RESUMO
Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains â¼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. VIDEO ABSTRACT.
Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Basigina/metabolismo , Membrana Celular/metabolismo , Cromossomos Humanos Par 17/metabolismo , Técnicas de Silenciamento de Genes , Haplótipos , Hepatócitos/metabolismo , Heterozigoto , Código das Histonas , Humanos , Fígado/metabolismo , Modelos Moleculares , Transportadores de Ácidos Monocarboxílicos/químicaRESUMO
BACKGROUND: Studies have identified that diseases in pregnancy affect fetal growth and development of the newborn. In Mexican population, the gene SLC16A11 has been identified as a factor that increases the risk of developing type 2 diabetes mellitus. To date, information is scarce about its expression in gestational diabetes mellitus (GDM); epigenetic modifications due to maternal hyperglycemic state could be identified early in fetal development. PURPOSE: This study aimed to determine the SLC16A11 expression and methylation status in umbilical cord blood of newborns offspring of mothers with or without GDM. METHODS: Cross-sectional, analytic study. Pregnant patients undergoing caesarean delivery with and without GDM in the Unidad Medica de Alta Especialidad Hospital de Gineco-obstetricia #4 Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, were invited to participate. DNA was extracted from the mothers' blood cells, or umbilical cord blood cells of their newborns, and subjected to methylation status. Total RNA was used to evaluate the SLC16A11 expression by endpoint RT-PCR. Variables were analyzed with Student t. Values of p <0.05 were considered statistically significant. RESULTS: A SLC16A11 downregulation was observed for newborns, while methylation status was found in only 1 of 68 mother-child pairs. Somatometry of newborns showed no differences between groups. Differences were found in total cholesterol, triglycerides, ALT, glucose, and HbA1c. CONCLUSIONS: For the first time, a differential expression for SLC16A11 was observed in offspring. Downregulation in this gene expression could characterize the offspring from GDM. No difference was found in somatometry of newborns of mothers with and without GDM.
Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Estudos Transversais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/epidemiologia , Diabetes Gestacional/genética , Regulação para Baixo , Feminino , Sangue Fetal/metabolismo , Humanos , Recém-Nascido , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , GravidezRESUMO
OBJECTIVE: To study the association of SLC16A11 gene variants with obesity and metabolic markers in nondiabetic Chilean adults. METHODS: This cross-sectional study included 263 non-diabetic adults. The genotype of the rs75493593 polymorphism of SLC16A11 gene was performed by real-time PCR. It's association with adiposity markers (body weight, BMI, waist circumference and fat mass percentage), metabolic markers (glucose, insulin, HOMAIR, leptin, total cholesterol, LDLc, HDLc, triglycerides, ALT, GGT and hsCRP) and blood pressure was analyzed by linear regression. RESULTS: The minor allele (T) of the SLC16A11 gene (rs75493593) has a frequency of 29.7% among Chileans. Risk genotypes (GT and TT) were associated with a significant 1.49 mU/l increase in plasmatic insulin for each copy of the minor allele (95% CI: 0.12, 2.87, p < 0.05). This association remained significant after adjusting for socio-demographic variables, physical activity and smoking (1.36 mU/l, 95% CI: 0.16, 2.58 p < 0.05), but was lost when BMI was included as a confounding factor. Higher BMI was also significantly associated with polymorphic genotypes in SLC16A11, independent of socio-demographic variables. CONCLUSION: The minor allele of the SLC16A11 gene (T) is highly prevalent among Chileans and is associated with increased insulin and BMI in nondiabetic individuals. These findings suggest that the genetic variant in SLC16A11 is not only associated with type 2 diabetes as previously shown in Mexicans, but is also related to early metabolic alterations in healthy subjects that may lead to type 2 diabetes.
Assuntos
Índice de Massa Corporal , Insulina/sangue , Transportadores de Ácidos Monocarboxílicos/genética , Adulto , Chile , Estudos Transversais , Diabetes Mellitus Tipo 2 , Humanos , Circunferência da CinturaRESUMO
Solute carrier (SLC) 16A11 has been reported as a risk gene for type 2 diabetes (T2D). However, the physiological function of SLC16A11 has not yet been clarified, and the relationship between SLC16A11 and T2D condition remains unclear. Therefore, we performed an association analysis between the SLC16A11 genotype and T2D pathology. The SLC16A11 genotype was determined by direct sequencing in 85 Japanese patients with T2D. The genotypes were analyzed by Mann-Whitney's U test and Chi-square test. Six single nucleotide polymorphisms (SNPs) were detected in the SLC16A11 gene, and five of them formed a haplotype (5SNP haplotype). The 5SNP haplotype carriers had significantly higher fasting plasma glucose (FPG), total cholesterol (T-CHO), and low-density lipoprotein cholesterol (LDL-C) than the noncarriers. The SLC16A11 genotype affected the values of laboratory parameters for T2D, particularly of blood lipids. The function of SLC16A11 may be related to lipid metabolism.
Assuntos
Diabetes Mellitus Tipo 2/genética , Transportadores de Ácidos Monocarboxílicos/genética , Idoso , Povo Asiático , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Haplótipos , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Pessoa de Meia-Idade , Transportadores de Ácidos Monocarboxílicos/metabolismo , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Human genetic variants in SLC16A11 are associated with increased risk of type 2 diabetes (T2D). We previously identified two distinct mechanisms through which co-inherited T2D-risk coding and non-coding variants disrupt SLC16A11 expression and activity, thus implicating reduced SLC16A11 function as the disease-relevant direction of effect. In a recent publication, Zhao et al. (2019a) argue that human SLC16A11 coding variants confer gain of function, basing their conclusions on phenotypic changes observed following overexpression of mutant murine Slc16a11. However, data necessary to demonstrate gain-of-function activity are not reported. Furthermore, several fundamental flaws in their experimental system-including inaccurate modeling of the human variant haplotype and expression conditions that are not physiologically relevant-prevent conclusions about T2D-risk variant effects on human physiology. This Matters Arising paper is in response to Zhao et al. (2019a), published in Cell Reports. See also the response by Zhao et al. (2019b) in this issue of Cell Reports.
Assuntos
Diabetes Mellitus Tipo 2 , Animais , Mutação com Ganho de Função , Haplótipos , Humanos , Camundongos , Transportadores de Ácidos Monocarboxílicos/genéticaRESUMO
DNA variants in the SLC16A11 coding region were identified to be strongly associated with type 2 diabetes (T2DM) in a Mexican population. Previous studies suggested that these variants disrupt SLC16A11 function and therefore proposed to revive SLC16A11 levels or activity to achieve therapeutic benefit. However, with knockout mouse models, here we show that Slc16a11 depletion has no significant metabolic defects. Further studies demonstrate that reconstitution of the mutant, but not the wild-type Slc16a11, in the liver of knockout mice causes more triglyceride accumulation and induction of insulin resistance via upregulation of lipin 1, suggesting gaining of aberrant functions of the mutant protein that affects lipid metabolism. Our findings offer a different explanation to the function of these diabetic variants, challenging the concept of enhancing SLC16A11 function to treat T2DM. The contradictory results by our and previous studies suggest that how the SLC16A11 locus contributes to human metabolism warrants further investigation.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Mutação com Ganho de Função , Resistência à Insulina/genética , Transportadores de Ácidos Monocarboxílicos , Triglicerídeos , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Triglicerídeos/genética , Triglicerídeos/metabolismoRESUMO
Background: Four novel glucose metabolism risk loci (HKDC1 rs4746822, BACE2 rs6517656, SLC16A11 rs13342232 and TMEM163 rs998451) were identified in recent genome-wide association studies (GWAS) of Afro-Caribbean, European, Hispanic, Thai, Mexican, Latin American and Indian populations. None of the abovementioned SNPs has been reported in a Han Chinese population. Aim: To replicate the relationships between HKDC1 rs4746822, BACE2 rs6517656, SLC16A11 rs13342232 and TMEM163 rs998451 with gestational diabetes mellitus (GDM) in a Han Chinese population. Methods: This was a case-control study which enrolled 334 pregnant women with GDM and 367 pregnant women with normal glucose tolerance. The linear regression and logistic regression were used to estimate the association between SNPs with the risk of GDM, HOMA-IR and fasting insulin levels. The fasting insulin concentration and HOMA-IR were log10 transformed before analysis. Results: No significant differences in the alleles and genotypes of SLC16A11 rs13342232, HKDC1 rs4746822 and BACE2 rs6517656 were observed between cases and controls. After adjusting the weekly BMI growth, pre-pregnancy BMI and maternal age, under the additive model, SLC16A11 rs13342232 was associated with log10fasting serum insulin (Beta=0.046, p=0.016), log10HOMA-IR level (Beta=0.061, p=0.003) and fasting plasma glucose level (Beta=0.164, p=0.011); HKDC1 rs4746822 was associated with OGTT 2-hr plasma glucose level (Beta=0.239, p=0.016); and BACE2 rs6517656 was associated with log10fasting serum insulin (Beta=-0.053, p=0.044) and log10HOMA-IR level (Beta=-0.060, p=0.048). After correction for multiple testing, the associations of SLC16A11 and HKDC1 with glucose metabolism remained statistically significant. The A allele of TMEM163 rs998451 was not detected in this population. Conclusion: HKDC1 rs4746822, BACE2 rs6517656 and SLC16A11 rs13342232 are associated with glucose metabolism in pregnant women of Han Chinese.
RESUMO
The reactions catalyzed by the delta-5 and delta-6 desaturases (D5D/D6D), key enzymes responsible for highly unsaturated fatty acid (HUFA) synthesis, regenerate NAD+ from NADH. Here, we show that D5D/D6D provide a mechanism for glycolytic NAD+ recycling that permits ongoing glycolysis and cell viability when the cytosolic NAD+/NADH ratio is reduced, analogous to lactate fermentation. Although lesser in magnitude than lactate production, this desaturase-mediated NAD+ recycling is acutely adaptive when aerobic respiration is impaired in vivo. Notably, inhibition of either HUFA synthesis or lactate fermentation increases the other, underscoring their interdependence. Consistent with this, a type 2 diabetes risk haplotype in SLC16A11 that reduces pyruvate transport (thus limiting lactate production) increases D5D/D6D activity in vitro and in humans, demonstrating a chronic effect of desaturase-mediated NAD+ recycling. These findings highlight key biologic roles for D5D/D6D activity independent of their HUFA end products and expand the current paradigm of glycolytic NAD+ regeneration.
Assuntos
Ácidos Graxos Insaturados/metabolismo , Glicólise , NAD/metabolismo , Animais , Células Cultivadas , Dessaturase de Ácido Graxo Delta-5 , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-IdadeRESUMO
ABSTRACT Objective: To study the association of SLC16A11 gene variants with obesity and metabolic markers in nondiabetic Chilean adults. Materials and methods: This cross-sectional study included 263 non-diabetic adults. The genotype of the rs75493593 polymorphism of SLC16A11 gene was performed by real-time PCR. It's association with adiposity markers (body weight, BMI, waist circumference and fat mass percentage), metabolic markers (glucose, insulin, HOMAIR, leptin, total cholesterol, LDLc, HDLc, triglycerides, ALT, GGT and hsCRP) and blood pressure was analyzed by linear regression. Results: The minor allele (T) of the SLC16A11 gene (rs75493593) has a frequency of 29.7% among Chileans. Risk genotypes (GT and TT) were associated with a significant 1.49 mU/l increase in plasmatic insulin for each copy of the minor allele (95% CI: 0.12, 2.87, p < 0.05). This association remained significant after adjusting for socio-demographic variables, physical activity and smoking (1.36 mU/l, 95% CI: 0.16, 2.58 p < 0.05), but was lost when BMI was included as a confounding factor. Higher BMI was also significantly associated with polymorphic genotypes in SLC16A11, independent of socio-demographic variables. Conclusion: The minor allele of the SLC16A11 gene (T) is highly prevalent among Chileans and is associated with increased insulin and BMI in nondiabetic individuals. These findings suggest that the genetic variant in SLC16A11 is not only associated with type 2 diabetes as previously shown in Mexicans, but is also related to early metabolic alterations in healthy subjects that may lead to type 2 diabetes.