Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 175(5): 1430-1442.e17, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454650

RESUMO

In eukaryotic cells, organelles and the cytoskeleton undergo highly dynamic yet organized interactions capable of orchestrating complex cellular functions. Visualizing these interactions requires noninvasive, long-duration imaging of the intracellular environment at high spatiotemporal resolution and low background. To achieve these normally opposing goals, we developed grazing incidence structured illumination microscopy (GI-SIM) that is capable of imaging dynamic events near the basal cell cortex at 97-nm resolution and 266 frames/s over thousands of time points. We employed multi-color GI-SIM to characterize the fast dynamic interactions of diverse organelles and the cytoskeleton, shedding new light on the complex behaviors of these structures. Precise measurements of microtubule growth or shrinkage events helped distinguish among models of microtubule dynamic instability. Analysis of endoplasmic reticulum (ER) interactions with other organelles or microtubules uncovered new ER remodeling mechanisms, such as hitchhiking of the ER on motile organelles. Finally, ER-mitochondria contact sites were found to promote both mitochondrial fission and fusion.


Assuntos
Retículo Endoplasmático/metabolismo , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Microscopia de Fluorescência
2.
Cell ; 169(4): 664-678.e16, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475895

RESUMO

Dysregulated rRNA synthesis by RNA polymerase I (Pol I) is associated with uncontrolled cell proliferation. Here, we report a box H/ACA small nucleolar RNA (snoRNA)-ended long noncoding RNA (lncRNA) that enhances pre-rRNA transcription (SLERT). SLERT requires box H/ACA snoRNAs at both ends for its biogenesis and translocation to the nucleolus. Deletion of SLERT impairs pre-rRNA transcription and rRNA production, leading to decreased tumorigenesis. Mechanistically, SLERT interacts with DEAD-box RNA helicase DDX21 via a 143-nt non-snoRNA sequence. Super-resolution images reveal that DDX21 forms ring-shaped structures surrounding multiple Pol I complexes and suppresses pre-rRNA transcription. Binding by SLERT allosterically alters individual DDX21 molecules, loosens the DDX21 ring, and evicts DDX21 suppression on Pol I transcription. Together, our results reveal an important control of ribosome biogenesis by SLERT lncRNA and its regulatory role in DDX21 ring-shaped arrangements acting on Pol I complexes.


Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Polimerase I/metabolismo , Precursores de RNA/genética , RNA Longo não Codificante/metabolismo , Sítio Alostérico , Animais , Carcinogênese , Linhagem Celular , Linhagem Celular Tumoral , RNA Helicases DEAD-box/química , Feminino , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Nus , Precursores de RNA/metabolismo , Transcrição Gênica
3.
Development ; 150(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37218521

RESUMO

Across species, ovulation is a process induced by a myriad of signaling cascades that ultimately leads to the release of encapsulated oocytes from follicles. Follicles first need to mature and gain ovulatory competency before ovulation; however, the signaling pathways regulating follicle maturation are incompletely understood in Drosophila and other species. Our previous work has shown that the bHLH-PAS transcription factor Single-minded (Sim) plays important roles in follicle maturation downstream of the nuclear receptor Ftz-f1 in Drosophila. Here, we demonstrate that Tango (Tgo), another bHLH-PAS protein, acts as a co-factor of Sim to promote follicle cell differentiation from stages 10 to 12. In addition, we discover that re-upregulation of Sim in stage-14 follicle cells is also essential to promote ovulatory competency by upregulating octopamine receptor in mushroom body (OAMB), matrix metalloproteinase 2 (Mmp2) and NADPH oxidase (NOX), either independently of or in conjunction with the zinc-finger protein Hindsight (Hnt). All these factors are crucial for successful ovulation. Together, our work indicates that the transcriptional complex Sim:Tgo plays multiple roles in late-stage follicle cells to promote follicle maturation and ovulation.


Assuntos
Proteínas de Drosophila , Metaloproteinase 2 da Matriz , Animais , Feminino , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Oogênese/genética , Ovulação/genética
4.
Plant J ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840457

RESUMO

Efficient chromatin condensation is required to transport chromosomes during mitosis and meiosis, forming daughter cells. While it is well accepted that these processes follow fundamental rules, there has been a controversial debate for more than 140 years on whether the higher-order chromatin organization in chromosomes is evolutionarily conserved. Here, we summarize historical and recent investigations based on classical and modern methods. In particular, classical light microscopy observations based on living, fixed, and treated chromosomes covering a wide range of plant and animal species, and even in single-cell eukaryotes suggest that the chromatids of large chromosomes are formed by a coiled chromatin thread, named the chromonema. More recently, these findings were confirmed by electron and super-resolution microscopy, oligo-FISH, molecular interaction data, and polymer simulation. Altogether, we describe common and divergent features of coiled chromonemata in different species. We hypothesize that chromonema coiling in large chromosomes is a fundamental feature established early during the evolution of eukaryotes to handle increasing genome sizes.

5.
J Neurochem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946488

RESUMO

A growth cone is a highly motile tip of an extending axon that is crucial for neural network formation. Three-dimensional-structured illumination microscopy, a type of super-resolution light microscopy with a resolution that overcomes the optical diffraction limitation (ca. 200 nm) of conventional light microscopy, is well suited for studying the molecular dynamics of intracellular events. Using this technique, we discovered a novel type of filopodia distributed along the z-axis ("z-filopodia") within the growth cone. Z-filopodia were typically oriented in the direction of axon growth, not attached to the substratum, protruded spontaneously without microtubule invasion, and had a lifetime that was considerably shorter than that of conventional filopodia. Z-filopodia formation and dynamics were regulated by actin-regulatory proteins, such as vasodilator-stimulated phosphoprotein, fascin, and cofilin. Chromophore-assisted laser inactivation of cofilin induced the rapid turnover of z-filopodia. An axon guidance receptor, neuropilin-1, was concentrated in z-filopodia and was transported together with them, whereas its ligand, semaphorin-3A, was selectively bound to them. Membrane domains associated with z-filopodia were also specialized and resembled those of lipid rafts, and their behaviors were closely related to those of neuropilin-1. The results suggest that z-filopodia have unique turnover properties, and unlike xy-filopodia, do not function as force-generating structures for axon extension.

6.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486651

RESUMO

The morphogenesis of left-right (LR) asymmetry is a crucial phase of organogenesis. In the digestive tract, the development of anatomical asymmetry is first evident in the leftward curvature of the stomach. To elucidate the molecular events that shape this archetypal laterality, we performed transcriptome analyses of the left versus right sides of the developing stomach in frog embryos. Besides the known LR gene pitx2, the only gene found to be expressed asymmetrically throughout all stages of curvature was single-minded 2 (sim2), a Down Syndrome-related transcription factor and homolog of a Drosophila gene (sim) required for LR asymmetric looping of the fly gut. We demonstrate that sim2 functions downstream of LR patterning cues to regulate key cellular properties and behaviors in the left stomach epithelium that drive asymmetric curvature. Our results reveal unexpected convergent cooption of single-minded genes during the evolution of LR asymmetric morphogenesis, and have implications for dose-dependent roles of laterality factors in non-laterality-related birth defects.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Morfogênese , Estômago/embriologia , Animais , Anuros , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Padronização Corporal , Embrião não Mamífero , Endoderma/embriologia , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
7.
Chembiochem ; : e202400404, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877380

RESUMO

In this study, super-resolution structured illumination microscope (SIM) was used to analyze molecular mechanism of endocytic acidification inhibitors in the SARS-CoV-2 pandemic, such as Chloroquine (CQ), Hydroxychloroquine (HCQ) and Bafilomycin A1 (BafA1). We fluorescently labeled the SARS-CoV-2 RBD and its receptor ACE2 protein with small molecule dyes. Utilizing SIM imaging, the real-time impact of inhibitors (BafA1, CQ, HCQ, Dynasore) on the RBD-ACE2 endocytotic process was dynamically tracked in living cells. Initially, the protein activity of RBD and ACE2 was ensured after being labeled. And then our findings revealed that these inhibitors could inhibit the internalization and degradation of RBD-ACE2 to varying degrees. Among them, 100 nM BafA1 exhibited the most satisfactory endocytotic inhibition (~63.9 %) and protein degradation inhibition (~97.7 %). And it could inhibit the fusion between endocytic vesicles in the living cells. Additionally, Dynasore, a widely recognized dynein inhibitor, also demonstrated cell acidification inhibition effects. Together, these inhibitors collectively hinder SARS-CoV-2 infection by inhibiting both the viral internalization and RNA release. The comprehensive evaluation of pharmacological mechanisms through super-resolution fluorescence imaging has laid a crucial theoretical foundation for the development of potential drugs to treat COVID-19.

8.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891895

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motor neurons (MNs) in the brain and spinal cord, leading to progressive paralysis and death. Increasing evidence indicates that neuroinflammation plays an important role in ALS's pathogenesis and disease progression. Neuroinflammatory responses, primarily driven by activated microglia and astrocytes, and followed by infiltrating peripheral immune cells, contribute to exacerbate/accelerate MN death. In particular, the role of the microglia in ALS remains unclear, partly due to the lack of experimental models that can fully recapitulate the complexity of ALS's pathology. In this study, we developed and characterized a microglial cell line, SIM-A9-expressing human mutant protein Cu+/Zn+ superoxide dismutase_1 (SIM-A9hSOD1(G93A)), as a suitable model in vitro mimicking the microglia activity in ALS. The expression of hSOD1(G93A) in SIM-A9 cells induced a change in their metabolic activity, causing polarization into a pro-inflammatory phenotype and enhancing reactive oxygen species production, which is known to activate cell death processes and apoptosis. Afterward, we used our microglial model as an experimental set-up to investigate the therapeutic action of extracellular vesicles isolated from adipose mesenchymal stem cells (ASC-EVs). ASC-EVs represent a promising therapeutic treatment for ALS due to their neuroprotective and immunomodulatory properties. Here, we demonstrated that treatment with ASC-EVs is able to modulate activated ALS microglia, reducing their metabolic activity and polarizing their phenotype toward an anti-inflammatory one through a mechanism of reduction of reactive oxygen species.


Assuntos
Esclerose Lateral Amiotrófica , Vesículas Extracelulares , Células-Tronco Mesenquimais , Microglia , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Vesículas Extracelulares/metabolismo , Microglia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Humanos , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo
9.
Int J Cancer ; 153(10): 1842-1853, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37539710

RESUMO

Molecular markers can serve as diagnostic tools to support pathological analysis in thyroid neoplasms. However, because the same markers can be observed in some benign thyroid lesions, additional approaches are necessary to differentiate thyroid tumor subtypes, prevent overtreatment and tailor specific clinical management. This applies particularly to the recently described variant of thyroid cancer referred to as noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). This variant has an estimated prevalence of 4.4% to 9.1% of all papillary thyroid carcinomas worldwide. We studied 60 thyroid lesions: 20 classical papillary thyroid carcinoma (CPTC), 20 follicular variant of PTC (FVPTC) and 20 NIFTP. We examined morphological and molecular features to identify parameters that can differentiate NIFTP from the other PTC subtypes. When blindly investigating the nuclear architecture of thyroid neoplasms, we observed that NIFTP has significantly longer telomeres than CPTC and FVPTC. Super-resolved 3D-structured illumination microscopy demonstrated that NIFTP is heterogeneous and that its nuclei contain more densely packed DNA and smaller interchromatin spaces than CPTC and FVPTC, a pattern that resembles normal thyroid tissue. These data are consistent with the observed indolent biological behavior and favorable prognosis associated with NIFTP, which lacks BRAFV600E mutations. Of note, next-generation thyroid oncopanel sequencing was unable to distinguish the thyroid cancer histotypes in our study cohort. In summary, our data suggest that 3D nuclear architecture can be a powerful analytical tool to diagnose and guide clinical management of NIFTP.


Assuntos
Adenocarcinoma Folicular , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Prognóstico
10.
J Cell Sci ; 134(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387316

RESUMO

Dephosphorylation of lamin A, which triggers nuclear lamina reconstitution, is crucial for the completion of mitosis. However, the specific phosphatase and regulatory mechanism that allow timely lamin A dephosphorylation remain unclear. Here, we report that RepoMan (also known as CDCA2), a regulatory subunit of protein phosphatase 1γ (PP1γ) is transiently modified with SUMO-2 at K762 during late telophase. SUMOylation of RepoMan markedly enhanced its binding affinity with lamin A. Moreover, SUMOylated RepoMan contributes to lamin A recruitment to telophase chromosomes and dephosphorylation of the mitotic lamin A phosphorylation. Expression of a SUMO-2 mutant that has a defective interaction with the SUMO-interacting motif (SIM) resulted in failure of the lamin A and RepoMan association, along with abrogation of lamin A dephosphorylation and subsequent nuclear lamina formation. These findings strongly suggest that RepoMan recruits lamin A through SUMO-SIM interaction. Thus, transient SUMOylation of RepoMan plays an important role in the spatiotemporal regulation of lamin A dephosphorylation and the subsequent nuclear lamina formation at the end of mitosis.


Assuntos
Lamina Tipo A , Sumoilação , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mitose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Telófase
11.
Cell Commun Signal ; 21(1): 112, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189133

RESUMO

BACKGROUND: Extracellular vesicles (EVs) from Gram-positive bacteria have gained considerable importance as a novel transport system of virulence factors in host-pathogen interactions. Bacillus cereus is a Gram-positive human pathogen, causing gastrointestinal toxemia as well as local and systemic infections. The pathogenicity of enteropathogenic B. cereus has been linked to a collection of virulence factors and exotoxins. Nevertheless, the exact mechanism of virulence factor secretion and delivery to target cells is poorly understood. RESULTS: Here, we investigate the production and characterization of enterotoxin-associated EVs from the enteropathogenic B. cereus strain NVH0075-95 by using a proteomics approach and studied their interaction with human host cells in vitro. For the first time, comprehensive analyses of B. cereus EV proteins revealed virulence-associated factors, such as sphingomyelinase, phospholipase C, and the three-component enterotoxin Nhe. The detection of Nhe subunits was confirmed by immunoblotting, showing that the low abundant subunit NheC was exclusively detected in EVs as compared to vesicle-free supernatant. Cholesterol-dependent fusion and predominantly dynamin-mediated endocytosis of B. cereus EVs with the plasma membrane of intestinal epithelial Caco2 cells represent entry routes for delivery of Nhe components to host cells, which was assessed by confocal microscopy and finally led to delayed cytotoxicity. Furthermore, we could show that B. cereus EVs elicit an inflammatory response in human monocytes and contribute to erythrocyte lysis via a cooperative interaction of enterotoxin Nhe and sphingomyelinase. CONCLUSION: Our results provide insights into the interaction of EVs from B. cereus with human host cells and add a new layer of complexity to our understanding of multicomponent enterotoxin assembly, offering new opportunities to decipher molecular processes involved in disease development. Video Abstract.


Assuntos
Bacillus cereus , Enterotoxinas , Humanos , Enterotoxinas/análise , Enterotoxinas/metabolismo , Bacillus cereus/metabolismo , Células CACO-2 , Esfingomielina Fosfodiesterase/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo
12.
Chirality ; 35(12): 952-965, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37461225

RESUMO

Montelukast sodium (MLS) is a leukotriene receptor antagonist that relieves asthma, bronchospasm, allergic rhinitis, and urticaria. A simple, robust, and stability-indicating normal phase high-performance liquid chromatography method was developed to separate and quantitatively estimate the S-enantiomer of MLS. The chiral separation was achieved using USP L51 packing material along with a mobile phase consisting of a solvent mixture (n-hexane, ethanol, and propionic acid), a flow rate of 1.0 mL/min, a detection wavelength of 284 nm, a column temperature of 30°C and an injection volume of 20 µL. The enantiomers peaks were well separated from the peaks of the placebo, diluting solvent, MLS, and its known impurities with a resolution of more than 2.2 and with no interference. Accuracy and linearity were studied in a range of 0.36-3.597 µg/mL (0.03%-0.30%), with good recoveries between 92.5% and 96.8% and a linear regression coefficient above 0.996. The suggested chiral chromatography method is being considered as an alternative and equivalent method to the United States Pharmacopeia and European Pharmacopeia monographs. The developed method was effectively employed for the study of release and stability samples of MLS. This HPLC method is also capable of separating and estimating the stereo-selective isomers (R- and S-enantiomers) of sulfoxide impurity of MLS in pharmaceutical medicine.


Assuntos
Acetatos , Cromatografia Líquida de Alta Pressão , Ciclopropanos , Quinolinas , Sulfetos , Cromatografia Líquida de Alta Pressão/métodos , Estereoisomerismo , Comprimidos , Solventes
13.
Exp Parasitol ; 251: 108574, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37353138

RESUMO

Per-ARNT-Sim (PAS) domains constitute a family of domains present in a wide variety of prokaryotic and eukaryotic organisms. They form part of the structure of various proteins involved in diverse cellular processes. Regulation of enzymatic activity and adaptation to environmental conditions, by binding small ligands, are the main functions attributed to PAS-containing proteins. Recently, genes for a diverse set of proteins with a PAS domain were identified in the genomes of several protists belonging to the group of kinetoplastids, however, until now few of these proteins have been characterized. In this work, we characterize a phosphoglycerate kinase containing a PAS domain present in Trypanosoma cruzi (TcPAS-PGK). This PGK isoform is an active enzyme of 58 kDa with a PAS domain located at its N-terminal end. We identified the protein's localization within glycosomes of the epimastigote form of the parasite by differential centrifugation and selective permeabilization of its membranes with digitonin, as well as in an enriched mitochondrial fraction. Heterologous expression systems were developed for the protein with the N-terminal PAS domain (PAS-PGKc) and without it (PAS-PGKt), and the substrate affinities of both forms of the protein were determined. The enzyme does not exhibit standard Michaelis-Menten kinetics. When evaluating the dependence of the specific activity of the recombinant PAS-PGK on the concentration of its substrates 3-phosphoglycerate (3PGA) and ATP, two peaks of maximal activity were found for the complete enzyme with the PAS domain and a single peak for the enzyme without the domain. Km values measured for 3PGA were 219 ± 26 and 8.8 ± 1.3 µM, and for ATP 291 ± 15 and 38 ± 2.2 µM, for the first peak of PAS-PGKc and for PAS-PGKt, respectively, whereas for the second PAS-PGKc peak values of approximately 1.1-1.2 mM were estimated for both substrates. Both recombinant proteins show inhibition by high concentrations of their substrates, ATP and 3PGA. The presence of hemin and FAD exerts a stimulatory effect on PAS-PGKc, increasing the specific activity by up to 55%. This stimulation is not observed in the absence of the PAS domain. It strongly suggests that the PAS domain has an important function in vivo in T. cruzi in the modulation of the catalytic activity of this PGK isoform. In addition, the PAS-PGK through its PAS and PGK domains could act as a sensor for intracellular conditions in the parasite to adjust its intermediary metabolism.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Fosfoglicerato Quinase/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo
14.
J Pharmacokinet Pharmacodyn ; 50(3): 229-241, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877385

RESUMO

Monoclonal antibodies, endogenous IgG, and serum albumin bind to FcRn in the endosome for salvaging and recycling after pinocytotic uptake, which prolongs their half-life. This mechanism has been broadly recognized and is incorporated in currently available PBPK models. Newer types of large molecules have been designed and developed, which also bind to FcRn in the plasma space for various mechanistic reasons. To incorporate FcRn binding affinity in PBPK models, binding in the plasma space and subsequent internalisation into the endosome needs to be explicitly represented. This study investigates the large molecules model in PK-Sim® and its applicability to molecules with FcRn binding affinity in plasma. With this purpose, simulations of biologicals with and without plasma binding to FcRn were performed with the large molecule model in PK-Sim®. Subsequently, this model was extended to ensure a more mechanistic description of the internalisation of FcRn and the FcRn-drug complexes. Finally, the newly developed model was used in simulations to explore the sensitivity for FcRn binding in the plasma space, and it was fitted to an in vivo dataset of wild-type IgG and FcRn inhibitor plasma concentrations in Tg32 mice. The extended model demonstrated a strongly increased sensitivity of the terminal half-life towards the plasma FcRn binding affinity and could successfully fit the in vivo dataset in Tg32 mice with meaningful parameter estimates.


Assuntos
Anticorpos Monoclonais , Receptores Fc , Camundongos , Animais , Receptores Fc/metabolismo , Anticorpos Monoclonais/metabolismo , Endossomos/metabolismo , Imunoglobulina G/metabolismo
15.
Biomed Chromatogr ; 37(11): e5727, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37635093

RESUMO

Glipizide is an antidiabetic drug used for the treatment of type 2 diabetes. A simple, reliable and robust reverse-phase liquid chromatographic method (RP-HPLC) was developed and validated as per International Conference on Harmonization Q2(R1) for estimating the impurities of glipizide in pharmaceutical formulations. The chromatographic separation was carried out on a Phenomenex Luna C18 (2), 250 × 4.6 mm, 5 µm with a binary solvent delivery system [MP-A, a homogenous mixture of water and acetonitrile in a ratio of 90:10 (v/v) and 1 ml of orthophosphoric acid; and MP-B, a homogenous mixture of water and acetonitrile in a ratio of 10:90 (v/v) and 1 ml of orthophosphoric acid] with a detection wavelength of 225 nm, a column temperature of 30°C, a flow rate of 1.5 ml/min, and an injection volume of 20 µl. All process, degradant and unknown impurities were separated well with a resolution >2.2 and were estimated accurately without any interference. The recovered values and regression values were 98.7-100.5% and R2 > 0.9999, respectively. The recovery and linearity studies covered the quantitation limit to 150% of the specification limit. The stability-indicating properties of the developed RP-HPLC method was assessed from the forced degradation studies. The developed method was successfully applied for real-time sample analysis of the glipizide dosage form.

16.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617100

RESUMO

In this study, a pulse frequency modulation (PFM)-based stimulator is proposed for use in biomedical implantable devices. Conventionally, functional electrical stimulation (FES) techniques have been used to reinforce damaged nerves, such as retina tissue and brain tissue, by injecting a certain amount of charge into tissues. Although several design methods are present for implementing FES devices, an FES stimulator for retinal implants is difficult to realize because of the chip area, which needs to be inserted in a fovea, sized 5 mm x 5 mm, and power limitations to prevent the heat generation that causes tissue damage. In this work, we propose a novel stimulation structure to reduce the compliance voltage during stimulation, which can result in high-speed and low-voltage operation. A new stimulator that is composed of a modified high-speed PFM, a 4-bit counter, a serializer, a digital controller, and a current driver is designed and verified using a DB HiTek standard 0.18 µm process. This proposed stimulator can generate a charge up to 130 nC, consumes an average power of 375 µW during a stimulation period, and occupies a total area of 700 µm × 68 µm.


Assuntos
Terapia por Estimulação Elétrica , Próteses Visuais , Eletrodos Implantados , Retina , Fóvea Central , Estimulação Elétrica , Desenho de Equipamento
17.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904876

RESUMO

This paper proposed a multi-layered 3D NDT (normal distribution transform) scan-matching approach for robust localization even in the highly dynamic environment of warehouse logistics. Our approach partitioned a given 3D point-cloud map and the scan measurements into several layers regarding the degree of environmental changes in the height direction and computed the covariance estimates for each layer using 3D NDT scan-matching. Because the covariance determinant is the estimate's uncertainty, we can determine which layers are better to use in the localization in the warehouse. If the layer gets close to the warehouse's floor, the degree of environmental changes, such as the cluttered warehouse layout and position of boxes, would be significantly large, while it has many good features for scan-matching. If the observation at a specific layer is not explained well enough, then the layer for localization can be switched to other layers with lower uncertainties. Thus, the main novelty of this approach is that localization robustness can be improved even in very cluttered and dynamic environments. This study also provides the simulation-based validation using Nvidia's Omniverse Isaac sim and detailed mathematical descriptions for the proposed method. Moreover, the evaluated results of this study can be a good starting point for further mitigating the effects of occlusion in warehouse navigation of mobile robots.

18.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069029

RESUMO

PML bodies are subnuclear protein complexes that play a crucial role in various physiological and pathological cellular processes. One of the general structural proteins of PML bodies is a member of the tripartite motif (TRIM) family-promyelocytic leukemia protein (PML). It is known that PML interacts with over a hundred partners, and the protein itself is represented by several major isoforms, differing in their variable and disordered C-terminal end due to alternative splicing. Despite nearly 30 years of research, the mechanisms underlying PML body formation and the role of PML proteins in this process remain largely unclear. In this review, we examine the literature and highlight recent progress in this field, with a particular focus on understanding the role of individual domains of the PML protein, its post-translational modifications, and polyvalent nonspecific interactions in the formation of PML bodies. Additionally, based on the available literature, we propose a new hypothetical model of PML body formation.


Assuntos
Proteínas Nucleares , Corpos Nucleares da Leucemia Promielocítica , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/química , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido
19.
J Bacteriol ; 204(11): e0030022, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36197090

RESUMO

Photoactive yellow protein (PYP) is a model photoreceptor. It binds a p-coumaric acid as a chromophore, thus enabling blue light sensing. The first discovered single-domain PYP from Halorhodospira halophila has been studied thoroughly in terms of its structural dynamics and photochemical properties. However, the evolutionary origins and biological role of PYP homologs are not well understood. Here, we show that PYP is an evolutionarily novel domain family of the ubiquitous PAS (Per-Arnt-Sim) superfamily. It likely originated from the phylum Myxococcota and was then horizontally transferred to representatives of a few other bacterial phyla. We show that PYP is associated with signal transduction either by domain fusion or by genome context. Key cellular functions modulated by PYP-initiated signal transduction pathways likely involve gene expression, motility, and biofilm formation. We identified three clades of the PYP family, one of which is poorly understood and potentially has novel functional properties. The Tyr42, Glu46, and Cys69 residues that are involved in p-coumaric acid binding in the model PYP from H. halophila are well conserved in the PYP family. However, we also identified cases where substitutions in these residues might have led to neofunctionalization, such as the proposed transition from light to redox sensing. Overall, this study provides definition, a newly built hidden Markov model, and the current genomic landscape of the PYP family and sets the stage for the future exploration of its signaling mechanisms and functional diversity. IMPORTANCE Photoactive yellow protein is a model bacterial photoreceptor. For many years, it was considered a prototypical model of the ubiquitous PAS domain superfamily. Here, we show that, in fact, the PYP family is evolutionarily novel, restricted to a few bacterial phyla and distinct from other PAS domains. We also reveal the diversity of PYP-containing signal transduction proteins and their potential mechanisms.


Assuntos
Fotorreceptores Microbianos , Fotorreceptores Microbianos/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Cumáricos/química , Luz , Bactérias/metabolismo
20.
J Biol Chem ; 297(2): 100970, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34274315

RESUMO

Protein structural bioinformatic analyses suggest preferential associations between methionine and aromatic amino acid residues in proteins. Ab initio energy calculations highlight a conformation-dependent stabilizing interaction between the interacting sulfur-aromatic molecular pair. However, the relevance of buried methionine-aromatic motifs to protein folding and function is relatively unexplored. The Small Ubiquitin-Like Modifier (SUMO) is a ß-grasp fold protein and a common posttranslational modifier that affects diverse cellular processes, including transcriptional regulation, chromatin remodeling, metabolic regulation, mitosis, and meiosis. SUMO is a member of the Ubiquitin-Like (UBL) protein family. Herein, we report that a highly conserved and buried methionine-phenylalanine motif is a unique signature of SUMO proteins but absent in other homologous UBL proteins. We also detect that a specific "up" conformation between the methionine-phenylalanine pair of interacting residues in SUMO is critical to its ß-grasp fold. The noncovalent interactions of SUMO with its ligands are dependent on the methionine-phenylalanine pair. MD simulations, NMR, and biophysical and biochemical studies suggest that perturbation of the methionine-aromatic motif disrupts native contacts, modulates noncovalent interactions, and attenuates SUMOylation activity. Our results highlight the importance of conserved orientations of Met-aromatic structural motifs inside a protein core for its structure and function.


Assuntos
Metionina/química , Simulação de Dinâmica Molecular , Fenilalanina/química , Domínios e Motivos de Interação entre Proteínas , Proteína SUMO-1/química , Sumoilação , Motivos de Aminoácidos , Sequência de Aminoácidos , Humanos , Dobramento de Proteína , Estabilidade Proteica , Proteína SUMO-1/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa