Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nano Lett ; 24(20): 6158-6164, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38723204

RESUMO

The gate-all-around (GAA) field-effect transistor (FET) holds great potential to support next-generation integrated circuits. Nanowires such as carbon nanotubes (CNTs) are one important category of channel materials in GAA FETs. Based on first-principles investigations, we propose that SiX2 (X = S, Se) nanowires are promising channel materials that can significantly elevate the performance of GAA FETs. The sub-5 nm SiX2 (X = S, Se) nanowire GAA FETs exhibit excellent ballistic transport properties that meet the requirements of the 2013 International Technology Roadmap for Semiconductors (ITRS). Compared to CNTs, they are also advantageous or at least comparable in terms of gate controllability, device dimensions, etc. Importantly, SiSe2 GAA FETs show superb gate controllability due to the ultralow minimum subthreshold swing (SSmin) that breaks "Boltzmann's tyranny". Moreover, the energy-delay product (EDP) of SiX2 GAA FETs is significantly lower than that of the CNT FETs. These features make SiX2 nanowires ideal channel material in the sub-5 nm GAA FET devices.

2.
J Transl Med ; 22(1): 832, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256760

RESUMO

BACKGROUND: The roles of the transcriptional factor SIX2 have been identified in several tumors. However, its roles in gastric cancer (GC) progression have not yet been revealed. Our objective is to explore the impact and underlying mechanisms of SIX2 on the stemness of GC cells. METHODS: Lentivirus infection was employed to establish stable expression SIX2 or PFN2 in GC cells. Gain- and loss-of-function experiments were conducted to detect changes of stemness markers, flow cytometry profiles, tumor spheroid formation, and tumor-initiating ability. ChIP, RNA-sequencing, tissue microarray, and bioinformatics analysis were performed to reveal the correlation between SIX2 and PFN2. The mechanisms underlying the SIX2/PFN2 loop-mediated effects were elucidated through tissue microarray analysis, RNA stability assay, IP-MS, Co-Immunoprecipitation, and inhibition of the JNK signaling pathway. RESULTS: The stemness of GC cells was enhanced by SIX2. Mechanistically, SIX2 directly bound to PFN2's promoter and promoted PFN2 activity. PFN2, in turn, promoted the mRNA stability of SIX2 by recruiting RNA binding protein YBX-1, subsequently activating the downstream MAPK/JNK pathway. CONCLUSION: This study unveils the roles of SIX2 in governing GC cell stemness, defining a novel SIX2/PFN2 regulatory loop responsible for this regulation. This suggests the potential of targeting the SIX2/PFN2 loop for GC treatment (Graphical Abstracts).


Assuntos
Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio , Células-Tronco Neoplásicas , Profilinas , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Profilinas/metabolismo , Profilinas/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Animais , Regiões Promotoras Genéticas/genética , Estabilidade de RNA/genética , Sistema de Sinalização das MAP Quinases , Ligação Proteica
3.
Environ Toxicol ; 39(2): 583-591, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37461228

RESUMO

The critical roles of NF-κB Inducing Kinase (NIK) in tumor progression have been elucidated in various tumors; however, its effects on hepatocellular carcinoma (HCC) progression are still confusing. Here, we found that NIK level was upregulated in HCC tissues compared to that of normal tissues, and positively correlated with the levels of cancer stem cell (CSC) markers. Then we established HCC cells with NIK-stable knockdown and found that NIK knockdown suppressed the CSC-like traits of HCC cells through in vivo and in vitro experiments. Mechanistically, we revealed that SIX2 protein level, but not its mRNA level, was significantly reduced in HCC cells with NIK knockdown, which was rescued by MG132 treatment. Furthermore, NIK knockdown promoted the ubiquitination level of SIX2 and decreased its protein stability. Moreover, Six2 overexpression partially reversed the inhibition of NIK knockdown on the CSC-like traits of HCC cells. This study identified a novel NIK/SIX2 axis conferring HCC stemness.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Neoplasias Hepáticas/patologia , Proteínas do Tecido Nervoso/genética , Quinase Induzida por NF-kappaB , Complexo de Endopeptidases do Proteassoma , Ubiquitina
4.
Development ; 147(1)2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31806659

RESUMO

The GATA and PAX-SIX-EYA-DACH transcriptional networks (PSEDNs) are essential for proper development across taxa. Here, we demonstrate novel PSEDN roles in vivo in Drosophila hematopoiesis and in human erythropoiesis in vitro Using Drosophila genetics, we show that PSEDN members function with GATA to block lamellocyte differentiation and maintain the prohemocyte pool. Overexpression of human SIX1 stimulated erythroid differentiation of human erythroleukemia TF1 cells and primary hematopoietic stem-progenitor cells. Conversely, SIX1 knockout impaired erythropoiesis in both cell types. SIX1 stimulation of erythropoiesis required GATA1, as SIX1 overexpression failed to drive erythroid phenotypes and gene expression patterns in GATA1 knockout cells. SIX1 can associate with GATA1 and stimulate GATA1-mediated gene transcription, suggesting that SIX1-GATA1 physical interactions contribute to the observed functional interactions. In addition, both fly and human SIX proteins regulated GATA protein levels. Collectively, our findings demonstrate that SIX proteins enhance GATA function at multiple levels, and reveal evolutionarily conserved cooperation between the GATA and PSEDN networks that may regulate developmental processes beyond hematopoiesis.


Assuntos
Proteínas de Drosophila/metabolismo , Eritropoese/genética , Redes Reguladoras de Genes , Hematopoese/genética , Animais , Linhagem Celular Tumoral , Drosophila , Fatores de Transcrição GATA/metabolismo , Técnicas de Inativação de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição Box Pareados/metabolismo
5.
J Am Soc Nephrol ; 32(11): 2815-2833, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34716243

RESUMO

BACKGROUND: Eya1 is a critical regulator of nephron progenitor cell specification and interacts with Six2 to promote NPC self-renewal. Haploinsufficiency of these genes causes kidney hypoplasia. However, how the Eya1-centered network operates remains unknown. METHODS: We engineered a 2×HA-3×Flag-Eya1 knock-in mouse line and performed coimmunoprecipitation with anti-HA or -Flag to precipitate the multitagged-Eya1 and its associated proteins. Loss-of-function, transcriptome profiling, and genome-wide binding analyses for Eya1's interacting chromatin-remodeling ATPase Brg1 were carried out. We assayed the activity of the cis-regulatory elements co-occupied by Brg1/Six2 in vivo. RESULTS: Eya1 and Six2 interact with the Brg1-based SWI/SNF complex during kidney development. Knockout of Brg1 results in failure of metanephric mesenchyme formation and depletion of nephron progenitors, which has been linked to loss of Eya1 expression. Transcriptional profiling shows conspicuous downregulation of important regulators for nephrogenesis in Brg1-deficient cells, including Lin28, Pbx1, and Dchs1-Fat4 signaling, but upregulation of podocyte lineage, oncogenic, and cell death-inducing genes, many of which Brg1 targets. Genome-wide binding analysis identifies Brg1 occupancy to a distal enhancer of Eya1 that drives nephron progenitor-specific expression. We demonstrate that Brg1 enrichment to two distal intronic enhancers of Pbx1 and a proximal promoter region of Mycn requires Six2 activity and that these Brg1/Six2-bound enhancers govern nephron progenitor-specific expression in response to Six2 activity. CONCLUSIONS: Our results reveal an essential role for Brg1, its downstream pathways, and its interaction with Eya1-Six2 in mediating the fine balance among the self-renewal, differentiation, and survival of nephron progenitors.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/fisiologia , Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Néfrons/citologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Diferenciação Celular , Autorrenovação Celular , Imunoprecipitação da Cromatina , Técnicas de Introdução de Genes , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/embriologia , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Complexos Multiproteicos , Proteínas Nucleares/genética , Mapeamento de Interação de Proteínas , Proteínas Tirosina Fosfatases/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Transcriptoma
6.
J Biol Chem ; 295(33): 11542-11558, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32554463

RESUMO

SIX2 (SIX homeobox 2)-positive nephron progenitor cells (NPCs) give rise to all epithelial cell types of the nephron, the filtering unit of the kidney. NPCs have a limited lifespan and are depleted near the time of birth. Epigenetic factors are implicated in the maintenance of organ-restricted progenitors such as NPCs, but the chromatin-based mechanisms are incompletely understood. Here, using a combination of gene targeting, chromatin profiling, and single-cell RNA analysis, we examined the role of the murine histone 3 Lys-27 (H3K27) methyltransferases EZH1 (enhancer of zeste 1) and EZH2 in NPC maintenance. We found that EZH2 expression correlates with NPC growth potential and that EZH2 is the dominant H3K27 methyltransferase in NPCs and epithelial descendants. Surprisingly, NPCs lacking H3K27 trimethylation maintained their progenitor state but cycled slowly, leading to a smaller NPC pool and formation of fewer nephrons. Unlike Ezh2 loss of function, dual inactivation of Ezh1 and Ezh2 triggered overexpression of the transcriptional repressor Hes-related family BHLH transcription factor with YRPW motif 1 (Hey1), down-regulation of Six2, and unscheduled activation of Wnt4-driven differentiation, resulting in early termination of nephrogenesis and severe renal dysgenesis. Double-mutant NPCs also overexpressed the SIX family member Six1 However, in this context, SIX1 failed to maintain NPC stemness. At the chromatin level, EZH1 and EZH2 restricted accessibility to AP-1-binding motifs, and their absence promoted a regulatory landscape akin to differentiated and nonlineage cells. We conclude that EZH2 is required for NPC renewal potential and that tempering of the differentiation program requires cooperation of both EZH1 and EZH2.


Assuntos
Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Néfrons/citologia , Complexo Repressor Polycomb 2/metabolismo , Células-Tronco/citologia , Animais , Sobrevivência Celular , Células Cultivadas , Camundongos , Néfrons/metabolismo , Células-Tronco/metabolismo
7.
Genesis ; 58(7): e23365, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32277572

RESUMO

Heterozygous deletion of Six2, which encodes a member of sine oculis homeobox family transcription factors, has recently been associated with the frontonasal dysplasia syndrome FND4. Previous studies showed that Six2 is expressed in multiple tissues during craniofacial development in mice, including embryonic head mesoderm, postmigratory frontonasal neural crest cells, and epithelial and mesenchymal cells of the developing palate and nasal structures. Whereas Six2 -/- mice exhibited cranial base defects but did not recapitulate frontonasal phenotypes of FND4 patients, Six1 -/- Six2 -/- double mutant mice showed severe craniofacial defects including midline facial clefting. The complex phenotypes of FND4 patients and of Six1 -/- Six2 -/- mutant mice indicate that Six2 plays crucial roles in distinct cell types at multiple stages of craniofacial morphogenesis. Here we report generation of mice carrying insertions of a pair of loxP sites flanking exon-1 of the Six2 gene (Six2 f allele) using CRISPR/Cas9-mediated genome editing. We show that the Six2 f allele functions normally and is effectively inactivated by Cre-mediated recombination in vivo. Furthermore, we show that Six2 f/f ;Wnt1-Cre mice recapitulated cranial base defects but not neonatal lethality of Six2 -/- mice. These results indicate that Six2 f/f mice enable systematic investigation of cell type- and stage-specific Six2 function in development and disease.


Assuntos
Anormalidades Craniofaciais/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Sistemas CRISPR-Cas , Anormalidades Craniofaciais/patologia , Feminino , Edição de Genes/métodos , Marcação de Genes/métodos , Proteínas de Homeodomínio/metabolismo , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Fatores de Transcrição/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
8.
Development ; 144(24): 4530-4539, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29113990

RESUMO

Notch signaling plays important roles during mammalian nephrogenesis. To investigate whether Notch regulates nephron segmentation, we performed Notch loss-of-function and gain-of-function studies in developing nephrons in mice. Contrary to the previous notion that Notch signaling promotes the formation of proximal tubules and represses the formation of distal tubules in the mammalian nephron, we show that inhibition of Notch blocks the formation of all nephron segments and that constitutive activation of Notch in developing nephrons does not promote or repress the formation of a specific segment. Cells lacking Notch fail to form the S-shaped body and show reduced expression of Lhx1 and Hnf1b Consistent with this, we find that constitutive activation of Notch in mesenchymal nephron progenitors causes ectopic expression of Lhx1 and Hnf1b and that these cells eventually form a heterogeneous population that includes proximal tubules and other types of cells. Our data suggest that Notch signaling is required for the formation of all nephron segments and that it primes nephron progenitors for differentiation rather than directing their cell fates into a specific nephron segment.


Assuntos
Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Túbulos Renais Proximais/embriologia , Organogênese/fisiologia , Receptores Notch/metabolismo , Animais , Diferenciação Celular , Ativação Enzimática/genética , Fator 1-beta Nuclear de Hepatócito/biossíntese , Proteínas com Homeodomínio LIM/biossíntese , Camundongos , Camundongos Transgênicos , Receptores Notch/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/biossíntese , Proteína Wnt4/metabolismo
9.
Am J Med Genet A ; 182(7): 1807-1811, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32506814

RESUMO

Our improved tools to identify the aetiologies in patients with multiple abnormalities resulted in the finding that some patients have more than a single genetic condition and that some of the diagnoses made in the past are acquired rather than inherited. However, limited knowledge has been accumulated regarding the phenotypic outcome of the interaction between different genetic conditions identified in the same patients. We report a newborn girl with brachytelephalangic chondrodysplasia punctata (BCDP) as well as frontonasal dysplasia, ptosis, bilateral hearing loss, vertebral anomalies, and pulmonary hypoplasia who was found, by whole exome sequencing, to have a de novo pathogenic variant in RAF1 (c.770C>T, [p.Ser257Leu]) and a likely pathogenic variant in SIX2 (c.760G>A [p.A254T]), as well as maternal systemic lupus erythematosus (SLE). This case shows that BCDP is most probably not a diagnostic entity and can be associated with various conditions associated with CDP including maternal SLE.


Assuntos
Anormalidades Múltiplas/genética , Condrodisplasia Punctata/genética , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-raf/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Condrodisplasia Punctata/diagnóstico , Condrodisplasia Punctata/patologia , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Face/anormalidades , Face/patologia , Feminino , Predisposição Genética para Doença , Hérnia Diafragmática/diagnóstico , Hérnia Diafragmática/genética , Humanos , Recém-Nascido
10.
Dev Biol ; 443(1): 78-91, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189195

RESUMO

Maternal undernutrition during pregnancy (MUN) often leads to low birth weight (LBW) neonates that have a reduced total nephron endowment, leaving these neonates susceptible to kidney disease throughout their lives. For reasons unknown, these LBW neonates have impaired kidney development due to a severe reduction in renal SIX2+ stem cells during nephrogenesis. Using a mouse model of MUN, we investigated SIX2+ stem cell reduction in the LBW neonate. Significant upregulation of the protein fetuin-B (measured by PCR and immunoblotting) in the MUN mother's placenta, organs and circulation yielded a 3-fold increase of this protein in the embryonic kidney. Recombinant fetuin-B, administered to healthy pregnant mothers at the concentration equivalent to that in the MUN mother, crossed the placenta and reduced both SIX2+ stem cells by 50% and nephron formation by 66% in embryonic kidneys (measured by immunofluorescence and the physical dissector/fractionator stereological method). Administration of fetuin-B to kidney explants yielded similar reductions in renal SIX2+ stem cells and nephron formation. Fetuin-B treatment of isolated embryonic renal SIX2+ stem cell primary cultures 1) increased NF-kB activity and apoptosis, 2) reduced cell proliferation due to upregulated p21 nuclear activity and subsequent cell cycle arrest, and 3) enhanced generation of reactive oxygen species (measured by fluorescence microscopy). In conclusion, MUN increases fetuin-B in the developing embryonic kidney. The increase in fetuin-B blunts nephrogenesis by reducing SIX2+ stem cells by promoting their apoptosis (via NF-kB upregulation), blunting their proliferative renewal (via p21 upregulation) and enhancing oxidative stress.


Assuntos
Transtornos da Nutrição Fetal/metabolismo , Fetuína-B/metabolismo , Rim/embriologia , Animais , Apoptose/fisiologia , Células-Tronco Embrionárias/metabolismo , Feminino , Transtornos da Nutrição Fetal/genética , Proteínas de Homeodomínio/metabolismo , Recém-Nascido de Baixo Peso/fisiologia , Rim/metabolismo , Masculino , Saúde Materna , Camundongos , Néfrons/embriologia , Néfrons/metabolismo , Estresse Oxidativo/fisiologia , Gravidez , Cultura Primária de Células , Fatores de Transcrição/metabolismo , Regulação para Cima
11.
Development ; 143(21): 3907-3913, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633993

RESUMO

During nephrogenesis, multipotent mesenchymal nephron progenitors develop into distinct epithelial segments. Each nephron segment has distinct cell types and physiological function. In the current model of kidney development, Notch signaling promotes the formation of proximal tubules and represses the formation of distal tubules. Here, we present a novel role of Notch in nephrogenesis. We show in mice that differentiation of nephron progenitors requires downregulation of Six2, a transcription factor required for progenitor maintenance, and that Notch signaling is necessary and sufficient for Six2 downregulation. Furthermore, we find that nephron progenitors lacking Notch signaling fail to differentiate into any nephron segments, not just proximal tubules. Our results demonstrate how cell fates of progenitors are regulated by a transcription factor governing progenitor status and by a differentiation signal in nephrogenesis.


Assuntos
Proteínas de Homeodomínio/genética , Néfrons/embriologia , Organogênese/genética , Receptores Notch/fisiologia , Fatores de Transcrição/genética , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Regulação para Baixo/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia
12.
Hepatobiliary Pancreat Dis Int ; 18(6): 525-531, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31564506

RESUMO

BACKGROUND: Increasing evidence indicates that Six2 contributes to tumorigenesis in various tumor including hepatocellular carcinoma (HCC). This study aimed to determine the role of Six2 in HCC and to elucidate the association of Six2 with clinical pathological characteristics. METHODS: The expressions of Six2 in HCC tumor, para-tumor tissue and portal vein tumor thrombus (PVTT) were detected by tissue microarray technique, immunohistochemistry, real-time RT-PCR and Western blotting. Chi-square and Kaplan-Meier analysis were used to analyze the correlation between Six2 expression and prognosis of HCC patients. Lentivirus mediated Six2 knockdown, spheroid formation assay, proliferation assay and subcutaneous tumor implantation were performed to determine the function of Six2. RESULTS: In 274 HCC samples, Six2 was strongly expressed. Kaplan-Meier analysis revealed that high expression of Six2 was correlated with a shorter overall survival (OS) and disease-free survival (DFS). Moreover, Six2 expression was associated with sex, alpha-fetoprotein, tumor size and portal vein invasion. Six2 was highly expressed in PVTT. Six2 knockdown inhibited HCC cell lines proliferation, migration, and self-renewal in vitro and in vivo. In addition, low-expression of Six2 weakened TGF-ß induced Smad4 activation and epithelial-mesenchymal transition in HCC cell lines. CONCLUSIONS: Elevated Six2 expression in HCC tumor patients was associated with negative prognosis. Upregulated Six2 promoted tumor growth and facilitated HCC metastasis via TGF-ß/Smad signal pathway.


Assuntos
Carcinoma Hepatocelular/metabolismo , Transição Epitelial-Mesenquimal , Proteínas de Homeodomínio/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas do Tecido Nervoso/genética , Carga Tumoral , Regulação para Cima
13.
Biochem Biophys Res Commun ; 504(4): 885-891, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30219227

RESUMO

During kidney development, the balance between self-renewal and differentiation of metanephric mesenchyme (MM) cells, mainly regulated by Sine oculis-related homeobox 2 (Six2), is critical for forming mature kidney. L-gulono-γ-lactone oxidase (Gulo), a crucial enzyme for vitamin C synthesis, reveals a different expression at various stages during kidney development, but its function in the early renal development remains unknown. In this work, we aim to study the role of Gulo in MM cells at two differentiation stages. We found that Gulo expression in undifferentiated MM (mK3) cells was lower than in differentiated MM (mK4) cells. Over-expression of Gulo can promote mesenchymal-to-epithelial transformation (MET) and apoptosis and inhibit the proliferation in mK3 cells. Knock-down of Gulo in mK4 cells made its epithelial character cells unstabilized, facilitated the proliferation and restrained the apoptosis. Furthermore, we found that Six2 was negatively regulated by Gulo, and over-expression or knock-down of Six2 was able to rescue partially the MET, proliferation and apoptosis of MM cells caused by Gulo. In conclusion, these findings reveal that Gulo promotes the MET and apoptosis, and inhibits proliferation in MM cells by down-regulating Six2.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas de Homeodomínio/metabolismo , L-Gulonolactona Oxidase/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Apoptose , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Rim/citologia , Rim/embriologia , L-Gulonolactona Oxidase/genética , Camundongos , Fatores de Transcrição/genética
14.
Development ; 141(7): 1442-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24598167

RESUMO

Mammalian kidney organogenesis involves reciprocal epithelial-mesenchymal interactions that drive iterative cycles of nephron formation. Recent studies have demonstrated that the Six2 transcription factor acts cell autonomously to maintain nephron progenitor cells, whereas canonical Wnt signaling induces nephron differentiation. How Six2 maintains the nephron progenitor cells against Wnt-directed commitment is not well understood, however. We report here that Six2 is required to maintain expression of Osr1, a homolog of the Drosophila odd-skipped zinc-finger transcription factor, in the undifferentiated cap mesenchyme. Tissue-specific inactivation of Osr1 in the cap mesenchyme caused premature depletion of nephron progenitor cells and severe renal hypoplasia. We show that Osr1 and Six2 act synergistically to prevent premature differentiation of the cap mesenchyme. Furthermore, although both Six2 and Osr1 could form protein interaction complexes with TCF proteins, Osr1, but not Six2, enhances TCF interaction with the Groucho family transcriptional co-repressors. Moreover, we demonstrate that loss of Osr1 results in ß-catenin/TCF-mediated ectopic activation of Wnt4 enhancer-driven reporter gene expression in the undifferentiated nephron progenitor cells in vivo. Together, these data indicate that Osr1 plays crucial roles in Six2-dependent maintenance of nephron progenitors during mammalian nephrogenesis by stabilizing TCF-Groucho transcriptional repressor complexes to antagonize Wnt-directed nephrogenic differentiation.


Assuntos
Proteínas de Homeodomínio/metabolismo , Rim/embriologia , Néfrons/embriologia , Organogênese/genética , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/genética , Embrião de Mamíferos , Feminino , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Néfrons/citologia , Néfrons/metabolismo , Ligação Proteica , Transdução de Sinais/genética , Células-Tronco/citologia
15.
Pediatr Nephrol ; 32(2): 195-200, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26868670

RESUMO

Studies of kidney regeneration using stem cells have progressed rapidly in recent years. Our group has developed a protocol to induce nephron progenitors from both mouse and human pluripotent stem cells which is based on a revised model of early stage kidney specification. The induced progenitors readily reconstitute three-dimensional nephron structures, including glomeruli and renal tubules, in vitro. We can further generate human induced pluripotent stem cells (iPSCs), in which nephrin-expressing glomerular podocytes are tagged with green fluorescent protein (GFP). The sorted GFP-positive cells retain the podocyte-specific molecular and structural features. Upon transplantation, mouse endothelial cells of the host animals are integrated into the human iPSC-derived glomeruli, and the podocytes show further maturation. Other laboratories have reported different protocols to induce nephron structures from human iPSCs in vitro. These findings will accelerate our understanding of kidney development and diseases in humans.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Glomérulos Renais/citologia , Túbulos Renais/citologia , Animais , Técnicas de Cultura de Células , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Glomérulos Renais/metabolismo , Túbulos Renais/metabolismo , Camundongos
16.
Proc Natl Acad Sci U S A ; 111(46): 16538-43, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25359211

RESUMO

Why different species are predisposed to different tumor spectra is not well understood. In particular, whether the physical location of tumor suppressor genes relative to one another influences tumor predisposition is unknown. Renal cancer presents a unique opportunity to explore this question. Renal cell carcinoma (RCC) of clear-cell type (ccRCC), the most common type, begins with an intragenic mutation in the von Hippel-Lindau (VHL) gene and loss of 3p (where VHL is located). Chromosome 3p harbors several additional tumor suppressor genes, including BRCA1-associated protein-1 (BAP1). In the mouse, Vhl is on a different chromosome than Bap1. Thus, whereas loss of 3p in humans simultaneously deletes one copy of BAP1, loss of heterozygosity in the corresponding Vhl region in the mouse would not affect Bap1. To test the role of BAP1 in ccRCC development, we generated mice deficient for either Vhl or Vhl together with one allele of Bap1 in nephron progenitor cells. Six2-Cre;Vhl(F/F);Bap1(F/+) mice developed ccRCC, but Six2-Cre;Vhl(F/F) mice did not. Kidneys from Six2-Cre;Vhl(F/F);Bap1(F/+) mice resembled kidneys from humans with VHL syndrome, containing multiple lesions spanning from benign cysts to cystic and solid RCC. Although the tumors were small, they showed nuclear atypia and exhibited features of human ccRCC. These results provide an explanation for why VHL heterozygous humans, but not mice, develop ccRCC. They also explain why a mouse model of ccRCC has been lacking. More broadly, our data suggest that differences in tumor predisposition across species may be explained, at least in part, by differences in the location of two-hit tumor suppressor genes across the genome.


Assuntos
Carcinoma de Células Renais/genética , Modelos Animais de Doenças , Genes Supressores de Tumor , Falência Renal Crônica/genética , Neoplasias Renais/genética , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina Tiolesterase/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Idade de Início , Alelos , Animais , Linhagem da Célula , Mapeamento Cromossômico , Feminino , Genes Reporter , Genes Sintéticos , Predisposição Genética para Doença , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Falência Renal Crônica/sangue , Falência Renal Crônica/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Genéticos , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/patologia , Mutação , Fenótipo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Especificidade da Espécie , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Proteína Supressora de Tumor Von Hippel-Lindau/antagonistas & inibidores , Proteína Supressora de Tumor Von Hippel-Lindau/genética
17.
Int J Mol Sci ; 18(4)2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420207

RESUMO

The transforming growth factor-ß (TGFß) family signaling pathways play an important role in regulatory cellular networks and exert specific effects on developmental programs during embryo development. However, the function of TGFß signaling pathways on the early kidney development remains unclear. In this work, we aim to detect the underlying role of TGFß type II receptor (TßRII) in vitro, which has a similar expression pattern as the crucial regulator Six2 during early kidney development. Firstly, the 5-ethynyl-2'-deoxyuridine (EdU) assay showed knock down of TßRII significantly decreased the proliferation ratio of metanephric mesenchyme (MM) cells. Additionally, real-time Polymerase Chain Reaction (PCR) and Western blot together with immunofluorescence determined that the mRNA and protein levels of Six2 declined after TßRII knock down. Also, Six2 was observed to be able to partially rescue the proliferation phenotype caused by the depletion of TßRII. Moreover, bioinformatics analysis and luciferase assay indicated Smad3 could transcriptionally target Six2. Further, the EdU assay showed that Smad3 could also rescue the inhibition of proliferation caused by the knock down of TßRII. Taken together, these findings delineate the important function of the TGFß signaling pathway in the early development of kidney and TßRII was shown to be able to promote the expression of Six2 through Smad3 mediating transcriptional regulation and in turn activate the proliferation of MM cells.


Assuntos
Proteínas de Homeodomínio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proliferação de Células , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Humanos , Rim/embriologia , Rim/metabolismo , Proteínas do Tecido Nervoso/genética , Organogênese/genética , Fenótipo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/deficiência , Receptores de Fatores de Crescimento Transformadores beta/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
18.
Semin Cell Dev Biol ; 36: 57-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25128731

RESUMO

The generation of nephrons during development depends on differentiation via a mesenchymal to epithelial transition (MET) of self-renewing, tissue-specific stem cells confined to a specific anatomic niche of the nephrogenic cortex. These cells may transform to generate oncogenic stem cells and drive pediatric renal cancer. Once nephron epithelia are formed the view of post-MET tissue renal growth and maintenance by adult tissue-specific epithelial stem cells becomes controversial. Recently, genetic lineage tracing that followed clonal evolution of single kidney cells showed that the need for new cells is constantly driven by fate-restricted unipotent clonal expansions in varying kidney segments arguing against a multipotent adult stem cell model. Lineage-restriction was similarly maintained in kidney organoids grown in culture. Importantly, kidney cells in which Wnt was activated were traced to give significant clonal progeny indicating a clonogenic hierarchy. In vivo nephron epithelia may be endowed with the capacity akin to that of unipotent epithelial stem/progenitor such that under specific stimuli can clonally expand/self renew by local proliferation of mature differentiated cells. Finding ways to ex vivo preserve and expand the observed in vivo kidney-forming capacity inherent to both the fetal and adult kidneys is crucial for taking renal regenerative medicine forward. Some of the strategies used to achieve this are sorting human fetal nephron stem/progenitor cells, growing adult nephrospheres or reprogramming differentiated kidney cells toward expandable renal progenitors.


Assuntos
Rim/citologia , Rim/embriologia , Células-Tronco Multipotentes/citologia , Organogênese/fisiologia , Células-Tronco/citologia , Células-Tronco Adultas/citologia , Diferenciação Celular , Células Epiteliais/citologia , Humanos , Mesoderma/citologia , Tumor de Wilms/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
19.
Int J Mol Sci ; 17(9)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27618015

RESUMO

The metanephric mesenchyme (MM) cells are a subset of kidney progenitor cells and play an essential role in mesenchymal-epithelial transition (MET), the key step of nephron generation. Six2, a biological marker related to Wnt signaling pathway, promotes the proliferation, inhibits the apoptosis and maintains the un-differentiation of MM cells. Besides, LiCl is an activator of Wnt signaling pathway. However, the role of LiCl in cellular regulation of MM cells remains unclear, and the relationship between LiCl and Six2 in this process is also little known. Here, we performed EdU assay and flow cytometry assay to, respectively, detect the proliferation and apoptosis of MM cells treated with LiCl of increasing dosages. In addition, reverse transcription-PCR (RT-PCR) and Western-blot were conducted to measure the expression of Six2 and some maker genes of Wnt and bone-morphogenetic-protein (BMP) signaling pathway. Furthermore, luciferase assay was also carried out to detect the transcriptional regulation of Six2. Then we found LiCl promoted MM cell proliferation at low-concentration (10, 20, 30, and 40 mM). The expression of Six2 was dose-dependently increased in low-concentration (10, 20, 30, and 40 mM) at both mRNA and protein level. In addition, both of cell proliferation and Six2 expression in MM cells declined when dosage reached high-concentration (50 mM). However, Six2 knock-down converted the proliferation reduction at 50 mM. Furthermore, Six2 deficiency increased the apoptosis of MM cells, compared with negative control cells at relative LiCl concentration. However, the abnormal rise of apoptosis at 30 mM of LiCl concentration implies that it might be the reduction of GSK3ß that increased cell apoptosis. Together, these demonstrate that LiCl can induce the proliferation and apoptosis of MM cells coordinating with Six2.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Proteínas de Homeodomínio/metabolismo , Cloreto de Lítio/farmacologia , Fatores de Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Fatores de Transcrição/genética , Via de Sinalização Wnt
20.
Int J Mol Sci ; 17(8)2016 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-27509493

RESUMO

Nephron progenitor cells surround around the ureteric bud tips (UB) and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the proliferation of mesenchymal cells in mouse embryos. However, the role of Zeb1 in nephrons generation is not clear, especially in metanephric mesenchyme (MM). Here, we detected cell proliferation, apoptosis and migration in MM cells by EdU assay, flow cytometry assay and wound healing assay, respectively. Meanwhile, Western and RT-PCR were used to measure the expression level of Zeb1 and Six2 in MM cells and developing kidney. Besides, the dual-luciferase assay was conducted to study the molecular relationship between Zeb1 and Six2. We found that knock-down of Zeb1 decreased cell proliferation, migration and promoted cell apoptosis in MM cells and Zeb1 overexpression leaded to the opposite data. Western-blot and RT-PCR results showed that knock-down of Zeb1 decreased the expression of Six2 in MM cells and Zeb1 overexpression contributed to the opposite results. Similarly, Zeb1 promoted Six2 promoter reporter activity in luciferase assays. However, double knock-down of Zeb1 and Six2 did not enhance the apoptosis of MM cells compared with control cells. Nevertheless, double silence of Zeb1 and Six2 repressed cell proliferation. In addition, we also found that Zeb1 and Six2 had an identical pattern in distinct developing phases of embryonic kidney. These results indicated that there may exist a complicated regulation network between Six2 and Zeb1. Together, we demonstrate Zeb1 promotes proliferation and apoptosis and inhibits the migration of MM cells, in association with Six2.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Rim/crescimento & desenvolvimento , Mesoderma/citologia , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa