Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.777
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 179(2): 543-560.e26, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585087

RESUMO

Tyrosine phosphorylation regulates multi-layered signaling networks with broad implications in (patho)physiology, but high-throughput methods for functional annotation of phosphotyrosine sites are lacking. To decipher phosphotyrosine signaling directly in tissue samples, we developed a mass-spectrometry-based interaction proteomics approach. We measured the in vivo EGF-dependent signaling network in lung tissue quantifying >1,000 phosphotyrosine sites. To assign function to all EGF-regulated sites, we determined their recruited protein signaling complexes in lung tissue by interaction proteomics. We demonstrated how mutations near tyrosine residues introduce molecular switches that rewire cancer signaling networks, and we revealed oncogenic properties of such a lung cancer EGFR mutant. To demonstrate the scalability of the approach, we performed >1,000 phosphopeptide pulldowns and analyzed them by rapid mass spectrometric analysis, revealing tissue-specific differences in interactors. Our approach is a general strategy for functional annotation of phosphorylation sites in tissues, enabling in-depth mechanistic insights into oncogenic rewiring of signaling networks.


Assuntos
Carcinogênese/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfotirosina/metabolismo , Células A549 , Animais , Humanos , Espectrometria de Massas/métodos , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Proteômica , Ratos , Ratos Sprague-Dawley , Peixe-Zebra
2.
Mol Cell ; 83(24): 4479-4493.e6, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38096826

RESUMO

4.5SH RNA is a highly abundant, small rodent-specific noncoding RNA that localizes to nuclear speckles enriched in pre-mRNA-splicing regulators. To investigate the physiological functions of 4.5SH RNA, we have created mutant mice that lack the expression of 4.5SH RNA. The mutant mice exhibited embryonic lethality, suggesting that 4.5SH RNA is an essential species-specific noncoding RNA in mice. RNA-sequencing analyses revealed that 4.5SH RNA protects the transcriptome from abnormal exonizations of the antisense insertions of the retrotransposon SINE B1 (asB1), which would otherwise introduce deleterious premature stop codons or frameshift mutations. Mechanistically, 4.5SH RNA base pairs with complementary asB1-containing exons via the target recognition region and recruits effector proteins including Hnrnpm via its 5' stem loop region. The modular organization of 4.5SH RNA allows us to engineer a programmable splicing regulator to induce the skipping of target exons of interest. Our results also suggest the general existence of splicing regulatory noncoding RNAs.


Assuntos
Splicing de RNA , Pequeno RNA não Traduzido , Camundongos , Animais , Splicing de RNA/genética , Éxons/genética , Retroelementos/genética , Códon sem Sentido , Processamento Alternativo
3.
Proc Natl Acad Sci U S A ; 121(30): e2407159121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39012820

RESUMO

Mutations in the tyrosine phosphatase Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting autoinhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8 to 10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine-binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.


Assuntos
Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Domínios de Homologia de src , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Humanos , Domínios de Homologia de src/genética , Ligação Proteica , Mutação , Fosforilação , Sítios de Ligação/genética , Fosfotirosina/metabolismo , Ligantes
4.
Trends Biochem Sci ; 47(9): 772-784, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35562294

RESUMO

The assembly of complexes following the detection of extracellular signals is often controlled by signaling proteins comprising multiple peptide binding modules. The SRC homology (SH)3 family represents the archetypical modular protein interaction module, with ~300 annotated SH3 domains in humans that regulate an impressive array of signaling processes. We review recent findings regarding the allosteric contributions of SH3 domains host protein context, their phosphoregulation, and their roles in phase separation that challenge the simple model in which SH3s are considered to be portable domains binding to specific proline-rich peptide motifs.


Assuntos
Proteínas , Domínios de Homologia de src , Sítios de Ligação , Humanos , Peptídeos/metabolismo , Ligação Proteica , Proteínas/metabolismo
5.
J Cell Sci ; 137(8)2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38506228

RESUMO

Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development through controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scission machinery in plants, but the precise roles of these proteins in this process are not fully understood. Here, we characterised the roles of the plant dynamin-related protein 2 (DRP2) family (hereafter DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to recruiters of dynamins, such as endophilin and amphiphysin, in CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the sh3p123 triple mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggest that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that, despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dinaminas , Endocitose , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clatrina/metabolismo , Clatrina/genética , Dinaminas/metabolismo , Dinaminas/genética , Endocitose/genética , Proteínas de Ligação ao GTP , Mutação/genética
6.
J Cell Sci ; 137(11)2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38864427

RESUMO

Endocannabinoid signalling mediated by cannabinoid receptor 1 (CB1R, also known as CNR1) is critical for homeostatic neuromodulation of both excitatory and inhibitory synapses. This requires highly polarised axonal surface expression of CB1R, but how this is achieved remains unclear. We previously reported that the α-helical H9 domain in the intracellular C terminus of CB1R contributes to axonal surface expression by an unknown mechanism. Here, we show in rat primary neuronal cultures that the H9 domain binds to the endocytic adaptor protein SGIP1 to promote CB1R expression in the axonal membrane. Overexpression of SGIP1 increases CB1R axonal surface localisation but has no effect on CB1R lacking the H9 domain (CB1RΔH9). Conversely, SGIP1 knockdown reduces axonal surface expression of CB1R but does not affect CB1RΔH9. Furthermore, SGIP1 knockdown diminishes CB1R-mediated inhibition of presynaptic Ca2+ influx in response to neuronal activity. Taken together, these data advance mechanistic understanding of endocannabinoid signalling by demonstrating that SGIP1 interaction with the H9 domain underpins axonal CB1R surface expression to regulate presynaptic responsiveness.


Assuntos
Axônios , Ligação Proteica , Receptor CB1 de Canabinoide , Animais , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Axônios/metabolismo , Ratos , Domínios Proteicos , Humanos , Células Cultivadas , Neurônios/metabolismo , Ratos Sprague-Dawley , Membrana Celular/metabolismo
7.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38471782

RESUMO

Cytoplasmic protein tyrosine phosphatase nonreceptor type 11 (PTPN11) and Drosophila homolog Corkscrew (Csw) regulate the mitogen-activated protein kinase (MAPK) pathway via a conserved autoinhibitory mechanism. Disease-causing loss-of-function (LoF) and gain-of-function (GoF) mutations both disrupt this autoinhibition to potentiate MAPK signaling. At the Drosophila neuromuscular junction glutamatergic synapse, LoF/GoF mutations elevate transmission strength and reduce activity-dependent synaptic depression. In both sexes of LoF/GoF mutations, the synaptic vesicles (SV)-colocalized synapsin phosphoprotein tether is highly elevated at rest, but quickly reduced with stimulation, suggesting a larger SV reserve pool with greatly heightened activity-dependent recruitment. Transmission electron microscopy of mutants reveals an elevated number of SVs clustered at the presynaptic active zones, suggesting that the increased vesicle availability is causative for the elevated neurotransmission. Direct neuron-targeted extracellular signal-regulated kinase (ERK) GoF phenocopies both increased local presynaptic MAPK/ERK signaling and synaptic transmission strength in mutants, confirming the presynaptic regulatory mechanism. Synapsin loss blocks this elevation in both presynaptic PTPN11 and ERK mutants. However, csw null mutants cannot be rescued by wild-type Csw in neurons: neurotransmission is only rescued by expressing Csw in both neurons and glia simultaneously. Nevertheless, targeted LoF/GoF mutations in either neurons or glia alone recapitulate the elevated neurotransmission. Thus, PTPN11/Csw mutations in either cell type are sufficient to upregulate presynaptic function, but a dual requirement in neurons and glia is necessary for neurotransmission. Taken together, we conclude that PTPN11/Csw acts in both neurons and glia, with LoF and GoF similarly upregulating MAPK/ERK signaling to enhance presynaptic Synapsin-mediated SV trafficking.


Assuntos
Proteínas de Drosophila , Sistema de Sinalização das MAP Quinases , Neuroglia , Neurônios , Terminações Pré-Sinápticas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Sinapsinas , Transmissão Sináptica , Vesículas Sinápticas , Animais , Feminino , Masculino , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Mutação , Neuroglia/metabolismo , Neuroglia/fisiologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
8.
J Biol Chem ; : 107928, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39454956

RESUMO

The production of human body odour is the result of the action of commensal skin bacteria, including Staphylococcus hominis, acting to biotransform odourless apocrine gland secretions into volatile chemicals like thioalcohols such as 3-methyl-3-sulphanylhexan-1-ol (3M3SH). As the secreted odour precursor Cys-Gly-3M3SH contains a dipeptide, yet the final enzyme in the biotransformation pathway only functions on Cys-3M3SH, we sought to identify the remaining step in this human-adapted biochemical pathway using a novel coupled enzyme assay. Purification of this activity from S. hominis extracts led to the identification of the M20A-family PepV peptidase (ShPepV) as the primary Cys-Gly-3M3SH dipeptidase. To establish whether this was a primary substrate for PepV, the recombinant protein was purified and demonstrated broad activity against diverse dipeptides. The binding site for Cys-Gly-3M3SH was predicted using modelling, which suggested mutations that might accommodate this ligand more favourably. Indeed, a D437A resulted in an almost 6-fold increase in the kcat/KM, while other introduced mutations reduced or abolished function. Together these data identify an enzyme capable of catalysing the missing step in an ancient human-specific biochemical transformation and suggest that the production of 3M3SH neither uses a dedicated transporter nor peptidase for its breakdown, with only the final cleavage step, catalysed by PatB C-S ß-lyase, being a unique enzyme.

9.
J Biol Chem ; 300(10): 107762, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39265663

RESUMO

ASAP1 and its paralog ASAP2 belong to a PI4,5P2-dependent Arf GTPase-activating protein (Arf-GAP) family capable of modulating membrane and cytoskeletal dynamics. ASAPs regulate cell adhesive structures such as invadosomes and focal adhesions during cell attachment and migration. Malfunctioning of ASAP1 has been implicated in the malignant phenotypes of various cancers. Here, we discovered that the SH3 domain of ASAP1 or ASAP2 specifically binds to a 12-residue, positively charged peptide fragment from the 440 kDa giant ankyrin-B, a neuronal axon specific scaffold protein. The high-resolution structure of the ASAP1-SH3 domain in complex with the gAnkB peptide revealed a noncanonical SH3-ligand binding mode with high affinity and specificity. Structural analysis of the complex readily uncovered a consensus ASAP1-SH3 binding motif, which allowed the discovery of a number of previously unknown binding partners of ASAP1-SH3 including Clasp1/Clasp2, ALS2, ß-Pix, DAPK3, PHIP, and Limk1. Fittingly, these newly identified ASAP1 binding partners are primarily key modulators of the cytoskeletons. Finally, we designed a cell-penetrating, highly potent ASAP1 SH3 domain binding peptide with a Kd ∼7 nM as a tool for studying the roles of ASAPs in different cellular processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Anquirinas , Proteínas Ativadoras de GTPase , Ligação Proteica , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Anquirinas/metabolismo , Anquirinas/química , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Domínios de Homologia de src , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/química , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas do Tecido Nervoso
10.
J Biol Chem ; 300(6): 107390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777146

RESUMO

SARS-CoV-2 entry into host cells is facilitated by the interaction between the receptor-binding domain of its spike protein (CoV2-RBD) and host cell receptor, ACE2, promoting viral membrane fusion. The virus also uses endocytic pathways for entry, but the mediating host factors remain largely unknown. It is also unknown whether mutations in the RBD of SARS-CoV-2 variants promote interactions with additional host factors to promote viral entry. Here, we used the GST pull-down approach to identify novel surface-located host factors that bind to CoV2-RBD. One of these factors, SH3BP4, regulates internalization of CoV2-RBD in an ACE2-independent but integrin- and clathrin-dependent manner and mediates SARS-CoV-2 pseudovirus entry, suggesting that SH3BP4 promotes viral entry via the endocytic route. Many of the identified factors, including SH3BP4, ADAM9, and TMEM2, show stronger affinity to CoV2-RBD than to RBD of the less infective SARS-CoV, suggesting SARS-CoV-2-specific utilization. We also found factors preferentially binding to the RBD of the SARS-CoV-2 Delta variant, potentially enhancing its entry. These data identify the repertoire of host cell surface factors that function in the events leading to the entry of SARS-CoV-2.


Assuntos
Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Domínios Proteicos , Células HEK293 , COVID-19/metabolismo , COVID-19/virologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Interações Hospedeiro-Patógeno
11.
Plant J ; 119(2): 720-734, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713838

RESUMO

The RNA regulatory network is a complex and dynamic regulation in plant cells involved in mRNA modification, translation, and degradation. Ras-GAP SH3 domain-binding protein (G3BP) is a scaffold protein for the assembly of stress granules (SGs) and is considered an antiviral component in mammals. However, the function of G3BP during virus infection in plants is still largely unknown. In this study, four members of the G3BP-like proteins (NtG3BPLs) were identified in Nicotiana tabacum and the expression levels of NtG3BPL1 were upregulated during chilli veinal mottle virus (ChiVMV) infection. NtG3BPL1 was localized in the nucleus and cytoplasm, forming cytoplasmic granules under transient high-temperature treatment, whereas the abundance of cytoplasmic granules was decreased under ChiVMV infection. Overexpression of NtG3BPL1 inhibited ChiVMV infection and delayed the onset of symptoms, whereas knockout of NtG3BPL1 promoted ChiVMV infection. In addition, NtG3BPL1 directly interacted with ChiVMV 6K2 protein, whereas 6K2 protein had no effect on NtG3BPL1-derived cytoplasmic granules. Further studies revealed that the expression of NtG3BPL1 reduced the chloroplast localization of 6K2-GFP and the NtG3BPL1-6K2 interaction complex was localized in the cytoplasm. Furthermore, NtG3BPL1 promoted the degradation of 6K2 through autophagy pathway, and the accumulation of 6K2 and ChiVMV was affected by autophagy activation or inhibition in plants. Taken together, our results demonstrate that NtG3BPL1 plays a positive role in tobacco resistance against ChiVMV infection, revealing a novel mechanism of plant G3BP in antiviral strategy.


Assuntos
Nicotiana , Doenças das Plantas , Proteínas de Plantas , Nicotiana/virologia , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Potyvirus/fisiologia
12.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38142434

RESUMO

Tree tests like the Kishino-Hasegawa (KH) test and chi-square test suffer a selection bias that tests like the Shimodaira-Hasegawa (SH) test and approximately unbiased test were intended to correct. We investigate tree-testing performance in the presence of severe selection bias. The SH test is found to be very conservative and, surprisingly, its uncorrected analog, the KH test has low Type I error even in the presence of extreme selection bias, leading to a recommendation that the SH test be abandoned. A chi-square test is found to usually behave well and but to require correction in extreme cases. We show how topology testing procedures can be used to get support values for splits and compare the likelihood-based support values to the approximate likelihood ratio test (aLRT) support values. We find that the aLRT support values are reasonable even in settings with severe selection bias that they were not designed for. We also show how they can be used to construct tests of topologies and, in doing so, point out a multiple comparisons issue that should be considered when looking at support values for splits.


Assuntos
Funções Verossimilhança , Filogenia , Viés de Seleção
13.
Genes Cells ; 29(9): 746-756, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964745

RESUMO

An autism-associated gene Shank3 encodes multiple splicing isoforms, Shank3a-f. We have recently reported that Shank3a/b-knockout mice were more susceptible to kainic acid-induced seizures than wild-type mice at 4 weeks of age. Little is known, however, about how the N-terminal and ankyrin repeat domains (NT-Ank) of Shank3a/b regulate multiple molecular signals in the developing brain. To explore the functional roles of Shank3a/b, we performed a mass spectrometry-based proteomic search for proteins interacting with GFP-tagged NT-Ank. In this study, NT-Ank was predicted to form a variety of complexes with a total of 348 proteins, in which RNA-binding (n = 102), spliceosome (n = 22), and ribosome-associated molecules (n = 9) were significantly enriched. Among them, an X-linked intellectual disability-associated protein, Nono, was identified as a NT-Ank-binding protein. Coimmunoprecipitation assays validated the interaction of Shank3 with Nono in the mouse brain. In agreement with these data, the thalamus of Shank3a/b-knockout mice aberrantly expressed splicing isoforms of autism-associated genes, Nrxn1 and Eif4G1, before and after seizures with kainic acid treatment. These data indicate that Shank3 interacts with multiple RNA-binding proteins in the postnatal brain, thereby regulating the homeostatic expression of splicing isoforms for autism-associated genes after birth.


Assuntos
Camundongos Knockout , Proteínas do Tecido Nervoso , Proteínas de Ligação a RNA , Animais , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Repetição de Anquirina , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Splicing de RNA , Encéfalo/metabolismo , Convulsões/metabolismo , Convulsões/genética , Convulsões/induzido quimicamente , Humanos , Ligação Proteica , Camundongos Endogâmicos C57BL
14.
Mol Cell ; 67(3): 498-511.e6, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28735895

RESUMO

The Src Family kinase Lck sets a critical threshold for T cell activation because it phosphorylates the TCR complex and the Zap70 kinase. How a T cell controls the abundance of active Lck molecules remains poorly understood. We have identified an unappreciated role for a phosphosite, Y192, within the Lck SH2 domain that profoundly affects the amount of active Lck in cells. Notably, mutation of Y192 blocks critical TCR-proximal signaling events and impairs thymocyte development in retrogenic mice. We determined that these defects are caused by hyperphosphorylation of the inhibitory C-terminal tail of Lck. Our findings reveal that modification of Y192 inhibits the ability of CD45 to associate with Lck in cells and dephosphorylate the C-terminal tail of Lck, which prevents its adoption of an active open conformation. These results suggest a negative feedback loop that responds to signaling events that tune active Lck amounts and TCR sensitivity.


Assuntos
Antígenos Comuns de Leucócito/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Timócitos/enzimologia , Domínios de Homologia de src , Animais , Ativação Enzimática , Genótipo , Células HEK293 , Humanos , Células Jurkat , Antígenos Comuns de Leucócito/química , Antígenos Comuns de Leucócito/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/deficiência , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Mutação , Fenótipo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Timócitos/imunologia , Fatores de Tempo , Transfecção
15.
Biochem J ; 481(20): 1411-1435, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39392452

RESUMO

Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Oncogênicas , Domínios de Homologia de src , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Animais , Processamento de Proteína Pós-Traducional , Ligação Proteica
16.
Traffic ; 23(7): 391-410, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35604355

RESUMO

Alpha-synuclein (α-Syn), an intrinsically disordered protein (IDP), is associated with neurodegenerative disorders, including Parkinson's disease (PD or other α-synucleinopathies. Recent investigations propose the transmission of α-Syn protein fibrils, in a prion-like manner, by entering proximal cells to seed further fibrillization in PD. Despite the recent advances, the mechanisms by which extracellular protein aggregates internalize into the cells remain poorly understood. Using a simple cell-based model of human neuroblastoma-derived differentiated neurons, we present the cellular internalization of α-Syn PFF to check cellular uptake and recycling kinetics along with the standard endocytic markers Transferrin (Tf) marking clathrin-mediated endocytosis (CME) and Galectin3 (Gal3) marking clathrin-independent endocytosis (CIE). Specific inhibition of endocytic pathways using chemical inhibitors reveals no significant involvement of CME, CIE and caveolae-mediated endocytosis (CvME). A substantial reduction in cellular uptake was observed after perturbation of actin polymerization and treatment with macropinosomes inhibitor. Our results show that α-Syn PFF mainly internalizes into the SH-SY5Y cells and differentiated neurons via the macropinocytosis pathway. The elucidation of the molecular and cellular mechanism involved in the α-Syn PFF internalization will help improve the understanding of α-synucleinopathies including PD, and further design specific inhibitors for the same.


Assuntos
Neuroblastoma , Sinucleinopatias , alfa-Sinucleína/metabolismo , Actinas , Clatrina/metabolismo , Humanos , Neurônios/metabolismo , alfa-Sinucleína/química
17.
J Cell Mol Med ; 28(9): e18338, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683122

RESUMO

Respiratory syncytial virus (RSV) infects neuronal cells in the central nervous system (CNS), resulting in neurological symptoms. In the present study, we intended to explore the mechanism of RSV infection-induced neuroinflammatory injury from the perspective of the immune response and sought to identify effective protective measures against the injury. The findings showed that toll-like receptor 4 (TLR4) was activated after RSV infection in human neuronal SY5Y cells. Furthermore, TLR4 activation induced autophagy and apoptosis in neuronal cells, promoted the formation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, and increased the secretion of downstream inflammatory cytokines such as interleukin-1ß (IL-1ß), interleukin-18 (IL-18) and tumour necrosis factor-α (TNF-α). Interestingly, blockade of TLR4 or treatment with exogenous melatonin significantly suppressed TLR4 activation as well as TLR4-mediated apoptosis, autophagy and immune responses. Therefore, we infer that melatonin may act on the TLR4 to ameliorate RSV-induced neuronal injury, which provides a new therapeutic target for RSV infection.


Assuntos
Apoptose , Autofagia , Inflamassomos , Melatonina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções por Vírus Respiratório Sincicial , Receptor 4 Toll-Like , Humanos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sistema Nervoso Central/virologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Melatonina/farmacologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/virologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/fisiologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
18.
Curr Issues Mol Biol ; 46(1): 788-807, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248353

RESUMO

Glutamate (Glu) toxicity has been an important research topic in toxicology and neuroscience studies. In vitro and in vivo studies have shown that Group II metabotropic Glu2 (mGlu2) activators have cell viability effects. This study aims to determine a candidate ligand with high mGlu2 allosteric region activity among cytotoxicity-safe molecules using the in silico positioning method and to evaluate its cell viability effect in vitro. We investigated the candidate molecule's cell viability effect on the SH-SY5Y human neuroblastoma cell line by MTT analysis. In the study, LY 379268 (agonist) and JNJ-46281222 (positive allosteric modulator; PAM) were used as control reference molecules. Drug bank screening yielded THRX-195518 (docking score being -12.4 kcal/mol) as a potential novel drug candidate that has a high docking score and has not been mentioned in the literature so far. The orthosteric agonist LY 379268 exhibited a robust protective effect in our study. Additionally, our findings demonstrate that JNJ-46281222 and THRX-195518, identified as activating the mGlu2 allosteric region through in silico methods, preserve cell viability against Glu toxicity. Therefore, our study not only emphasizes the positive effects of this compound on cell viability against Glu toxicity but also sheds light on the potential of THRX-195518, acting as a mGlu2 PAM, based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) data, as a candidate drug molecule. These findings underscore the potential utility of THRX-195518 against both neurotoxicity and Central Nervous System (CNS) disorders, providing valuable insights.

19.
J Clin Immunol ; 44(4): 103, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642164

RESUMO

Epstein-Barr virus (EBV) infection can lead to infectious mononucleosis (EBV-IM) and, more rarely, EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), which is characterized by a life-threatening hyperinflammatory cytokine storm with immune dysregulation. Interferon-gamma (IFNγ) has been identified as a critical mediator for primary HLH; however, the detailed role of IFNγ and other cytokines in EBV-HLH is not fully understood. In this study, we used single-cell RNA sequencing to characterize the immune landscape of EBV-HLH and compared it with EBV-IM. Three pediatric patients with EBV-HLH with different backgrounds, one with X-linked lymphoproliferative syndrome type 1 (XLP1), two with chronic active EBV disease (CAEBV), and two patients with EBV-IM were enrolled. The TUBA1B + STMN1 + CD8 + T cell cluster, a responsive proliferating cluster with rich mRNA detection, was explicitly observed in EBV-IM, and the upregulation of SH2D1A-the gene responsible for XLP1-was localized in this cluster. This proliferative cluster was scarcely observed in EBV-HLH cases. In EBV-HLH cases with CAEBV, upregulation of LAG3 was observed in EBV-infected cells, which may be associated with an impaired response by CD8 + T cells. Additionally, genes involved in type I interferon (IFN) signaling were commonly upregulated in each cell fraction of EBV-HLH, and activation of type II IFN signaling was observed in CD4 + T cells, natural killer cells, and monocytes but not in CD8 + T cells in EBV-HLH. In conclusion, impaired responsive proliferation of CD8 + T cells and upregulation of type I IFN signaling were commonly observed in EBV-HLH cases, regardless of the patients' background, indicating the key features of EBV-HLH.


Assuntos
Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Transtornos Linfoproliferativos , Humanos , Criança , Herpesvirus Humano 4 , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Linfócitos T CD8-Positivos , Interferon gama/genética , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/complicações , Perfilação da Expressão Gênica
20.
Cell Physiol Biochem ; 58(4): 431-444, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215550

RESUMO

BACKGROUND/AIMS: Over the years, the number of patients with neurodegenerative diseases is constantly rising illustrating the need for new neuroprotective drugs. A promising treatment approach is the reduction of excitotoxicity induced by rising (S)-glutamate levels and subsequent NMDA receptor overactivation. To facilitate the search for new NMDA receptor inhibitors neuronal cell models are needed. In this study, we evaluated the suitability of human SK-N-SH cells to serve as a cell model for neurodegeneration induced by NMDA receptor overstimulation. METHODS: The cytoprotective effect of the unselective NMDA receptor blocker ketamine as well as the GluN2B-selective inhibitor WMS14-10 was evaluated utilizing different cell viability assays, such as endpoint (LDH, CCK-8, DAPI/FACS) and time dependent methods (bioimpedance). RESULTS: Non-differentiated as well as differentiated SK-N-SH cells express GluN1 and GluN2B subunits. Furthermore, 50 mM (S)-glutamate led to an instantaneous decrease in cell survival. Only application of unselective channel blocker ketamine could protect differentiated cells against this effect, while the selective inhibitor WMS14-10 did not significantly increase cell survival. CONCLUSION: SK-N-SH cells show an increased sensitivity to (S)-glutamate mediated cytotoxicity with higher differentiation level, that is only partially induced by NMDA receptor overstimulation. Furthermore, we showed that only unselective NMDA receptor inhibition can partially reverse (S)-glutamate-induced toxicity.


Assuntos
Sobrevivência Celular , Ácido Glutâmico , Ketamina , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Humanos , Sobrevivência Celular/efeitos dos fármacos , Ketamina/farmacologia , Linhagem Celular Tumoral , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Diferenciação Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/citologia , Neurônios/patologia , Proteínas do Tecido Nervoso
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa