Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Genes Dev ; 33(17-18): 1236-1251, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31416966

RESUMO

Tumors display increased uptake and processing of nutrients to fulfill the demands of rapidly proliferating cancer cells. Seminal studies have shown that the proto-oncogene MYC promotes metabolic reprogramming by altering glutamine uptake and metabolism in cancer cells. How MYC regulates the metabolism of other amino acids in cancer is not fully understood. Using high-performance liquid chromatography (HPLC)-tandem mass spectrometry (LC-MS/MS), we found that MYC increased intracellular levels of tryptophan and tryptophan metabolites in the kynurenine pathway. MYC induced the expression of the tryptophan transporters SLC7A5 and SLC1A5 and the enzyme arylformamidase (AFMID), involved in the conversion of tryptophan into kynurenine. SLC7A5, SLC1A5, and AFMID were elevated in colon cancer cells and tissues, and kynurenine was significantly greater in tumor samples than in the respective adjacent normal tissue from patients with colon cancer. Compared with normal human colonic epithelial cells, colon cancer cells were more sensitive to the depletion of tryptophan. Blocking enzymes in the kynurenine pathway caused preferential death of established colon cancer cells and transformed colonic organoids. We found that only kynurenine and no other tryptophan metabolite promotes the nuclear translocation of the transcription factor aryl hydrocarbon receptor (AHR). Blocking the interaction between AHR and kynurenine with CH223191 reduced the proliferation of colon cancer cells. Therefore, we propose that limiting cellular kynurenine or its downstream targets could present a new strategy to reduce the proliferation of MYC-dependent cancer cells.


Assuntos
Neoplasias do Colo/fisiopatologia , Cinurenina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Triptofano/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Antineoplásicos/farmacologia , Arilformamidase/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/farmacologia , Cinurenina/genética , Transportador 1 de Aminoácidos Neutros Grandes/genética , Antígenos de Histocompatibilidade Menor/genética , Oximas/farmacologia , Proto-Oncogene Mas , Sulfonamidas/farmacologia
2.
J Biol Chem ; 300(6): 107299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641063

RESUMO

ABCG2, a member of the ABC transporter superfamily, is overexpressed in many human tumors and has long been studied for its ability to export a variety of chemotherapeutic agents, thereby conferring a multidrug resistance (MDR) phenotype. However, several studies have shown that ABCG2 can also confer an MDR-independent survival advantage to tumor cells exposed to stress. While investigating the mechanism by which ABCG2 enhances survival in stressful milieus, we have identified a physical and functional interaction between ABCG2 and SLC1A5, a member of the solute transporter superfamily and the primary transporter of glutamine in cancer cells. This interaction was accompanied by increased glutamine uptake, increased glutaminolysis, and rewired cellular metabolism, as evidenced by an increase in key metabolic enzymes and alteration of glutamine-dependent metabolic pathways. Specifically, we observed an increase in glutamine metabolites shuttled to the TCA cycle, and an increase in the synthesis of glutathione, accompanied by a decrease in basal levels of reactive oxygen species and a marked increase in cell survival in the face of oxidative stress. Notably, the knockdown of SLC1A5 or depletion of exogenous glutamine diminished ABCG2-enhanced autophagy flux, further implicating this solute transporter in ABCG2-mediated cell survival. This is, to our knowledge, the first report of a functionally significant physical interaction between members of the two major transporter superfamilies. Moreover, these observations may underlie the protective role of ABCG2 in cancer cells under duress and suggest a novel role for ABCG2 in the regulation of metabolism in normal and diseased states.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Sobrevivência Celular , Glutamina , Antígenos de Histocompatibilidade Menor , Proteínas de Neoplasias , Estresse Oxidativo , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Glutamina/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo , Sistema ASC de Transporte de Aminoácidos
3.
J Biol Chem ; 300(2): 105602, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159852

RESUMO

In humans, skeletal muscles comprise nearly 40% of total body mass, which is maintained throughout adulthood by a balance of muscle protein synthesis and breakdown. Cellular amino acid (AA) levels are critical for these processes, and mammalian cells contain transporter proteins that import AAs to maintain homeostasis. Until recently, the control of transporter regulation has largely been studied at the transcriptional and posttranslational levels. However, here, we report that the RNA-binding protein YBX3 is critical to sustain intracellular AAs in mouse skeletal muscle cells, which aligns with our recent findings in human cells. We find that YBX3 directly binds the solute carrier (SLC)1A5 AA transporter messenger (m)RNA to posttranscriptionally control SLC1A5 expression during skeletal muscle cell differentiation. YBX3 regulation of SLC1A5 requires the 3' UTR. Additionally, intracellular AAs transported by SLC1A5, either directly or indirectly through coupling to other transporters, are specifically reduced when YBX3 is depleted. Further, we find that reduction of the YBX3 protein reduces proliferation and impairs differentiation in skeletal muscle cells, and that YBX3 and SLC1A5 protein expression increase substantially during skeletal muscle differentiation, independently of their respective mRNA levels. Taken together, our findings suggest that YBX3 regulates AA transport in skeletal muscle cells, and that its expression is critical to maintain skeletal muscle cell proliferation and differentiation.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Fibras Musculares Esqueléticas , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Sistema ASC de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regulação da Expressão Gênica/genética , Células NIH 3T3 , Células HCT116 , Proliferação de Células/genética , Diferenciação Celular/genética
4.
Am J Physiol Cell Physiol ; 327(1): C34-C47, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646787

RESUMO

The dystrophin gene (Dmd) is recognized for its significance in Duchenne muscular dystrophy (DMD), a lethal and progressive skeletal muscle disease. Some patients with DMD and model mice with muscular dystrophy (mdx) spontaneously develop various types of tumors, among which rhabdomyosarcoma (RMS) is the most prominent. By contrast, spindle cell sarcoma (SCS) has rarely been reported in patients or mdx mice. In this study, we aimed to use metabolomics to better understand the rarity of SCS development in mdx mice. Gas chromatography-mass spectrometry was used to compare the metabolic profiles of spontaneously developed SCS and RMS tumors from mdx mice, and metabolite supplementation assays and silencing experiments were used to assess the effects of metabolic differences in SCS tumor-derived cells. The levels of 75 metabolites exhibited differences between RMS and SCS, 25 of which were significantly altered. Further characterization revealed downregulation of nonessential amino acids, including alanine, in SCS tumors. Alanine supplementation enhanced the growth, epithelial mesenchymal transition, and invasion of SCS cells. Reduction of intracellular alanine via knockdown of the alanine transporter Slc1a5 reduced the growth of SCS cells. Lower metabolite secretion and reduced proliferation of SCS tumors may explain the lower detection rate of SCS in mdx mice. Targeting of alanine depletion pathways may have potential as a novel treatment strategy.NEW & NOTEWORTHY To the best of our knowledge, SCS has rarely been identified in patients with DMD or mdx mice. We observed that RMS and SCS tumors that spontaneously developed from mdx mice with the same Dmd genetic background exhibited differences in metabolic secretion. We proposed that, in addition to dystrophin deficiency, the levels of secreted metabolites may play a role in the determination of tumor-type development in a Dmd-deficient background.


Assuntos
Camundongos Endogâmicos mdx , Rabdomiossarcoma , Sarcoma , Animais , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Rabdomiossarcoma/genética , Camundongos , Sarcoma/metabolismo , Sarcoma/patologia , Sarcoma/genética , Metabolômica/métodos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proliferação de Células , Masculino , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/genética , Transição Epitelial-Mesenquimal , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética
5.
J Transl Med ; 22(1): 543, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844930

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common malignant tumor, and glutamine is vital for tumor cells. The role of glutamine transporter SLC1A5 in tumor progression and transarterial chemoembolization (TACE) efficacy is under study. This research seeks to determine the impact of SLC1A5 expression on the prognosis and TACE efficacy of HCC and elucidate its mechanisms. METHODS: SLC1A5 expression in HCC, correlation with patient outcomes, and response to TACE were studied in an open access liver cancer dataset and confirmed in our cohort. Additionally, the correlation between SLC1A5 expression and hypoxia, angiogenesis and immune infiltration was analyzed and verified by immunohistochemistry, immunofluorescence and transcriptome sequencing. Liver cancer cell lines with SLC1A5 expression knockdown or overexpression were constructed, and cell proliferation, colony formation, apoptosis, migration and drug sensitivity as well as in vivo xenograft tumor were measured. A gene set enrichment analysis was conducted to determine the signaling pathway influenced by SLC1A5, and a western blot analysis was performed to detect protein expression alterations. RESULTS: SLC1A5 expression was higher in HCC tissue and associated with poor survival and TACE resistance. Hypoxia could stimulate the upregulation of glutamine transport, angiogenesis and SLC1A5 expression. The SLC1A5 expression was positively correlated with hypoxia and angiogenesis-related genes, immune checkpoint pathways, macrophage, Tregs, and other immunosuppressive cells infiltration. Knockdown of SLC1A5 decreased proliferation, colony formation, and migration, but increased apoptosis and increased sensitivity to chemotherapy drugs. Downregulation of SLC1A5 resulted in a decrease in Vimentin and N-cadherin expression, yet an increase in E-cadherin expression. Upregulation of SLC1A5 increased Vimentin and N-cadherin expression, while decreasing E-cadherin. Overexpression of ß-catenin in SLC1A5-knockdown HCC cell lines could augment Vimentin and N-cadherin expression, suppress E-cadherin expression, and increase the migration and drug resistance. CONCLUSIONS: Elevated SLC1A5 was linked to TACE resistance and survival shortening in HCC patients. SLC1A5 was positively correlated with hypoxia, angiogenesis, and immunosuppression. SLC1A5 may mediate HCC cell migration and drug resistance via Epithelial-mesenchymal transition (EMT) pathway.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Carcinoma Hepatocelular , Quimioembolização Terapêutica , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Antígenos de Histocompatibilidade Menor , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/irrigação sanguínea , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Linhagem Celular Tumoral , Prognóstico , Masculino , Feminino , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Camundongos Nus , Proliferação de Células , Movimento Celular , Apoptose , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima/genética
6.
J Bioenerg Biomembr ; 56(3): 311-321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38427128

RESUMO

BACKGROUND: Diabetic retinopathy is one of the complications of diabetes mellitus. The aim of this study was to explore the effects of ubiquitin-specific protease 48 (USP48) and its underlying mechanisms in the development of diabetic retinopathy. METHODS: CCK-8 assay, EdU assay, and flow cytometry were used to measure the proliferative ability and the apoptotic rate of ARPE-19 cells, respectively. ELISA kits were utilized to assess the levels of inflammatory cytokines. The levels of Fe2+, ROS and MDA were detected using the corresponding biochemical kits. The protein expression of USP48 and SLC1A5 was examined through western blot. The mRNA level of SLC1A5 was determined using RT-qPCR. The interaction relationship between USP48 and SLC1A5 was evaluated using Co-IP assay. RESULTS: High glucose (HG) treatment significantly inhibited cell proliferation and elevated cell apoptosis, inflammation, ferroptosis and oxidative stress in ARPE-19 cells. HG treatment-caused cell damage was hindered by USP48 or SLC1A5 overexpression in ARPE-19 cells. Fer-1 treatment improved HG-caused cell damage in ARPE-19 cells, which was blocked by USP48 knockdown. Moreover, USP48 knockdown decreased SLC1A5 expression. SLC1A5 downregulation reversed the improvement effects of USP48 upregulation on cell damage in HG-treated ARPE-19 cells. CONCLUSION: USP48 overexpression deubiquitinated SLC1A5 to elevate cell proliferation and suppress cell apoptosis, inflammation, ferroptosis and oxidative stress in HG-triggered ARPE-19 cells, thereby inhibiting the progression of diabetic retinopathy.


Assuntos
Retinopatia Diabética , Ferroptose , Inflamação , Estresse Oxidativo , Epitélio Pigmentado da Retina , Proteases Específicas de Ubiquitina , Humanos , Sistema ASC de Transporte de Aminoácidos/metabolismo , Linhagem Celular , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Ferroptose/fisiologia , Inflamação/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
7.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792190

RESUMO

As a conformationally restricted amino acid, hydroxy-l-proline is a versatile scaffold for the synthesis of diverse multi-functionalized pyrrolidines for probing the ligand binding sites of biological targets. With the goal to develop new inhibitors of the widely expressed amino acid transporters SLC1A4 and SLC1A5 (also known as ASCT1 and ASCT2), we synthesized and functionally screened synthetic hydroxy-l-proline derivatives using electrophysiological and radiolabeled uptake methods against amino acid transporters from the SLC1, SLC7, and SLC38 solute carrier families. We have discovered a novel class of alkoxy hydroxy-pyrrolidine carboxylic acids (AHPCs) that act as selective high-affinity inhibitors of the SLC1 family neutral amino acid transporters SLC1A4 and SLC1A5. AHPCs were computationally docked into a homology model and assessed with respect to predicted molecular orientation and functional activity. The series of hydroxyproline analogs identified here represent promising new agents to pharmacologically modulate SLC1A4 and SLC1A5 amino acid exchangers which are implicated in numerous pathophysiological processes such as cancer and neurological diseases.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Descoberta de Drogas , Antígenos de Histocompatibilidade Menor , Animais , Humanos , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/química , Células HEK293 , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/química , Simulação de Acoplamento Molecular , Prolina/química , Prolina/análogos & derivados , Pirrolidinas/química , Pirrolidinas/farmacologia , Pirrolidinas/síntese química , Relação Estrutura-Atividade
8.
Am J Respir Cell Mol Biol ; 69(4): 441-455, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37459644

RESUMO

The neutral amino acid glutamine plays a central role in TGF-ß (transforming growth factor-ß)-induced myofibroblast activation and differentiation. Cells take up glutamine mainly through a transporter expressed on the cell surface known as solute carrier SLC1A5 (solute carrier transporter 1A5). In the present work, we demonstrated that profibrotic actions of TGF-ß are mediated, at least in part, through a metabolic maladaptation of SLC1A5 and that targeting SLC1A5 abrogates multiple facets of fibroblast activation. This approach could thus represent a novel therapeutic strategy to treat patients with fibroproliferative diseases. We found that SLC1A5 was highly expressed in fibrotic lung fibroblasts and fibroblasts isolated from idiopathic pulmonary fibrosis lungs. The expression of profibrotic targets, cell migration, and anchorage-independent growth by TGF-ß required the activity of SLC1A5. Loss or inhibition of SLC1A5 function enhanced fibroblast susceptibility to autophagy; suppressed mTOR, HIF (hypoxia-inducible factor), and Myc signaling; and impaired mitochondrial function, ATP production, and glycolysis. Pharmacological inhibition of SLC1A5 by the small-molecule inhibitor V-9302 shifted fibroblast transcriptional profiles from profibrotic to fibrosis resolving and attenuated fibrosis in a bleomycin-treated mouse model of lung fibrosis. This is the first study, to our knowledge, to demonstrate the utility of a pharmacological inhibitor of glutamine transport in fibrosis, providing a framework for new paradigm-shifting therapies targeting cellular metabolism for this devastating disease.


Assuntos
Glutamina , Fibrose Pulmonar Idiopática , Pulmão , Animais , Humanos , Camundongos , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Bleomicina/efeitos adversos , Bleomicina/uso terapêutico , Fibroblastos/metabolismo , Fibrose , Glutamina/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Antígenos de Histocompatibilidade Menor/efeitos adversos , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Proto-Oncogênicas c-myc/efeitos adversos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
9.
BMC Genomics ; 24(1): 272, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208615

RESUMO

Macrophages are important effector cells in tumor progression and immune regulation. Previously, we demonstrated that the transcription suppressor homeobox containing 1(HMBOX1) exhibits immunosuppressive activity in LPS-induced acute liver injury by impeding macrophage infiltration and activation. We also observed a lower proliferation in HMBOX1-overexpressed RAW264.7 cells. However, the specific mechanism was unclear. Here, a work was performed to characterize HMBOX1 function related to cell proliferation from a metabolomics standpoint by comparing the metabolic profiles of HMBOX1-overexpressed RAW264.7 cells to those of the controls. Firstly, we assessed HMBOX1 anti-proliferation activity in RAW264.7 cells with CCK8 assay and clone formation. Then, we performed metabolomic analyses by ultra-liquid chromatography coupled with mass spectrometry to explore the potential mechanisms. Our results indicated that HMBOX1 inhibited the macrophage growth curve and clone formation ability. Metabolomic analyses showed significant changes in HMBOX1-overexpressed RAW264.7 metabolites. A total of 1312 metabolites were detected, and 185 differential metabolites were identified based on the criterion of OPLS-DA VIP > 1 and p value < 0.05. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the elevated HMBOX1 in RAW264.7 inhibited the pathways of amino acid and nucleotide metabolism. Glutamine concentrations decreased significantly in HMBOX1-overexpressed macrophages, and glutamine-related transporter SLC1A5 was also downregulated. Furthermore, SLC1A5 overexpression reversed HMBOX1 inhibition of macrophage proliferation. This study demonstrated the potential mechanism of the HMBOX1/SLC1A5 pathway in cell proliferation by regulating glutamine transportation. The results may help provide a new direction for therapeutic interventions in macrophage-related inflammatory diseases.


Assuntos
Glutamina , Proteínas de Homeodomínio , Camundongos , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Células RAW 264.7 , Metabolômica
10.
J Cell Sci ; 134(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33262314

RESUMO

Osteoblasts are the principal bone-forming cells. As such, osteoblasts have enhanced demand for amino acids to sustain high rates of matrix synthesis associated with bone formation. The precise systems utilized by osteoblasts to meet these synthetic demands are not well understood. WNT signaling is known to rapidly stimulate glutamine uptake during osteoblast differentiation. Using a cell biology approach, we identified two amino acid transporters, γ(+)-LAT1 and ASCT2 (encoded by Slc7a7 and Slc1a5, respectively), as the primary transporters of glutamine in response to WNT. ASCT2 mediates the majority of glutamine uptake, whereas γ(+)-LAT1 mediates the rapid increase in glutamine uptake in response to WNT. Mechanistically, WNT signals through the canonical ß-catenin (CTNNB1)-dependent pathway to rapidly induce Slc7a7 expression. Conversely, Slc1a5 expression is regulated by the transcription factor ATF4 downstream of the mTORC1 pathway. Targeting either Slc1a5 or Slc7a7 using shRNA reduced WNT-induced glutamine uptake and prevented osteoblast differentiation. Collectively, these data highlight the critical nature of glutamine transport for WNT-induced osteoblast differentiation.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Glutamina , Osteogênese , Diferenciação Celular , Osteoblastos , Via de Sinalização Wnt , beta Catenina
11.
Mol Carcinog ; 62(4): 438-449, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36562471

RESUMO

Glutamine addiction is an important phenotype displayed in some types of cancer. In these cells, glutamine depletion results in a marked reduction in the aggressive cancer phenotype. Mesothelioma is an extremely aggressive disease that lacks effective therapy. In this study, we show that mesothelioma tumors are glutamine addicted suggesting that glutamine depletion may be a potential therapeutic strategy. We show that glutamine restriction, by removing glutamine from the medium or treatment with inhibitors that attenuate glutamine uptake (V-9302) or conversion to glutamate (CB-839), markedly reduces mesothelioma cell proliferation, spheroid formation, invasion, and migration. Inhibition of the SLC1A5 glutamine importer, by knockout or treatment with V-9302, an SLC1A5 inhibitor, also markedly reduces mesothelioma cell tumor growth. A relationship between glutamine utilization and YAP1/TEAD signaling has been demonstrated in other tumor types, and the YAP1/TEAD signaling cascade is active in mesothelioma cells and drives cell survival and proliferation. We therefore assessed the impact of glutamine depletion on YAP1/TEAD signaling. We show that glutamine restriction, SLC1A5 knockdown/knockout, or treatment with V-9302 or CB-839, reduces YAP1 level, YAP1/TEAD-dependent transcription, and YAP1/TEAD target protein (e.g., CTGF, cyclin D1, COL1A2, COL3A1, etc.) levels. These changes are observed in both cells and tumors. These findings indicate that mesothelioma is a glutamine addicted cancer, show that glutamine depletion attenuates YAP1/TEAD signaling and tumor growth, and suggest that glutamine restriction may be useful as a mesothelioma treatment strategy.


Assuntos
Mesotelioma Maligno , Mesotelioma , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glutamina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Mesotelioma/genética , Proliferação de Células , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Menor/genética , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(35): 21441-21449, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817424

RESUMO

Loss of the von Hippel-Lindau (VHL) tumor suppressor is a hallmark feature of renal clear cell carcinoma. VHL inactivation results in the constitutive activation of the hypoxia-inducible factors (HIFs) HIF-1 and HIF-2 and their downstream targets, including the proangiogenic factors VEGF and PDGF. However, antiangiogenic agents and HIF-2 inhibitors have limited efficacy in cancer therapy due to the development of resistance. Here we employed an innovative computational platform, Mining of Synthetic Lethals (MiSL), to identify synthetic lethal interactions with the loss of VHL through analysis of primary tumor genomic and transcriptomic data. Using this approach, we identified a synthetic lethal interaction between VHL and the m6A RNA demethylase FTO in renal cell carcinoma. MiSL identified FTO as a synthetic lethal partner of VHL because deletions of FTO are mutually exclusive with VHL loss in pan cancer datasets. Moreover, FTO expression is increased in VHL-deficient ccRCC tumors compared to normal adjacent tissue. Genetic inactivation of FTO using multiple orthogonal approaches revealed that FTO inhibition selectively reduces the growth and survival of VHL-deficient cells in vitro and in vivo. Notably, FTO inhibition reduced the survival of both HIF wild type and HIF-deficient tumors, identifying FTO as an HIF-independent vulnerability of VHL-deficient cancers. Integrated analysis of transcriptome-wide m6A-seq and mRNA-seq analysis identified the glutamine transporter SLC1A5 as an FTO target that promotes metabolic reprogramming and survival of VHL-deficient ccRCC cells. These findings identify FTO as a potential HIF-independent therapeutic target for the treatment of VHL-deficient renal cell carcinoma.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Mutações Sintéticas Letais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/metabolismo , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/metabolismo
13.
Ecotoxicol Environ Saf ; 262: 115204, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37393816

RESUMO

Arsenic exposure increases the risk of bladder cancer in humans, but its underlying mechanisms remain elusive. The alanine, serine, cysteine-preferring transporter 2 (ASCT2, SLC1A5) is frequently overexpressed in cancer cells. The aim of this study was to evaluate the effects of arsenic on SLC1A5, and to determine the role of SLC1A5 in the proliferation and self-renewal of uroepithelial cells. F344 rats were exposed to 87 mg/L NaAsO2 or 200 mg/L DMAV for 12 weeks. The SV-40 immortalized human uroepithelial (SV-HUC-1) cells were cultured in medium containing 0.5 µM NaAsO2 for 40 weeks. Arsenic increased the expression levels of SLC1A5 and ß-catenin both in vivo and in vitro. SLC1A5 promoted cell proliferation and self-renewal by activating ß-catenin, which in turn was dependent on maintaining GSH/ROS homeostasis. Our results suggest that SLC1A5 is a potential therapeutic target for arsenic-induced proliferation and self-renewal of uroepithelial cells.

14.
J Assist Reprod Genet ; 40(1): 97-111, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36469256

RESUMO

PURPOSE: The study aims to investigate first the presence of Syncytin 2 and its receptor, MFSD2, in human sperm, and second whether the expressions of Syncytin 1, Syncytin 2, and their receptors, SLC1A5 and MFSD2, differ between normozoospermic, asthenozoospermic, oligozoospermic, and oligoasthenozoospermic human sperm samples. METHODS: The localization patterns and expression levels of syncytins and their receptors were evaluated in normozoospermic (concentration = 88.9 ± 5.5 × 106, motility = 79.2 ± 3.15%, n = 30), asthenozoospermic (concentration = 51.7 ± 7.18 × 106, motility = 24.0 ± 3.12%, n = 15), mild oligozoospermic (concentration = 13.5 ± 2.17 × 106, motility = 72.1 ± 6.5%, n = 15), moderate oligozoospermic (concentration = 8.4 ± 3.21 × 106, motility = 65.1 ± 8.9%, n = 15), severe oligozoospermic (concentration = 2.1 ± 1.01 × 106, motility = 67.5 ± 3.2%, n = 15), and oligoasthenozoospermic (concentration = 5.5 ± 3.21 × 106, motility = 18.5 ± 1.2%, n = 15) samples by immunofluorescence staining and western blot. RESULTS: Syncytins and their receptors visualized by immunofluorescence showed similar staining patterns with slight staining of the tail in all spermatozoa regardless of normozoospermia, asthenozoospermia, oligozoospermia, or oligoasthenozoospermia. The localization patterns were categorized as equatorial segment, midpiece region, acrosome, and post-acrosomal areas. The combined staining patterns were also detected as acrosomal cap plus post acrosomal region, the midpiece plus equatorial segment, and midpiece plus acrosomal region. However, some sperm cells were categorized as non-stained. Both syncytin proteins were most intensely localized in the midpiece region, while their receptors were predominantly present in the midpiece plus acrosomal region. Conspicuously, syncytins and their receptors showed decreased expression in asthenozospermic, oligozoospermic, and oligoasthenozoospermic samples compared to normozoospermic samples. CONCLUSION: The expression patterns of HERV-derived syncytins and their receptors were identical regardless of the spermatozoa in men with normozoospermia versus impaired semen quality. Further, asthenozoospermia, oligozoospermia, and oligoasthenozoospermia as male fertility issues are associated with decreased expression of both syncytins and their receptors.


Assuntos
Astenozoospermia , Retrovirus Endógenos , Oligospermia , Humanos , Masculino , Análise do Sêmen , Astenozoospermia/genética , Astenozoospermia/metabolismo , Oligospermia/genética , Oligospermia/metabolismo , Sêmen/metabolismo , Retrovirus Endógenos/metabolismo , Espermatozoides/metabolismo , Motilidade dos Espermatozoides/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo
15.
Invest New Drugs ; 40(5): 977-989, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35834041

RESUMO

Targeting tumor metabolic vulnerabilities such as "glutamine addiction" has become an attractive approach for the discovery of novel antitumor agents. Among various mechanisms explored, SLC1A5, a membrane transporter that plays an important role in glutamine cellular uptake, represents a viable target to interfere with tumor's ability to acquire critical nutrients during proliferation. In the present study, a stably transfected HEK293 cell line with human SLC1A5 (HEK293-SLC1A5) was established for the screening and identification of small molecule SLC1A5 inhibitors. This in vitro system, in conjunction with direct measurement of SLC1A5-mediated L-glutamine-2,3,3,4,4-D5 (substrate) uptake, was practical and efficient in ensuring the specificity of SLC1A5 inhibition. Among a group of diverse compounds tested, mianserin (a tetracyclic antidepressant) demonstrated a marked inhibition of SLC1A5-mediated glutamine uptake. Subsequent investigations using SW480 cells demonstrated that mianserin was capable of inhibiting SW480 tumor growth both in vitro and in vivo, and the in vivo antitumor efficacy was correlated to the reduction of glutamine concentrations in tumor tissues. Computational analysis revealed that hydrophobic interactions between SLC1A5 and its inhibitors could be a critical factor in drug design. Taken together, the current findings confirmed the feasibility of targeting SLC1A5-mediated glutamine uptake as a novel approach for antitumor intervention. It is anticipated that structural insights obtained based on homology modeling would lead to the discovery of more potent and specific SLC1A5 inhibitors for clinical development.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Glutamina , Sistema ASC de Transporte de Aminoácidos/metabolismo , Antidepressivos , Linhagem Celular Tumoral , Glutamina/metabolismo , Células HEK293 , Humanos , Mianserina , Antígenos de Histocompatibilidade Menor/metabolismo
16.
J Biochem Mol Toxicol ; 36(11): e23192, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35929395

RESUMO

To investigate the potential antitumor activity of synthetic triterpenoid, methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) in pancreatic ductal adenocarcinoma (PDAC), MTT cytotoxicity assay, and xenograft nude mice assay were performed to evaluate tumor growth in vitro and in vivo. Seahorse XFe96 bioenergetics analyzer was applied to determine aerobic glycolysis and mitochondrial respiration. Western blot and quantitative reverse transcription-polymerase chain reactions are used to detect protein and messenger RNA transcripts of SLC1A5 and metabolic enzymes. We confirmed the strong antitumor activity of CDDO-Me in suppressing PDAC growth. Mechanistically, we demonstrated CDDO-Me induced mitochondrial respiration and aerobic glycolysis dysfunction. We also verified CDDO-Me downregulated glutamine transporter SLC1A5, resulting in excessive reactive oxygen species (ROS) levels that suppressed tumor growth. Moreover, we confirmed that SLC1A5 depletion reduced the ratio of glutathione/oxidized glutathione. We also found CDDO-Me could inhibit N-linked glycosylation of SLC1A5, which promotes protease-mediated degradation. Finally, we confirmed SLC1A5 was significantly overexpressed in PDAC and closely correlated with the poor prognosis of PDAC patients. Our work uncovers CDDO-Me is effective at suppressing PDAC cell growth in vitro and in vivo and illuminates CDDO-Me caused excessive ROS and cellular bioenergetics disruption which contributed to CDDO-Me inhibited PDAC growth. Our data highlights CDDO-Me could be considered a potential compound for PDAC therapy, and SLC1A5 could be a novel biomarker for PDAC patients.


Assuntos
Adenocarcinoma , Ácido Oleanólico , Neoplasias Pancreáticas , Triterpenos , Camundongos , Animais , Humanos , Triterpenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Apoptose , Ácido Oleanólico/farmacologia , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/farmacologia , Sistema ASC de Transporte de Aminoácidos/metabolismo , Neoplasias Pancreáticas
17.
Cell Mol Biol Lett ; 27(1): 94, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273140

RESUMO

BACKGROUND: Circular RNAs (circRNAs) appear to be important modulators in ovarian cancer. We aimed to explore the role and mechanism of circ_0025033 in ovarian cancer. METHODS: qRT-PCR was conducted to determine circ_0025033, hsa_miR-370-3p, and SLC1A5 mRNA expression. Functional experiments were conducted, including Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, tube formation, xenograft tumor model assay, western blot analysis of protein levels, and analysis of glutamine metabolism using commercial kits. Their predicted interaction was confirmed using dual-luciferase reporter and RNA pull-down. RESULTS: circ_0025033 was upregulated in ovarian cancer; its knockdown induced proliferation, invasion, angiogenesis, glutamine metabolism, and apoptosis in vitro, and blocked tumor growth in vivo. circ_0025033 regulated ovarian cancer cellular behaviors via sponging hsa_miR-370-3p. In parallel, SLC1A5 might abolish the anti-ovarian cancer role of hsa_miR-370-3p. Furthermore, circ_0025033 affected SLC1A5 via regulating hsa_miR-370-3p. CONCLUSION: circ_0025033 might promote ovarian cancer progression via hsa_miR-370-3p/SLC1A5, providing an interesting insight into ovarian cancer tumorigenesis.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Circular , Feminino , Humanos , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glutamina/genética , Glutamina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Antígenos de Histocompatibilidade Menor , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro
18.
J Clin Lab Anal ; 36(1): e24116, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34811815

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have shown pivotal regulatory roles in the pathology of non-small cell lung cancer (NSCLC). However, the role of circ_0000463 in NSCLC progression and its associated molecular mechanism remain to be illustrated. METHODS: Cell proliferation ability was analyzed by colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. Cell migration and invasion abilities were assessed by scratch test and transwell invasion assay. Flow cytometry was employed to analyze cell apoptotic rate. The interaction between microRNA-924 (miR-924) and circ_0000463 or solute carrier family 1 member 5 (SLC1A5) was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The uptake of glutamine and the production of glutamate and α-ketoglutarate were analyzed using their corresponding kits. Xenograft model in vivo was established to analyze the role of circ_0000463 in tumor growth. RESULTS: Circ_0000463 expression was elevated in NSCLC tissues and cell lines. Circ_0000463 knockdown suppressed the proliferation, migration, and invasion and promoted the apoptosis of NSCLC cells. Circ_0000463 acted as a molecular sponge for miR-924, and circ_0000463 interference-mediated anti-tumor effects were largely reversed by the silence of miR-924 in NSCLC cells. miR-924 interacted with the 3' untranslated region (3'UTR) of SLC1A5, and SLC1A5 overexpression largely overturned miR-924 overexpression-mediated anti-tumor effects in NSCLC cells. Moreover, circ_0000463 absence suppressed the glutamine metabolism of NSCLC cells by targeting miR-924/SLC1A5 axis. Circ_0000463 knockdown suppressed xenograft tumor growth in vivo. CONCLUSION: Circ_0000463 absence suppressed the malignant behaviors and glutamine metabolism of NSCLC cells through mediating miR-924/SLC1A5 axis.


Assuntos
Sistema ASC de Transporte de Aminoácidos/genética , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs/genética , Antígenos de Histocompatibilidade Menor/genética , RNA Circular/genética , Animais , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Glutamina/metabolismo , Humanos , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
19.
World J Surg Oncol ; 20(1): 329, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192755

RESUMO

BACKGROUND: Circular RNA (circRNA) has been proved to be an important molecular target for cancer treatment. However, the function and molecular mechanism of circ_0000808 in non-small cell lung cancer (NSCLC) are still unclear. METHODS: Quantitative real-time PCR was used to detect the expression of circ_0000808, miR-1827, and solute carrier family 1 member 5 (SLC1A5). Cell proliferation, apoptosis, migration, and invasion were measured by cell counting kit 8 assay, colony formation assay, EdU staining, flow cytometry, wound healing assay, and transwell assay. The protein expression was measured by Western blot analysis. Dual-luciferase reporter assay and RIP assay were used to investigate the interactions between miR-1827 and circ_0000808 or SLC1A5. Cell glutamine metabolism was assessed by determining glutamine uptake, glutamate production, and α-ketoglutarate production. Xenograft mouse model was used to assess the in vivo effects of circ_0000808. RESULTS: Circ_0000808 expression was upregulated in NSCLC tissues and cancer cells, and its silencing inhibited NSCLC cell proliferation, migration, and invasion and led to apoptosis. Further results confirmed that circ_0000808 interacted with miR-1827 to positively regulate SLC1A5. The rescue experiments showed that miR-1827 inhibitor reversed the suppressive effect of circ_0000808 knockdown on the malignant behaviors of NSCLC cells. Also, SLC1A5 overexpression abolished the inhibition effect of miR-1827 on NSCLC cell progression. In addition, circ_0000808/miR-1827/SLC1A5 axis positively regulated the glutamine metabolism process in NSCLC cells. Moreover, circ_0000808 knockdown reduced the NSCLC tumor growth in vivo. CONCLUSION: In summary, our data showed that circ_0000808 enhanced the progression of NSCLC by promoting glutamine metabolism through the miR-1827/SLC1A5 axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/genética , Proliferação de Células/genética , Glutamatos , Glutamina , Humanos , Ácidos Cetoglutáricos , Neoplasias Pulmonares/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Antígenos de Histocompatibilidade Menor , RNA Circular/genética
20.
Biochem Genet ; 60(1): 153-172, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34132956

RESUMO

Ovarian cancer is a common cancer affecting women with high morbidity and mortality globally. Circular RNAs (circRNAs) have been found play vital roles in multifarious cancers, including OC. This study aims to explore the biological role and underlying mechanism of circ_0072995 in OC progression. Circ_0072995 was upregulated in OC tissues and cells in a stable structure. Functional experiments indicated that circ_0072995 knockdown suppressed cell proliferation, migration, invasion and accelerated cell apoptosis of OC cells. Mechanistically, miR-122-5p was a direct target of circ_0072995, and its knockdown reversed the effects of circ_0072995 silence on inhibition of OC cell progression. Meanwhile, SLC1A5 was a downstream target gene of miR-122-5p, and miR-122-5p overexpression inhibited the progression of OC cells by targeting SLC1A5. Moreover, circ_0072995 positively regulated SLC1A5 expression via sponging miR-122-5p. Circ_0072995 could play oncogenic role in tumorigenesis and malignant development of OC by regulating miR-122-5p/SLC1A5 axis, providing a novel approach for OC treatment.


Assuntos
Sistema ASC de Transporte de Aminoácidos/genética , MicroRNAs , Antígenos de Histocompatibilidade Menor/genética , Neoplasias Ovarianas , RNA Circular/genética , Linhagem Celular Tumoral , Feminino , Humanos , MicroRNAs/genética , Oncogenes , Neoplasias Ovarianas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa