into 10 intervals of equal length (labeled I1-I10).RESULTSFrom the perspective of the dynamic topologies of cortical and subcortical HFO networks, the authors observed a significant increase in network density during intervals I5-I10. A significant increase was also observed in overall energy during intervals I3-I8. The results of subnetwork analysis revealed that the number of components continuously decreased following the onset of seizures, and those results were statistically significant during intervals I3-I10. Furthermore, the majority of nodes were connected to a single dominant component during the propagation of seizures, and the percentage of nodes within the largest component grew significantly until seizure termination.CONCLUSIONSThe consistent topological changes that the authors observed suggest that TLE is affected by common epileptogenic patterns. Indeed, the findings help to elucidate the epileptogenic network that characterizes TLE, which may be of interest to researchers and physicians working to improve treatment modalities for epilepsy, including resection, cortical stimulation, and neuromodulation treatments that are responsive to network topologies.

18.
J Neurosurg Pediatr ; 22(4): 444-452, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30028270

RESUMO

OBJECTIVE: Patients with medically refractory localization-related epilepsy (LRE) may be candidates for surgical intervention if the seizure onset zone (SOZ) can be well localized. Stereoelectroencephalography (SEEG) offers an attractive alternative to subdural grid and strip electrode implantation for seizure lateralization and localization; yet there are few series reporting the safety and efficacy of SEEG in pediatric patients. METHODS: The authors review their initial 3-year consecutive experience with SEEG in pediatric patients with LRE. SEEG coverage, SOZ localization, complications, and preliminary seizure outcomes following subsequent surgical treatments are assessed. RESULTS: Twenty-five pediatric patients underwent 30 SEEG implantations, with a total of 342 electrodes placed. Ten had prior resections or ablations. Seven had no MRI abnormalities, and 8 had multiple lesions on MRI. Based on preimplantation hypotheses, 7 investigations were extratemporal (ET), 1 was only temporal-limbic (TL), and 22 were combined ET/TL investigations. Fourteen patients underwent bilateral investigations. On average, patients were monitored for 8 days postimplant (range 3-19 days). Nearly all patients were discharged home on the day following electrode explantation. There were no major complications. Minor complications included 1 electrode deflection into the subdural space, resulting in a minor asymptomatic extraaxial hemorrhage; and 1 in-house and 1 delayed electrode superficial scalp infection, both treated with local wound care and oral antibiotics. SEEG localized the hypothetical SOZ in 23 of 25 patients (92%). To date, 18 patients have undergone definitive surgical intervention. In 2 patients, SEEG localized the SOZ near eloquent cortex and subdural grids were used to further delineate the seizure focus relative to mapped motor function just prior to resection. At last follow-up (average 21 months), 8 of 15 patients with at least 6 months of follow-up (53%) were Engel class I, and an additional 6 patients (40%) were Engel class II or III. Only 1 patient was Engel class IV. CONCLUSIONS: SEEG is a safe and effective technique for invasive SOZ localization in medically refractory LRE in the pediatric population. SEEG permits bilateral and multilobar investigations while avoiding large craniotomies. It is conducive to deep, 3D, and perilesional investigations, particularly in cases of prior resections. Patients who are not found to have focally localizable seizures are spared craniotomies.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Epilepsias Parciais/fisiopatologia , Procedimentos Cirúrgicos Robóticos/métodos , Técnicas Estereotáxicas , Mapeamento Encefálico/instrumentação , Criança , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/cirurgia , Eletrodos Implantados , Eletroencefalografia/instrumentação , Epilepsias Parciais/cirurgia , Feminino , Humanos , Masculino , Procedimentos Cirúrgicos Robóticos/instrumentação , Técnicas Estereotáxicas/instrumentação
19.
J Neurosurg Pediatr ; 22(5): 481-488, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30074447

RESUMO

Stereotactic laser ablation (SLA) is being increasingly used to treat refractory focal epilepsy, especially mesial temporal lobe epilepsy. However, emerging evidence suggests it can be used for extratemporal lobe epilepsy as well.The authors report the case of a 17-year-old male who presented with refractory nocturnal seizures characterized by bilateral arms stiffening or rhythmic jerking lasting several seconds. Semiology suggested an epileptogenic zone close to one of the supplementary sensory motor areas. Electroencephalography showed seizures arising from the central region without consistent lateralization. Brain imaging showed no abnormality. An invasive evaluation using bilateral stereoelectroencephalography (SEEG) was utilized in 2 steps, first to establish the laterality of seizures, and second to further cover the mesial cingulate region of the right hemisphere. Seizures arose from the middle portion of the right cingulate gyrus. Extraoperative electrical mapping revealed that the seizure onset zone was adjacent to eloquent motor areas. SLA targeting the right midcingulate gyrus was performed. The patient has remained seizure free since immediately after the procedure with no postoperative deficits (follow-up of 17 months).This case highlights the utility of SEEG in evaluating difficult-to-localize, focal epilepsy. It also demonstrates that the use of SLA can be extended to nonlesional, extratemporal epilepsies.


Assuntos
Encéfalo/cirurgia , Epilepsia do Lobo Frontal/cirurgia , Terapia a Laser/métodos , Técnicas Estereotáxicas , Adolescente , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Epilepsia do Lobo Frontal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Resultado do Tratamento
20.
J Neurosurg Pediatr ; 22(4): 416-425, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30028274

RESUMO

OBJECTIVE: The purpose of this study was to verify the safety and accuracy of the Neuromate stereotactic robot for use in deep brain stimulation (DBS) electrode implantation for the treatment of hyperkinetic movement disorders in childhood and describe the authors' initial clinical results. METHODS: A prospective evaluation of pediatric patients with dystonia and other hyperkinetic movement disorders was carried out during the 1st year after the start-up of a pediatric DBS unit in Barcelona. Electrodes were implanted bilaterally in the globus pallidus internus (GPi) using the Neuromate robot without the stereotactic frame. The authors calculated the distances between the electrodes and their respective planned trajectories, merging the postoperative CT with the preoperative plan using VoXim software. Clinical outcome was monitored using validated scales for dystonia and myoclonus preoperatively and at 1 month and 6 months postoperatively and by means of a quality-of-life questionnaire for children, administered before surgery and at 6 months' follow-up. We also recorded complications derived from the implantation technique, "hardware," and stimulation. RESULTS: Six patients aged 7 to 16 years and diagnosed with isolated dystonia ( DYT1 negative) (3 patients), choreo-dystonia related to PDE2A mutation (1 patient), or myoclonus-dystonia syndrome SGCE mutations (2 patients) were evaluated during a period of 6 to 19 months. The average accuracy in the placement of the electrodes was 1.24 mm at the target point. At the 6-month follow-up, patients showed an improvement in the motor (65%) and functional (48%) components of the Burke-Fahn-Marsden Dystonia Rating Scale. Patients with myoclonus and SGCE mutations also showed an improvement in action myoclonus (95%-100%) and in functional tests (50%-75%) according to the Unified Motor-Rating Scale. The Neuro-QOL score revealed inconsistent results, with improvement in motor function and social relationships but worsening in anxiety, cognitive function, and pain. The only surgical complication was medial displacement of the first electrode, which limited intensity of stimulation in the lower contacts, in one case. CONCLUSIONS: The Neuromate stereotactic robot is an accurate and safe tool for the placement of GPi electrodes in children with hyperkinetic movement disorders.


Assuntos
Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Transtornos dos Movimentos/terapia , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Robóticos/métodos , Adolescente , Criança , Feminino , Globo Pálido/fisiopatologia , Globo Pálido/cirurgia , Humanos , Masculino , Estudos Prospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa