Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Gen Virol ; 105(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39392059

RESUMO

The emergence of Singapore grouper iridovirus (SGIV) has caused huge losses to grouper farming. SGIV is a DNA virus and belongs to the genus Ranavirus. Groupers infected with SGIV showed haemorrhaging and swelling of the spleen, with a mortality rate of more than 90% within a week. Therefore, it is of great significance to study the escape mechanism of SGIV from host innate immunity for the prevention and treatment of viral diseases in grouper. In this study, the viral proteins that interact with EccGAS were identified by mass spectrometry, and the SGIV VP12 protein that inhibits cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-mediated antiviral innate immunity was screened by the dual-luciferase reporter gene assay. VP12 belongs to the late gene of the virus. The immunofluorescence analysis demonstrated that VP12 was aggregated and distributed in the cytoplasm during the early stage of virus infection and translocated into the nucleus at the late stage of virus infection. VP12 inhibited the activation of IFN3, ISRE and NF-κB promoter activities mediated by cGAS-STING, EcTBK1 and EcIRF3. Quantitative real-time PCR analysis showed that VP12 inhibited the expression of interferon-related genes, including those mediated by cGAS-STING. VP12 enhanced the inhibition of IFN3, ISRE and NF-κB promoter activity by EccGAS, EccGAS-mab-21 and EccGAS-delete-mab21. The interaction between VP12 and EccGAS was found to be domain independent. The immunoprecipitation results demonstrated that VP12 interacted and co-localized with EccGAS, EcTBK1 and EcIRF3. VP12 degraded the protein levels of EcTBK1 and EcIRF3 and degraded EcIRF3 through the protease pathway. These results suggest that SGIV VP12 protein escapes the cGAS-STING signalling pathway and degrades EcIRF3 protein expression through the protease pathway.


Assuntos
Infecções por Vírus de DNA , Imunidade Inata , Proteínas de Membrana , Nucleotidiltransferases , Ranavirus , Transdução de Sinais , Animais , Ranavirus/imunologia , Ranavirus/fisiologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/veterinária , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Evasão da Resposta Imune , Interações Hospedeiro-Patógeno/imunologia
2.
Fish Shellfish Immunol ; 153: 109837, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147179

RESUMO

NLRP3 has an important role in the immune response and viral infection as an essential inflammasome component. However, it is unclear whether the grouper immune system is regulated by NLRP3 inflammasome. In this study, we cloned the NLRP3 gene from Epinephelus coioides. Ec-NLRP3 encodes 893 amino acids and contains two major structural domains, the NACHT domain (69-234aa) and the LRR domain (477-893aa). Tissue distribution analysis showed that Ec-NLRP3 was expressed in all tissues tested, with the spleen exhibiting the highest expression. Additionally, after being infected with SGIV, the expression of the Ec-NLRP3 gene was significantly increased. The results of subcellular localization revealed that Ec-NLRP3 was distributed throughout GS cells. In addition, Ec-NLRP3 co-localized with Ec-ASC and was observed as a cytosolic speck. Ec-NLRP3 overexpression significantly inhibited SGIV infection, which was further inhibited by co-overexpression of Ec-NLRP3 and Ec-ASC. Further studies revealed that overexpression of Ec-NLRP3 significantly upregulated caspase-1 activity, and co-overexpression of Ec-NLRP3 and Ec-ASC further upregulated caspase-1 activity. In addition, inhibition of Caspase-1 activity with VX-765 significantly increased the infection of SGIV. Furthermore, the NLRP3 inflammasome activator Nigericin was able to inhibit the infection of SGIV significantly. The above findings suggest that Ec-NLRP3 inhibits SGIV infection by upregulating caspase-1 activity.


Assuntos
Bass , Caspase 1 , Doenças dos Peixes , Proteínas de Peixes , Regulação da Expressão Gênica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Filogenia , Alinhamento de Sequência , Regulação para Cima , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Bass/imunologia , Bass/genética , Alinhamento de Sequência/veterinária , Regulação da Expressão Gênica/imunologia , Caspase 1/genética , Caspase 1/imunologia , Caspase 1/metabolismo , Sequência de Aminoácidos , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Imunidade Inata/genética , Perfilação da Expressão Gênica/veterinária , Iridoviridae
3.
Fish Shellfish Immunol ; 151: 109748, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964434

RESUMO

The high mortality rate of Singapore grouper iridovirus (SGIV) posing a serious threat to the grouper aquaculture industry and causing significant economic losses. Therefore, finding effective drugs against SGIV is of great significance. Eugenol (C10H12O2) is a phenolic aromatic compound, has been widely studied for its anti-inflammatory, antioxidant and antiviral capacity. In this study, we explored the effect of eugenol on SGIV infection and its possible mechanisms using grouper spleen cells (GS) as an in vitro model. We found that treatment of GS cells with 100 µM eugenol for 4 h exhibited the optimal inhibitory effect on SGIV. Eugenol was able to reduce the expression level of inflammatory factors by inhibiting the activation of MAPK pathway and also inhibited the activity of NF-κB and AP-1 promoter. On the other hand, eugenol attenuated cellular oxidative stress by reducing intracellular ROS and promoted the expression of interferon-related genes. Therefore, we conclude that eugenol inhibits SGIV infection by enhancing cellular immunity through its anti-inflammatory and antioxidant functions.


Assuntos
Antivirais , Bass , Infecções por Vírus de DNA , Eugenol , Doenças dos Peixes , Ranavirus , Animais , Eugenol/farmacologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Antivirais/farmacologia , Bass/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/tratamento farmacológico , Ranavirus/fisiologia , Baço/imunologia , Baço/efeitos dos fármacos , Baço/citologia , Células Cultivadas
4.
Fish Shellfish Immunol ; 149: 109522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548190

RESUMO

Singapore grouper iridovirus (SGIV) is one of the major infectious diseases responsible for high mortality and huge economic losses in the grouper aquaculture industry. Berberine (BBR), a naturally occurring plant alkaloid, is a phytochemical having a variety of biological properties, such as antiviral, antioxidant, and anti-inflammatory effects. In this work, we used an in vitro model based on Western blot, ROS fluorescence probe, and real-time quantitative PCR (qRT-PCR) to examine the antiviral qualities of BBR against SGIV. The outcomes demonstrated that varying BBR concentrations could significantly inhibit the replication of SGIV. In addition, BBR greatly inhibited the production of genes associated with pro-inflammatory cytokines in SGIV-infected or SGIV-uninfected GS cells based on qRT-PCR data. Subsequent investigations demonstrated that BBR suppressed the expression of the promoter activity of NF-κB and NF-κB-p65 protein. Additionally, BBR reduced the phosphorylation of ERK 1/2, JNK, and p38. Furthermore, BBR also inhibits SGIV-induced ROS production by upregulating the expression of antioxidant-related genes. In conclusion, BBR is a viable therapy option for SGIV infection due to its antiviral properties.


Assuntos
Berberina , Doenças dos Peixes , Estresse Oxidativo , Replicação Viral , Berberina/farmacologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Replicação Viral/efeitos dos fármacos , Inflamação/imunologia , Inflamação/veterinária , Antivirais/farmacologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Ranavirus/fisiologia , Linhagem Celular
5.
Fish Shellfish Immunol ; 144: 109218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977543

RESUMO

Grouper is one of the most important and valuable mariculture fish in China, with a high economic value. As the production of grouper has increased, massive outbreaks of epidemic diseases have limited the development of the industry. Singapore grouper iridovirus (SGIV) is one of the most serious infectious viral pathogens and has caused huge economic losses to grouper farming worldwide due to its rapid spread and high lethality. To find new strategies for the effective prevention and control of SGIV, we constructed two chimeric DNA vaccines using Lysosome-associated membrane protein 1 (LAMP1) fused with major capsid proteins (MCP) against SGIV. In addition, we evaluated the immune protective effects of vaccines including pcDNA3.1-3HA, pcDNA3.1-MCP, pcDNA3.1-LAMP1, chimeric DNA vaccine pcDNA3.1-MLAMP and pcDNA3.1-LAMCP by intramuscular injection. Our results showed that compared with groups injected with PBS, pcDNA3.1-3HA, pcDNA3.1-LAMP1 or pcDNA3.1-MCP, the antibody titer significantly increased in the chimeric vaccine groups. Moreover, the mRNA levels of immune-related factors in groupers, including IRF3, MHC-I, TNF-α, and CD8, showed the same trend. However, MHC-II and CD4 were significantly increased only in the chimeric vaccine groups. After 28 days of vaccination, groupers were challenged with SGIV, and mortality was documented for each group within 14 days. The data showed that two chimeric DNA vaccines provided 87 % and 91 % immune protection for groupers which were significantly higher than the 52 % protection rate of pcDNA3.1-MCP group, indicating that both forms of LAMP1 chimeric vaccines possessed higher immune protection against SGIV, providing the theoretical foundation for the creation of novel DNA vaccines for fish.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Vacinas de DNA , Animais , Singapura , Fatores de Transcrição , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/genética , Proteínas de Peixes/genética
6.
Fish Shellfish Immunol ; 145: 109349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184183

RESUMO

Singapore grouper iridovirus (SGIV), belonging to genus Ranavirus, family Iridoviridae, is a highly pathogenic agent and causes heavy economic losses in the global grouper aquaculture. Recent studies demonstrated that SGIV infection attenuated antiviral immune and inflammatory response induced by poly (I:C) in vitro. However, little was known about the potential functions of the immune regulatory proteins encoded by SGIV. Here, we identified the detailed roles of VP20 and clarified the potential mechanism underlying its immune regulatory function during SGIV infection. Our results showed that VP20 was an IE gene, and partially co-localized with Golgi apparatus and lysosomes in grouper cells. Overexpression of VP20 enhanced SGIV replication, demonstrated by the increase in the transcription levels of viral core genes and the protein synthesis of MCP. Reporter gene assays showed that SGIV VP20 overexpression significantly reduced the IFN promoter activity induced by poly (I:C), grouper stimulator of interferon genes (EcSTING) and TANK-binding kinase 1 (EcTBK1). Consistently, the transcription levels of IFN related genes were significantly decreased in VP20 overexpressing cells compared to those in control cells. Co-IP assay and confocal microscopy observations indicated that VP20 co-localized and interacted with EcTBK1 and EcIRF3, but not EcSTING. In addition, VP20 was able to degrade EcIRF3 and attenuate the antiviral action of EcIRF3, while had no effect on EcTBK1. Together, SGIV VP20 was speculated to promote viral replication through attenuating the IFN response mediated by TBK1-IRF3 in vitro. Our findings provided new insights into the immune regulatory function of SGIV encoded unknown proteins.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Interferons , Ranavirus/fisiologia , Imunidade Inata/genética , Singapura , Sequência de Aminoácidos , Proteínas de Peixes/genética , Alinhamento de Sequência
7.
Fish Shellfish Immunol ; 153: 109855, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39181523

RESUMO

Singapore grouper iridovirus (SGIV) always causes high transmission efficiency and mortality in the larval and juvenile stages of grouper in aquaculture industry. Although inactivated virus and recombinant DNA vaccines administered via intraperitoneal injection have shown efficacy in protection against SGIV, their potential applications in field testing were limited due to the vaccine delivery methods. Here, we developed an immersion vaccine containing inactivated virus and Montanide IMS 1312 adjuvant (IMS 1312) and evaluated its protective efficacy against SGIV infection. Compared to the PBS group, fish vaccinated with immersion inactivated vaccine with or without IMS 1312 were significantly protected against SGIV, with a relative percent survival (RPS) of 57.69 % and 38.47 %, respectively. Furthermore, the transcripts of viral core genes were reduced, and the histopathological severity caused by SGIV were relatively mild in multiple tissues of the IMS + V group. The immersion vaccine activated the AKP and ACP activities and increased the mRNA levels of IFN and inflammation-associated genes. The transcriptome analysis showed that a total of 731 and 492 genes were significantly regulated in the spleen and kidney from the IMS + V group compared to the PBS group, respectively. Among them, 129 DEGs were co-regulated, and enriched in the KEGG pathways related to immune and cell proliferation, including MAPK signaling, JAK-STAT signaling and PI3K-Akt signaling pathways. Similarly, the DEGs specially regulated in the kidney and spleen upon vaccine immunization were significantly enriched in the KEGG pathways related to interferon and inflammation response. Together, our results elucidated that the immersion vaccine of inactivated SGIV with IMS 1312 induced a protective immune response of grouper against SGIV.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Vacinas de Produtos Inativados , Vacinas Virais , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/virologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/prevenção & controle , Ranavirus/fisiologia , Ranavirus/imunologia , Bass/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Imunidade Inata , Imersão
8.
Fish Shellfish Immunol ; 152: 109774, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019127

RESUMO

Singapore grouper iridovirus (SGIV) belongs to the family Iridoviridae and the genus Ranavirus, which is a large cytoplasmic DNA virus. Infection of grouper with SGIV can cause hemorrhage and swelling of the spleen of the fish. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. In the present study, the protein encoded by SGIV ORF128 (VP128) was identified. VP128 is predominantly localized within the endoplasmic reticulum (ER). Overexpression of VP128 significantly promoted SGIV replication. VP128 inhibited the interferon (IFN)-3 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), and TANK-binding kinase 1 (EcTBK1). Moreover, VP128 interacted with EcSTING and EcTBK1. The interaction between VP128 and EcSTING was independent of any specific structural domain of EcSTING. Together, our results demonstrated that SGIV VP128 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Ranavirus , Transdução de Sinais , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Ranavirus/fisiologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Transdução de Sinais/imunologia , Imunidade Inata/genética , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Evasão da Resposta Imune , Bass/imunologia , Regulação da Expressão Gênica/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos
9.
Fish Shellfish Immunol ; 152: 109784, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067495

RESUMO

Exocyst, a protein complex, plays a crucial role in various cellular functions, including cell polarization, migration, invasion, cytokinesis, and autophagy. Sec3, known as Exoc1, is a key subunit of the Exocyst complex and can be involved in cell survival and apoptosis. In this study, two subtypes of Sec3 were isolated from Epinephelus coioides, an important marine fish in China. The role of E. coioides Sec3 was explored during Singapore grouper iridovirus (SGIV) infection, an important pathogen of marine fish which could induce 90 % mortality. E. coioides Sec3 sequences showed a high similarity with that from other species, indicating the presence of a conserved Sec3 superfamily domain. E. coioides Sec3 mRNA could be detected in all examined tissues, albeit at varying expression levels. SGIV infection could upregulate E. coioides Sec3 mRNA. Upregulated Sec3 significantly promoted SGIV-induced CPE, and the expressions of viral key genes. E. coioides Sec3 could inhibit the activation of NF-κB and AP-1, as well as SGIV-induced cell apoptosis. The results illustrated that E. coioides Sec3 promotes SGIV infection by regulating the innate immune response.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Filogenia , Ranavirus , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Imunidade Inata/genética , Bass/imunologia , Ranavirus/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos , Perfilação da Expressão Gênica/veterinária
10.
Fish Shellfish Immunol ; 145: 109313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128678

RESUMO

The dual-specificity phosphatase (DUSP) family plays key roles in the maintenance of cellular homeostasis and apoptosis etc. In this study, the DUSP member DUSP1 of Epinephelus coioides was characterized: the length was 2371 bp including 281 bp 5' UTR, 911 bp 3' UTR, and a 1125 bp open reading frame encoding 374 amino acids. E. coioides DUSP1 has two conserved domains, a ROHD and DSPc along with a p38 MAPK phosphorylation site, localized at Ser308. E. coioides DUSP1 mRNA can be detected in all of the tissues examined, and the subcellular localization showed that DUSP1 was mainly distributed in the nucleus. Singapore grouper iridovirus (SGIV) infection could induce the differential expression of E. coioides DUSP1. Overexpression of DUSP1 could inhibit SGIV-induced cytopathic effect (CPE), the expressions of SGIV key genes, and the viral titers. Overexpression of DUSP1 could also regulate SGIV-induced apoptosis, and the expression of apoptosis-related factor caspase 3. The results would be helpful to further study the role of DUSP1 in viral infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Bass/genética , Iridovirus/fisiologia , Singapura , Clonagem Molecular , Apoptose , Fosfatases de Especificidade Dupla/genética , Proteínas de Peixes/genética , Filogenia
11.
Fish Shellfish Immunol ; 150: 109611, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734119

RESUMO

During virus-host co-evolution, viruses have developed multiple strategies to dampen IFN response and prevent its antiviral activity in host cells. To date, the interactions between host IFN response and the immune evasion strategies exploited by fish iridoviruses still remain largely uncertain. Here, a potential immune evasion protein candidate of Singapore grouper iridovirus (SGIV), VP82 (encoded by SGIV ORF82) was screened and its roles during viral replication were investigated in detail. Firstly, VP82 overexpression dramatically decreased IFN or ISRE promoter activity and the transcription levels of IFN stimulated genes (ISGs) stimulated by grouper cyclic GMP-AMP synthase (EccGAS)/stimulator of interferon genes (EcSTING), TANK-binding kinase 1 (EcTBK1), IFN regulatory factor 3 (EcIRF3)and EcIRF7. Secondly, Co-IP assays indicated that VP82 interacted with EcIRF3 and EcIRF7, but not EcSTING and EcTBK1, which was consistent with the co-localization between VP82 and EcIRF3 or EcIRF7. Furthermore, VP82 promoted the degradation of EcIRF3 and EcIRF7 in a dose-dependent manner via the autophagy pathway. Finally, VP82 overexpression accelerated SGIV replication, evidenced by the increased transcriptions of viral core genes and viral production. Moreover, the antiviral action of EcIRF3 or EcIRF7 was significantly depressed in VP82 overexpressed cells. Together, VP82 was speculated to exert crucial roles for SGIV replication by inhibiting the IFN response via the degradation of IRF3 and IRF7. Our findings provided new insights into understanding the immune evasion strategies utilized by fish iridovirus through IFN regulation.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Fator Regulador 3 de Interferon , Fator Regulador 7 de Interferon , Ranavirus , Proteínas Virais , Animais , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Ranavirus/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Imunidade Inata/genética , Interferons/genética , Interferons/imunologia , Interferons/metabolismo , Evasão da Resposta Imune , Bass/imunologia , Bass/genética , Replicação Viral , Proteínas de Peixe-Zebra , Fatores Reguladores de Interferon
12.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570120

RESUMO

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Assuntos
Bass , Infecções por Vírus de DNA , Elongases de Ácidos Graxos , Doenças dos Peixes , Proteínas de Peixes , Metabolismo dos Lipídeos , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Bass/imunologia , Bass/genética , Elongases de Ácidos Graxos/genética , Nodaviridae/fisiologia , Regulação da Expressão Gênica , Acetiltransferases/genética , Acetiltransferases/metabolismo , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Perfilação da Expressão Gênica/veterinária , Iridoviridae/fisiologia , Iridovirus/fisiologia , Filogenia , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos , Reprogramação Metabólica
13.
J Virol ; 96(20): e0068222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190239

RESUMO

Iridoviruses are large DNA viruses which cause great economic losses to the aquaculture industry and serious threats to ecological diversity worldwide. Singapore grouper iridovirus (SGIV), a novel member of the genus Ranavirus, causes high mortality in grouper aquaculture. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. Here, we reported that the protein encoded by SGIV ORF131R (VP131) was localized predominantly within the endoplasmic reticulum (ER). Ectopic expression of GFP-VP131 significantly enhanced SGIV replication, while VP131 knockdown decreased viral infection in vitro, suggesting that VP131 functioned as a proviral factor during SGIV infection. Overexpression of GFP-VP131 inhibited the interferon (IFN)-1 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), TANK-binding kinase 1 (EcTBK1), or melanoma differentiation-associated gene 5 (EcMDA5), whereas such activation induced by mitochondrial antiviral signaling protein (EcMAVS) was not affected. Moreover, VP131 interacted with EcSTING and degraded EcSTING through both the autophagy-lysosome pathway and ubiquitin-proteasome pathway, and targeted for the K63-linked ubiquitination. Of note, we also found that EcSTING significantly accelerated the formation of GFP-VP131 aggregates in co-transfected cells. Finally, GFP-VP131 inhibited EcSTING- or EcTBK1-induced antiviral activity upon red-spotted grouper nervous necrosis virus (RGNNV) infection. Together, our results demonstrated that the SGIV VP131 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion. IMPORTANCE STING has been identified as a critical factor participating in the innate immune response which recruits and phosphorylates TBK1 and IFN regulatory factor 3 (IRF3) to induce IFN production and defend against viral infection. However, viruses also distort the STING-TBK1 pathway to negatively regulate the IFN response and facilitate viral replication. Here, we reported that SGIV VP131 interacted with EcSTING within the ER and degraded EcSTING, leading to the suppression of IFN production and the promotion of SGIV infection. These results for the first time demonstrated that fish iridovirus evaded the host antiviral response via abrogating the STING-TBK1 signaling pathway.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Antivirais , Bass/genética , Bass/metabolismo , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/genética , Proteínas de Peixes , Imunidade Inata/genética , Fator Regulador 3 de Interferon/metabolismo , Interferons/metabolismo , Iridovirus/genética , Iridovirus/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ranavirus/genética , RNA Mensageiro/genética , Singapura , Ubiquitinas/metabolismo
14.
Fish Shellfish Immunol ; 142: 109168, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844852

RESUMO

As a key regulator of the innate immune system, FoxO1 has a variety of activities in biological organisms. In the present study, grouper FoxO1 (EcFoxO1) was cloned and the antiviral activity in red grouper neuron necrosis virus (RGNNV) and Singapore grouper iridescent virus (SGIV) was examined. The open reading frame (ORF) of EcFoxO1 contains 2,034 base pairs that encode a protein of 677 amino acids with a predicted molecular weight of 73.21 kDa. EcFoxO1 was shown to be broadly distributed in healthy grouper tissues, and was up-regulated in vitro in response to stimulation by RGNNV and SGIV. EcFoxO1 has a whole-cell distribution in grouper spleen (GS) cells. EcFoxO1 decreased the replication of RGNNV and SGIV, and activated interferon (IFN) 3, IFN-stimulated response element (ISRE), and nuclear factor-κB (NF-κB) promoter activities. EcFoxO1 could interact with EcIRF3. Together, the results demonstrated that EcFoxO1 might be an important regulator of grouper innate immune response against RGNNV and SGIV infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Regulação da Expressão Gênica , Proteínas de Peixes/química , Sequência de Aminoácidos , Ranavirus/fisiologia , Imunidade Inata/genética , Antivirais , Neurônios
15.
Fish Shellfish Immunol ; 142: 109113, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788751

RESUMO

Circular RNA (circRNA), one of the important non-coding RNA molecules with a closed-loop structure, plays a key regulatory role in cell processing. In this study, circRNAs of Epinephelus coioides, an important marine cultured fish in China, were isolated and characterized, and the network of circRNAs and mRNA was explored during Singapore grouper iridovirus (SGIV) infection, one of the most important double stranded DNA virus pathogens of marine fish. 10 g of raw data was obtained by high-throughput sequencing, and 2599 circRNAs were classified. During SGIV infection, 123 and 37 circRNAs occurred differential expression in spleen and spleen cells, indicating that circRNAs would be involved in the viral infection. GO annotation and KEGG demonstrated that circRNAs could target E. coioides genes to regulate cell activity and the activation of immune factors. The results provide some insights into the circRNAs mediated immune regulatory network during bony fish virus infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Perciformes , Ranavirus , Animais , Bass/genética , Bass/metabolismo , RNA Circular/genética , RNA Mensageiro/genética , Singapura , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
16.
Fish Shellfish Immunol ; 140: 108990, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558148

RESUMO

Singapore grouper iridovirus (SGIV) is a highly pathogenic Iridoviridae that causes hemorrhage and spleen enlargement in grouper. Despite previous genome annotation efforts, many open reading frames (ORFs) in SGIV remain uncharacterized, with largely unknown functions. In this study, we identified the protein encoded by SGIV ORF122, now referred to as VP122. Notably, overexpression of VP122 promoted SGIV replication. Moreover, VP122 exhibited antagonistic effects on the natural antiviral immune response through the cGAS-STING signaling pathway. It specifically inhibited the cGAS-STING-triggered transcription of various immune-related genes, including IFN1, IFN2, ISG15, ISG56, PKR, and TNF-α in GS cells. Additionally, VP122 significantly inhibited the activation of the ISRE promoter mediated by EccGAS and EcSTING but had no effect on EccGAS or EcSTING alone. Immunoprecipitation and Western blotting experiments revealed that VP122 specifically interacts with EcSTING but not EccGAS. Notably, this interaction between VP122 and EcSTING was independent of any specific domain of EcSTING. Furthermore, VP122 inhibited the self-interaction of EcSTING. Interestingly, VP122 did not affect the recruitment of EcTBK1 and EcIRF3 to the EcSTING complex. Collectively, our results demonstrate that SGIV VP122 targets EcSTING to evade the type I interferon immune response, revealing a crucial role for VP122 in modulating the host-virus interaction.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Interferon Tipo I , Iridovirus , Ranavirus , Animais , Singapura , Proteínas de Peixes/genética , Clonagem Molecular , Ranavirus/fisiologia , Imunidade , Interferon Tipo I/genética
17.
Fish Shellfish Immunol ; 135: 108685, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36921879

RESUMO

Groupers are important mariculture fish in South China and Southeast Asian countries. However, the increasing frequency of infectious disease outbreaks has caused great economic losses in the grouper industry. Among these pathogens, Singapore grouper iridovirus (SGIV) infection causes high mortality in larval and juvenile stages of grouper. However, the mechanism underlying the action of viral manipulation on cellular immune response still remained largely uncertain. Here, using RNA-seq technology, we investigated the regulatory roles of SGIV infection on synthetic RNA duplex poly I:C induced immune response in vitro. Using reporter gene assays, we found that SGIV infection decreased poly I:C induced interferon promoter activation. Transcriptomic analysis showed that the mRNA expression levels of 2238 genes were up-regulated, while 1247 genes were down-regulated in poly I:C transfected grouper spleen (GS) cells. Interestingly, SGIV infection decreased the expression of 1479 up-regulated genes and increased the expression of 297 down-regulated genes in poly I:C transfected cells. The differentially expressed genes (DEGs) down-regulated by SGIV were directly related to immune, inflammation and viral infection, and JUN, STAT1, NFKB1, MAPK14A, TGFB1 and MX were the 6 top hub genes in the down-regulated DEGs' protein-protein interaction (PPI) network. Furthermore, quantitative real-time PCR (qPCR) analysis confirmed that the interferon signaling and inflammatory-related genes, including cGAS, STING, TBK1, MAVS, TNF, IRAK4 and NOD2 were up-regulated by poly I:C stimulation, but all significantly down-regulated after SGIV infection. Thus, we speculated that SGIV infection counteracted poly I:C induced antiviral immune response and this ability helped itself to escape host immune surveillance. Together, our data will contribute greatly to understanding the potential immune evasion mechanism of iridovirus infection in vitro.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Iridovirus/fisiologia , Antivirais , Clonagem Molecular , Singapura , Ranavirus/fisiologia , Poli I-C/farmacologia , Imunidade Inata/genética , Interferons/genética , Proteínas de Peixes
18.
Fish Shellfish Immunol ; 131: 441-453, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36202205

RESUMO

Singapore grouper iridovirus (SGIV) is a highly pathogenic double-stranded DNA virus, and the fatality rate of SGIV-infected grouper is more than 90%. Up to now, there is no effective methods to control the disease. Long non-coding RNAs (lncRNAs) might play an important role in individual growth and development, immune regulation and other life processes. In this study, lncRNAs were identified in Epinephelus coioides, an important economic aquaculture marine fish in China and Southeast Asia, and the regulatory relationships of lncRNAs and mRNA response to SGIV infection were analyzed. A total of 11,678 lncRNAs were identified and classified from the spleen and GS (grouper spleen) cells. 105 differentially expressed lncRNAs (DElncRNAs) were detected during SGIV infection. The lncRNAs and the regulated mRNAs were analyzed using co-expression network, lncRNA target gene annotation and GO enrichment. At 24 and 48 h after SGIV infection, 118 and 339 lncRNA-mRNA pairs in GS cells were detected, and 728 and 688 differentially expressed lncRNA-mRNA pairs in spleen were obtained, respectively. GO and KEGG were used to predict the DE lncRNAs' target genes, and deduce the DE lncRNAs-affected signaling pathways. In GS cells, lncRNAs might participate in cell part, binding and catalytic activity; and lncRNAs might be involved in immune system process and transcription factor activity in spleen. These data demonstrated that lncRNAs could regulate the expression of immune-related genes response to viral infection, and providing a new insight into understanding the complexity of immune regulatory networks mediated by lncRNAs during viral infection in teleost fish.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , RNA Longo não Codificante , Ranavirus , Animais , Bass/genética , Bass/metabolismo , Iridovirus/fisiologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Singapura , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
19.
Fish Shellfish Immunol ; 130: 43-52, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36084885

RESUMO

Cystatin F (CyF), an inhibitor of cysteine protease, was widely studied in immune defense and cancer therapy. However, the function of CyF and its latent molecular mechanism during virus infection in fish remain vacant. In our research, we cloned the open reading frame (ORF) of CyF homology from orange-spotted grouper (Ec-CyF) consisting of 342 nucleotides and encoding a 114-amino acid protein. Ec-CyF included two cystatins family sequences containing one KXVXG sequence without the signal peptide, and a hairpin ring containing proline and tryptophan (PW). Tissue distribution analysis indicated that Ec-CyF was highly expressed in spleen and head kidney. Besides, further analysis showed that the expression of Ec-CyF increased during SGIV infection in grouper spleen (GS) cells. Subcellular localization assay demonstrated that Ec-CyF was mainly distributed in cytoplasm in GS cells. Overexpressed Ec-CyF demoted the mRNA level of viral genes MCP, VP19 and LITAF. Meanwhile, SGIV-induced apoptosis in fat head minnow (FHM) cells was impeded, as well as the restraint of caspase 3/7 and caspase 8. In addition, Ec-CyF overexpression up-regulated the expression of IFN related molecules including ISG15, IFN, IFP35, IRF3, IRF7, MYD88 and down-regulated proinflammatory factors such as IL-1ß, IL-8 and TNF-α. At the same time, Ec-CyF-overexpressing increased the activity of IFN3 and ISRE promoter, but impeded NF-κB promoter activity by luciferase reporter gene assay. In summary, our findings suggested that Ec-CyF was involved in innate immunity response and played a key role in DNA virus infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Sequência de Aminoácidos , Animais , Caspase 3/genética , Caspase 8/genética , Proteínas de Peixes/química , Imunidade Inata/genética , Interleucina-8/genética , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Nucleotídeos/metabolismo , Filogenia , Prolina/genética , Prolina/metabolismo , Sinais Direcionadores de Proteínas/genética , RNA Mensageiro/metabolismo , Triptofano/metabolismo , Fator de Necrose Tumoral alfa/genética
20.
Fish Shellfish Immunol ; 124: 462-471, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35483595

RESUMO

Exocyst complex component 3 Sec6 of mammals, one of the components of the exocyst complex, participates in numerous cellular functions, such as promoting cell migration and inhibiting apoptosis. In this study, the Sec6 was obtained from Epinephelus coioides, an economically important cultured fish. The full length of E. coioides Sec6 was 2655 bp including a 245 bp 5' UTR, a 154 bp 3' UTR, and a 2256 bp open reading frame (ORF) encoding 751 amino acids, with a molecular mass of 86.76 kDa and a theoretical pI of 5.57. Sec6 mRNA was detected in all the tissues examined, but the expression level is different in these tissues. Using fluorescence microscopy, Sec6 were distributed in both the nucleus and the cytoplasm. After SGIV infection, the expression of E. coioides Sec6 was significantly up-regulated in both trunk kidney and spleen response to Singapore grouper iridovirus (SGIV), an important pathogens of E. coioides. Sec6 could increase the SGIV-induced cytopathic effects (CPE), the expression of the SGIV genes VP19, LITAF, MCP, ICP18 and MCP, and the viral titers. Besides, E. coioides Sec6 significantly downregulated the promoter of NF-κB and AP-1, and inhibited the SGIV-induced apoptosis. The results demonstrated that E. coioides Sec6 might play important roles in SGIV infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Bass/genética , Bass/metabolismo , Clonagem Molecular , Infecções por Vírus de DNA/veterinária , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa