Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768201

RESUMO

Monocytes constitute a heterogenous group of antigen-presenting cells that can be subdivided based on CD14, CD16 and SLAN expression. This division reflects the functional diversity of cells that may play different roles in a variety of pathologies including gliomas. In the current study, the three monocyte subpopulations: classical (CD14+ CD16+ SLAN-), intermediate (CD14dim CD16+ SLAN-) and non-classical (CD14low/- CD16+ SLAN+) in glioma patients' peripheral blood were analysed with flow cytometry. The immune checkpoint molecule (PD-1, PD-L1, SIRPalpha, TIM-3) expression along with pro- and anti-inflammatory cytokines (TNF, IL-12, TGF-beta, IL-10) were assessed. The significant overproduction of anti-inflammatory cytokines by intermediate monocytes was observed. Additionally, SLAN-positive cells overexpressed IL-12 and TNF when compared to the other two groups of monocytes. In conclusion, these results show the presence of different profiles of glioma patient monocytes depending on CD14, CD16 and SLAN expression. The bifold function of monocyte subpopulations might be an additional obstacle to the effectiveness of possible immunotherapies.


Assuntos
Glioma , Monócitos , Humanos , Monócitos/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Receptores de IgG/metabolismo , Citocinas/metabolismo , Citometria de Fluxo , Anti-Inflamatórios/metabolismo , Glioma/metabolismo , Interleucina-12/metabolismo
2.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328450

RESUMO

Monocytes are one of the least studied immune cells with a potentially important role in the pathogenesis of chronic lymphocytic leukemia (CLL). Nevertheless, data regarding the role of subpopulations of monocytes in the CLL microenvironment are still limited. For the very first time, this study presents an assessment of monocyte subsets divided according to SLAN and CD16 expression in CLL patients. The study involved 70 freshly diagnosed CLL patients and 35 healthy donors. Using flow cytometry, monocyte subpopulations were assessed among PBMCs. CD14+ monocytes can be divided into: "classical" (CD14+CD16-SLAN-), "intermediate" (CD14+CD16+SLAN-) and "non-classical" (CD14dimCD16+SLAN+). In our study, we noted an increased percentage of non-classical monocytes with intracellular expression of TNF and IL-12. On the other hand, among the intermediate monocytes, a significantly higher percentage of cells synthesizing anti-inflammatory IL-10 was detected. The percentage of CD14dimCD16+SLAN+ monocytes producing TNF and IL-12 decreased with the stage of CLL and inversely correlated with the expression of the prognostic factors ZAP-70 and CD38. Moreover, the percentage of CD14dimCD16+SLAN+ monocytes producing TNF and IL-12 was lower in CLL patients requiring treatment. This may indicate the beneficial effect of non-classical monocytes on the anti-tumor response.


Assuntos
Interleucina-12 , Leucemia Linfocítica Crônica de Células B , Proteínas Ligadas por GPI/metabolismo , Humanos , Interleucina-12/metabolismo , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Monócitos/metabolismo , Receptores de IgG/metabolismo , Microambiente Tumoral
3.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35887009

RESUMO

Fruit ripening is usually accompanied by anthocyanin accumulation. Ethylene is key in ripening-induced anthocyanin production in many fruits. However, the effects of fruit ripening and ethylene on anthocyanin biosynthesis in purple tomato fruits are unclear. This study shows that bagged fruits of the purple tomato cultivar 'Indigo Rose' failed to produce anthocyanins at the red ripening stage after bag removal. In contrast, the bagged immature fruits accumulated a significant amount of anthocyanins after removing the bags. The transcriptomic analyses between immature and red ripening fruit before and after bag removal revealed that anthocyanin-related genes, including the key positive R2R3-MYB regulator SlAN2-like, were repressed in the red ripening fruit. The 86 identified transcription factors, including 13 AP2/ERF, 7 bZIP, 8 bHLH and 6 MYB, showed significantly different expressions between immature and red ripening fruits. Moreover, subjecting bagged immature fruits to exogenous ethylene treatment significantly inhibited anthocyanin accumulation and the expression of anthocyanin-related genes, including the anthocyanin structure genes and SlAN2-like. Thus, ethylene inhibits anthocyanin biosynthesis by repressing the transcription of SlAN2-like and other anthocyanin-related genes. These findings provide new insights into anthocyanin regulation in purple tomato fruit.


Assuntos
Solanum lycopersicum , Antocianinas/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
FASEB J ; 34(7): 9269-9284, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32413173

RESUMO

Monocytic cells perform crucial homeostatic and defensive functions. However, their fate and characterization at the transcriptomic level in human tissues are partially understood, often as a consequence of the lack of specific markers allowing their unequivocal identification. The 6-sulfo LacNAc (slan) antigen identifies a subset of non-classical (NC) monocytes in the bloodstream, namely the slan+ -monocytes. In recent studies, we and other groups have reported that, in tonsils, slan marks dendritic cell (DC)-like cells, as defined by morphological, phenotypical, and functional criteria. However, subsequent investigations in lymphomas have uncovered a significant heterogeneity of tumor-infiltrating slan+ -cells, including a macrophage-like state. Based on their emerging role in tissue inflammation and cancer, herein we investigated slan+ -cell fate in tonsils by using a molecular-based approach. Hence, RNA from tonsil slan+ -cells, conventional CD1c+ DCs (cDC2) and CD11b+ CD14+ -macrophages was subjected to gene expression analysis. For comparison, transcriptomes were also obtained from blood cDC2, classical (CL), intermediate (INT), NC, and slan+ -monocytes. Data demonstrate that the main trajectory of human slan+ -monocytes infiltrating the tonsil tissue is toward a macrophage-like population, displaying molecular features distinct from those of tonsil CD11b+ CD14+ -macrophages and cDC2. These findings provide a novel view on the terminal differentiation path of slan+ -monocytes, which is relevant for inflammatory diseases and lymphomas.


Assuntos
Amino Açúcares/metabolismo , Células Dendríticas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Tonsila Palatina/metabolismo , Tonsilite/genética , Estudos de Casos e Controles , Células Cultivadas , Células Dendríticas/citologia , Perfilação da Expressão Gênica , Humanos , Macrófagos/citologia , Monócitos/citologia , Tonsila Palatina/citologia , Tonsilite/metabolismo , Tonsilite/patologia
5.
Plant Cell Rep ; 39(6): 799-809, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32221665

RESUMO

KEY MESSAGE: Combining phenotype and gene expression analysis of the CRISPR/Cas9-induced SlAN2 mutants, we revealed that SlAN2 specifically regulated anthocyanin accumulation in vegetative tissues in purple tomato cultivar 'Indigo Rose.' Anthocyanins play an important role in plant development and also exhibit human health benefits. The tomato genome contains four highly homologous anthocyanin-related R2R3-MYB transcription factors: SlAN2, SlANT1, SlANT1-like, and SlAN2-like/Aft. SlAN2-like/Aft regulates anthocyanin accumulation in the fruit; however, the genetic function of the other three factors remains unclear. To better understand the function of R2R3-MYB transcription factors, we conducted targeted mutagenesis of SlAN2 in the purple tomato cultivar 'Indigo Rose' using clustered regularly interspersed short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). The SlAN2 mutants had a fruit color and anthocyanin content similar to cv. 'Indigo Rose,' while the anthocyanin content and the relative expression levels of several anthocyanin-related genes in vegetative tissues were significantly lower in the SlAN2 mutant relative to cv. Indigo Rose. Furthermore, we found that anthocyanin biosynthesis is controlled by different regulators between tomato hypocotyls and cotyledons. In addition, SlAN2 mutants were shorter, with smaller and lighter fruits than cv. 'Indigo Rose.' Our findings further our understanding of anthocyanin production in tomato and other plant species.


Assuntos
Antocianinas/biossíntese , Antocianinas/genética , Sistemas CRISPR-Cas , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Cotilédone/genética , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Solanum lycopersicum/metabolismo , Mutação , Fenótipo , Desenvolvimento Vegetal , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Análise de Sequência de DNA , Transcriptoma , Transformação Genética
6.
Am J Physiol Cell Physiol ; 317(3): C600-C612, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314582

RESUMO

Mitosis is a complicated process by which eukaryotic cells segregate duplicated genomes into two daughter cells. To achieve the goal, numerous regulators have been revealed to control mitosis. The oncogenic Aurora-A is a versatile kinase responsible for the regulation of mitosis including chromosome condensation, spindle assembly, and centrosome maturation through phosphorylating a range of substrates. However, overexpression of Aurora-A bypasses cytokinesis, thereby generating multiple nuclei by unknown the mechanisms. To explore the underlying mechanisms, we found that SLAN, a potential tumor suppressor, served as a substrate of Aurora-A and knockdown of SLAN induced immature cytokinesis. Aurora-A phosphorylates SLAN at T573 under the help of the scaffold protein 14-3-3η. The SLAN phosphorylation-mimicking mutants T573D or T573E, in contrast to the phosphorylation-deficiency mutant T573A, induced higher level of multinucleated cells, and the endogenous SLAN p573 resided at spindle midzone and midbody with the help of the microtubule motor MKLP1. The Aurora-A- or SLAN-induced multiple nuclei was prevented by the knockdown of 14-3-3η or Aurora-A respectively, thereby revealing a 14-3-3η/Aurora-A/SLAN cascade negatively controlling cytokinesis. Intriguingly, SLAN T573D or T573E inactivated and T573A activated the key cytokinesis regulator RhoA. RhoA interacted with SLAN np573, i.e., the nonphosphorylated form of SLAN at T573, which localized to the spindle midzone dictated by RhoA and ECT2. Therefore, we report here that SLAN mediates the Aurora-A-triggered cytokinesis bypass and SLAN plays dual roles in that process depending on its phosphorylation status.


Assuntos
Aurora Quinase A/biossíntese , Citocinese/fisiologia , Regulação Enzimológica da Expressão Gênica , Proteínas Supressoras de Tumor/metabolismo , Aurora Quinase A/genética , Células HEK293 , Humanos , Fosforilação/fisiologia
7.
Gastroenterology ; 145(6): 1380-91.e1, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23993972

RESUMO

BACKGROUND & AIMS: Abnormal activity of innate immune cells and T-helper (Th) 17 cells has been implicated in the pathogenesis of autoimmune and inflammatory diseases, including Crohn's disease (CD). Intestinal innate immune (myeloid) cells have been found to induce development of Th17 cells in mice, but it is not clear if this occurs in humans or in patients with CD. We investigated whether human intestinal lamina propria cells (LPCs) induce development of Th17 cells and whether these have a role in the pathogenesis of CD. METHODS: Normal intestinal mucosa samples were collected from patients with colorectal cancer and noninflamed and inflamed regions of mucosa were collected from patients with CD. LPCs were isolated by enzymatic digestion and analyzed for expression of HLA-DR, lineage markers CD14 and CD163 using flow cytometry. RESULTS: Among HLA-DR(high) Lin(-) cells, we identified a subset of CD14(+) CD163(low) cells in intestinal LPCs; this subset expressed Toll-like receptor (TLR) 2, TLR4, and TLR5 mRNAs and produced interleukin (IL)-6, IL-1ß, and tumor necrosis factor in response to lipopolysaccharide. In vitro co-culture with naïve T cells revealed that CD14(+) CD163(low) cells induced development of Th17 cells. CD14(+) CD163(low) cells from inflamed regions of mucosa of patients with CD expressed high levels of IL-6, IL-23p19, and tumor necrosis factor mRNAs, and strongly induced Th17 cells. CD14(+) CD163(low) cells from the noninflamed mucosa of patients with CD also had increased abilities to induce Th17 cells compared with those from normal intestinal mucosa. CONCLUSIONS: CD14(+) CD163(low) cells in intestinal LPCs from normal intestinal mucosa induce differentiation of naive T cells into Th17 cells; this activity is increased in mucosal samples from patients with CD. These findings show how intestinal myeloid cell types could contribute to pathogenesis of CD and possibly other Th17-associated diseases.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Colo/patologia , Doença de Crohn/patologia , Receptores de Lipopolissacarídeos/metabolismo , Mucosa/patologia , Células Mieloides/patologia , Receptores de Superfície Celular/metabolismo , Células Th17/patologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Colo/metabolismo , Doença de Crohn/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa/metabolismo , Células Mieloides/imunologia , Fenótipo , Fator de Necrose Tumoral alfa/metabolismo
9.
J Allergy Clin Immunol ; 132(5): 1184-1193.e8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23890755

RESUMO

BACKGROUND: The spectrum of TNF-α-producing cells in patients with psoriasis, as well as their fate during treatment with TNF-α antagonists, is not clearly defined. OBJECTIVE: We sought to analyze the effects of anti-TNF-α treatment on TNF-α(+) cells in the skin and blood of patients with psoriasis. METHODS: Lesional psoriatic skin was analyzed by means of immunohistologic staining and quantitative RT-PCR, and peripheral blood cells were phenotypically characterized by means of multicolor immunofluorescence labeling. RESULTS: By using a tyramide-based signal amplification system, TNF-α was detected in dermal CD45(+)HLA-DR(+) leukocytes consisting of CD11c(+) dendritic cells and CD163(+) macrophages. In peripheral blood we observed an increase in the TNF-α-producing myeloid subsets of CD14(-) 6-sulfo-LacNac(+) dendritic cells and CD14(+)CD16(+) "intermediate" monocytes compared with healthy control subjects. Strikingly, we did not find detectable levels of TNF-α in other cells, including keratinocytes or T cells, making these cell types unlikely targets of TNF-α blockers. Up to 48 hours after the intravenous administration of the TNF-α antagonist infliximab, we encountered no overt changes in numbers of TNF-α(+) cells or signs of apoptosis in lesional psoriatic skin. Yet we observed a rapid decrease in IL-12p40, IL-1ß, CCL20, and IL12RB1 mRNA levels. Consistently, TNF-α blockade during in vitro stimulation of 6-sulfo-LacNac DCs resulted in decreased production of IL-12 and IL-23 but not IL-6. In a mixed leukocyte reaction infliximab led to significantly decreased proliferation rates of T cells independent of the Fc antibody fragment. CONCLUSION: The decrease in tissue inflammation during anti-TNF-α therapy is not due to immediate killing of TNF-α-producing cells but rather results from a rapid downregulation of the pathogenic IL-12/IL-23-driven immune response.


Assuntos
Amino Açúcares/metabolismo , Anticorpos Monoclonais/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Adulto , Antígenos CD/metabolismo , Estudos de Casos e Controles , Células Dendríticas/imunologia , Expressão Gênica , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Infliximab , Contagem de Leucócitos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Macrófagos/imunologia , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Psoríase/imunologia , Psoríase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
10.
Exp Dermatol ; 22(8): 535-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23879812

RESUMO

Dermal dendritic cells (DCs) play a central role in the immunopathology of psoriasis. We previously identified slanDCs as pro-inflammatory TNF-α, IL-23- and IL-12-producing DCs in human blood and as prominent inflammatory dermal TNF-α secreting and CD11c-positive DC subset in psoriasis. Here, we ask for the effects of TNF-α-inhibition on inflammatory slanDCs in skin and blood of 10 patients with psoriasis during 24 weeks of treatment with etanercept. Treatment with etanercept reduced the frequency of dermal slanDCs but did not induce apoptosis as determined by lack of increased active caspase-3-expression. In parallel, we found increased frequencies of slanDCs in blood which expressed lower levels of HLA-DR. Stimulating slanDCs isolated from the blood of healthy donors in vitro induced a strong production of IL-1ß, IL-6, IL-23 and IL-12p70. This capacity was efficiently reduced in the presence of etanercept, thereby indicating that TNF-α is an autocrine stimulus for maturation and pro-inflammatory cytokine production of slanDCs. In vivo, we noticed that treatment with etanercept did reduce the number of dermal slanDCs in parallel to the overall expression of TNF-α and IL-23p19. However, successful treatment did not down-regulated the percentage of dermal slanDCs that stained positive for TNF-α and IL-23p19 indicating that remaining slanDCs kept their pro-inflammatory capacity. This study provides novel insights into the immune regulatory properties of etanercept at the level of inflammatory slanDCs in vivo in skin and blood as well as in vitro.


Assuntos
Amino Açúcares/sangue , Células Dendríticas/efeitos dos fármacos , Imunoglobulina G/uso terapêutico , Inflamação/tratamento farmacológico , Psoríase/tratamento farmacológico , Receptores do Fator de Necrose Tumoral/uso terapêutico , Pele/efeitos dos fármacos , Adulto , Idoso , Apoptose , Caspase 3/metabolismo , Etanercepte , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Interleucina-23/metabolismo , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Front Immunol ; 14: 1287656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965335

RESUMO

Introduction: Peripheral monocytes in humans are conventionally divided into classical (CL, CD14++CD16-), intermediate (INT, CD14++CD16+) and non-classical (NC, CD14dim/-CD16++) cells, based on their expression levels of CD14 and CD16. A major fraction of the NC-monocytes has been shown to express the 6-sulfo LacNAc (slan) antigen, but whether these slan+/NC-monocytes represent the prototypical non-classical monocytes or whether they are simply a sub-fraction with identical features as the remainder of NC monocytes is still unclear. Methods: We analyzed transcriptome (by bulk and single cell RNA-seq), proteome, cell surface markers and production of discrete cytokines by peripheral slan+/NC- and slan-/NC-monocytes, in comparison to total NC-, CL- and INT- monocytes. Results: By bulk RNA-seq and proteomic analysis, we found that slan+/NC-monocytes express higher levels of genes and proteins specific of NC-monocytes than slan-/NC-monocytes do. Unsupervised clustering of scRNA-seq data generated one cluster of NC- and one of INT-monocytes, where all slan+/NC-monocytes were allocated to the NC-monocyte cluster, while slan-/NC-monocytes were found, in part (13.4%), within the INT-monocyte cluster. In addition, total NC- and slan-/NC-monocytes, but not slan+/NC-monocytes, were found by both bulk RNA-seq and scRNA-seq to contain a small percentage of natural killer cells. Conclusion: In addition to comparatively characterize total NC-, slan-/NC- and slan+/NC-monocyte transcriptomes and proteomes, our data prove that slan+/NC-, but not slan-/NC-, monocytes are more representative of prototypical NC-monocytes.


Assuntos
Monócitos , Proteômica , Humanos , Leucócitos Mononucleares
12.
Biomolecules ; 13(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830562

RESUMO

In this exploratory prospective observational study on 40 small cell lung cancer (SCLC) patients treated with a combination of chemotherapy and immune checkpoint inhibitors, blood immune cells were characterized by multi-color flow cytometry at the baseline and at the third therapy cycle. The numbers of neutrophils and of T-, B-, and NK cells, as well as the frequency of HLA-DRlow monocytes, 6-SulfoLacNAc (slan)+ non-classical monocytes and circulating dendritic cell (DC) subtypes were determined. The prognostic value of the parameters was evaluated by the patient's survival analysis with overall survival (OS) as the primary endpoint. In addition, blood cell parameters from SCLC patients were compared to those from non-SCLC (NSCLC). The global median OS of patients was 10.4 ± 1.1 months. Disease progression (15% of patients) correlated with a higher baseline neutrophil/lymphocyte ratio (NLR), more HLA-DRlow monocytes, and lower NK cell and DC numbers. The risk factors for poor OS were the presence of brain/liver metastases, a baseline NLR ≥ 6.1, HLA-DRlow monocytes ≥ 21% of monocytes, slan+ non-classical monocytes < 0.12%, and/or CD1c+ myeloid DC < 0.05% of leukocytes. Lymphocytic subpopulations did not correlate with OS. When comparing biomarkers in SCLC versus NSCLC, SCLC had a higher frequency of brain/liver metastases, a higher NLR, the lowest DC frequencies, and lower NK cell numbers. Brain/liver metastases had a substantial impact on the survival of SCLC patients. At the baseline, 45% of SCLC patients, but only 24% of NSCLC patients, had between three and five risk factors. A high basal NLR, a high frequency of HLA-DRlow monocytes, and low levels of slan+ non-classical monocytes were associated with poor survival in all lung cancer histotypes. Thus, the blood immune cell signature might contribute to a better prediction of SCLC patient outcomes and may uncover the pathophysiological peculiarities of this tumor entity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Hepáticas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígenos HLA-DR , Células Matadoras Naturais , Neutrófilos , Neoplasias Hepáticas/tratamento farmacológico
13.
Cancers (Basel) ; 15(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37835567

RESUMO

An important challenge remains in identifying the baseline characteristics of cancer patients who will mostly benefit from immune checkpoint inhibitor (ICI) therapies. Furthermore, biomarkers could help in the choice of an optimal therapy duration after a primary therapy response. In this pilot study, the time courses of four different immune cell parameters were followed in 12 patients with advanced non-small-cell lung cancer (NSCLC) undergoing ICI therapy combined with chemotherapy and surviving at least 12 months. Blood was collected at the time point of the first and third antibody administration, as well as after 12 months of patients' survival. Using multi-color flow cytometry, two suppressive markers (neutrophil/lymphocyte ratio (NLR) and the frequency of circulating HLA-DRlow monocytes), as well as two markers of an ongoing immune response (6-Sulfo LacNAc (slan)+ non-classical monocytes and dendritic cell (DC) subtypes), were determined. In most of those who survived > 12 months, a low NLR and a low number of HLA-DRlow monocytes combined with clearly detectable numbers of slan+ non-classical monocytes and of DC subtypes were seen. Two of the patients had an increase in the suppressive markers paired with a decrease in slan+ non-classical monocytes and in DC subtypes, which, in at least one patient, was the correlate of an ongoing clinical progression. Our results implicate that the NLR, specific subtypes of monocytes, and the number of blood DCs might be useful predictive biomarkers for cancer patients during long-term treatment with ICI/chemotherapy.

15.
J Leukoc Biol ; 112(5): 1053-1063, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35866369

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in severe immune dysfunction, hospitalization, and death. Many patients also develop long-COVID-19, experiencing symptoms months after infection. Although significant progress has been made in understanding the immune response to acute SARS-CoV-2 infection, gaps remain in our knowledge of how innate immunity influences disease kinetics and severity. We hypothesized that cytometry by time-of-flight analysis of PBMCs from healthy and infected subjects would identify novel cell surface markers and innate immune cell subsets associated with COVID-19 severity. In this pursuit, we identified monocyte and dendritic cell subsets that changed in frequency during acute SARS-CoV-2 infection and correlated with clinical parameters of disease severity. Subsets of nonclassical monocytes decreased in frequency in hospitalized subjects, yet increased in the most severe patients and positively correlated with clinical values associated with worse disease severity. CD9, CD163, PDL1, and PDL2 expression significantly increased in hospitalized subjects, and CD9 and 6-Sulfo LacNac emerged as the markers that best distinguished monocyte subsets amongst all subjects. CD9+ monocytes remained elevated, whereas nonclassical monocytes remained decreased, in the blood of hospitalized subjects at 3-4 months postinfection. Finally, we found that CD9+ monocytes functionally released more IL-8 and MCP-1 after LPS stimulation. This study identifies new monocyte subsets present in the blood of COVID-19 patients that correlate with disease severity, and links CD9+ monocytes to COVID-19 progression.


Assuntos
COVID-19 , Humanos , Monócitos , SARS-CoV-2 , Interleucina-8/metabolismo , Lipopolissacarídeos/metabolismo , Células Mieloides , Hospitalização , Tetraspanina 29/metabolismo , Síndrome de COVID-19 Pós-Aguda
16.
Viruses ; 13(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34578386

RESUMO

Monocytes are key modulators in acute viral infections, determining both inflammation and development of specific B- and T-cell responses. Recently, these cells were shown to be associated to different SARS-CoV-2 infection outcome. However, their role in acute HIV-1 infection remains unclear. We had the opportunity to evaluate the mononuclear cell compartment in an early hyper-acute HIV-1 patient in comparison with an untreated chronic HIV-1 and a cohort of SARS-CoV-2 infected patients, by high dimensional flow cytometry using an unsupervised approach. A distinct polarization of the monocyte phenotype was observed in the two viral infections, with maintenance of pro-inflammatory M1-like profile in HIV-1, in contrast to the M2-like immunosuppressive shift in SARS-CoV-2. Noticeably, both acute infections had reduced CD14low/-CD16+ non-classical monocytes, with depletion of the population expressing Slan (6-sulfo LacNac), which is thought to contribute to immune surveillance through pro-inflammatory properties. This depletion indicates a potential role of these cells in acute viral infection, which has not previously been explored. The inflammatory state accompanied by the depletion of Slan+ monocytes may provide new insights on the critical events that determine the rate of viral set-point in acute HIV-1 infection and subsequent impact on transmission and reservoir establishment.


Assuntos
Amino Açúcares/imunologia , COVID-19/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Monócitos/imunologia , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Front Immunol ; 11: 1658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903610

RESUMO

HIV-2 infection is characterized by low viremia and slow disease progression as compared to HIV-1 infection. Circulating CD14++CD16+ monocytes were found to accumulate and CD11c+ conventional dendritic cells (cDC) to be depleted in a Portuguese cohort of people living with HIV-2 (PLWHIV-2), compared to blood bank healthy donors (HD). We studied more precisely classical monocytes; CD16+ inflammatory (intermediate, non-classical and slan+ monocytes, known to accumulate during viremic HIV-1 infection); cDC1, important for cross-presentation, and cDC2, both depleted during HIV-1 infection. We analyzed by flow cytometry these PBMC subsets from Paris area residents: 29 asymptomatic, untreated PLWHIV-2 from the IMMUNOVIR-2 study, part of the ANRS-CO5 HIV-2 cohort: 19 long-term non-progressors (LTNP; infection ≥8 years, undetectable viral load, stable CD4 counts≥500/µL; 17 of West-African origin -WA), and 10 non-LTNP (P; progressive infection; 9 WA); and 30 age-and sex-matched controls: 16 blood bank HD with unknown geographical origin, and 10 HD of WA origin (GeoHD). We measured plasma bacterial translocation markers by ELISA. Non-classical monocyte counts were higher in GeoHD than in HD (54 vs. 32 cells/µL, p = 0.0002). Slan+ monocyte counts were twice as high in GeoHD than in HD (WA: 28 vs. 13 cells/µL, p = 0.0002). Thus cell counts were compared only between participants of WA origin. They were similar in LTNP, P and GeoHD, indicating that there were no HIV-2 related differences. cDC counts did not show major differences between the groups. Interestingly, inflammatory monocyte counts correlated with plasma sCD14 and LBP only in PLWHIV-2, especially LTNP, and not in GeoHD. In conclusion, in LTNP PLWHIV-2, inflammatory monocyte counts correlated with LBP or sCD14 plasma levels, indicating a potential innate immune response to subclinical bacterial translocation. As GeoHD had higher inflammatory monocyte counts than HD, our data also show that specific controls are important to refine innate immunity studies.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV-2/imunologia , Monócitos/imunologia , Proteínas Supressoras de Tumor/imunologia , Adulto , África Ocidental/etnologia , Idoso , Biomarcadores/sangue , População Negra , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Infecções por HIV/diagnóstico , Infecções por HIV/etnologia , Infecções por HIV/metabolismo , Sobreviventes de Longo Prazo ao HIV , Interações Hospedeiro-Patógeno , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Paris/epidemiologia , Fenótipo , Proteínas Supressoras de Tumor/sangue , Adulto Jovem
18.
Front Immunol ; 10: 2052, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572354

RESUMO

Monocytes are subdivided into three subsets, which have different phenotypic and functional characteristics and different roles in inflammation and malignancy. When in man CD14 and CD16 monoclonal antibodies are used to define these subsets, then the distinction of non-classical CD14low and intermediate CD14high monocytes requires setting a gate in what is a gradually changing level of CD14 expression. In the search for an additional marker to better dissect the two subsets we have explored the marker 6-sulfo LacNAc (slan). Slan is a carbohydrate residue originally described to be expressed on the cell surface of a type of dendritic cell in human blood. We elaborate herein that the features of slan+ cells are congruent with the features of CD16+ non-classical monocytes and that slan is a candidate marker for definition of non-classical monocytes. The use of this marker may help in studying the role of non-classical monocytes in health and in diagnosis and monitoring of disease.


Assuntos
Amino Açúcares/metabolismo , Biomarcadores/metabolismo , Células Dendríticas/imunologia , Inflamação/imunologia , Monócitos/imunologia , Neoplasias/imunologia , Animais , Humanos , Fenótipo
19.
Front Immunol ; 10: 948, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191513

RESUMO

The human mononuclear phagocytes system consists of dendritic cells (DCs), monocytes, and macrophages having different functions in bridging innate and adaptive immunity. Among the heterogeneous population of monocytes the cell surface marker slan (6-sulfo LacNAc) identifies a specific subset of human CD14- CD16+ non-classical monocytes, called slan+ monocytes (slanMo). In this review we discuss the identity and functions of slanMo, their contributions to immune surveillance by pro-inflammatory cytokine production, and cross talk with T cells and NK cells. We also consider the role of slanMo in the regulation of chronic inflammatory diseases and cancer. Finally, we highlight unresolved questions that should be the focus of future research.


Assuntos
Amino Açúcares , Monócitos/imunologia , Amino Açúcares/imunologia , Amino Açúcares/metabolismo , Humanos
20.
Oncoimmunology ; 7(7): e1444411, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900053

RESUMO

Multiple myeloma (MM) results from expansion of abnormal plasma cells in the bone marrow (BM). Previous studies have shown that monocytes play a crucial role in MM pathophysiology. A 6-sulfo LacNAc-expressing population of dendritic cells (Slan-DCs) that overlaps with intermediate and non-classical monocytes in terms of phenotype has been described. Slan-DCs represent a circulating and tissue proinflammatory myeloid population which has been shown to play a role in different cancer contexts, and which exhibits a remarkable plasticity. Herein, we studied Slan-DCs from the BM and blood of MM patients. We performed quantitative and functional analyses of these cells from 54 patients with newly diagnosed, symptomatic MM, 21 patients with MGUS and 24 responding MM patients. We found that circulating Slan-DCs were significantly decreased in MM patients as compared to those of healthy donors or patients with MGUS, while CD14+CD16+ intermediate monocytes accumulate in the BM. Moreover, after activation with TLR7/8 ligand R848, IL-12-producing Slan-DCs from the BM or peripheral blood from MM patients were decreased as compared with healthy donors. We show that MM cell lines or MM cells isolated from patients at diagnosis were able to inhibit the production of IL-12 by Slan-DCs, as well as to shift the phenotype of Slan-DCs towards an intermediate monocyte-like phenotype. Finally, Slan-DCs that have been cultured with MM cells reduced their capacity to induce T cell proliferation and Th1 polarization. We conclude that Slan-DCs represent previously unrecognized players in MM development and may represent a therapeutic target.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa