Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neurosurg Focus ; 47(1): E2, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31261124

RESUMO

Wall shear stress, the frictional force of blood flow tangential to an artery lumen, has been demonstrated in multiple studies to influence aneurysm formation and risk of rupture. In this article, the authors review the ways in which shear stress may influence aneurysm growth and rupture through changes in the vessel wall endothelial cells, smooth-muscle cells, and surrounding adventitia, and they discuss shear stress-induced pathways through which these changes occur.


Assuntos
Aneurisma/patologia , Estresse Fisiológico , Animais , Vasos Sanguíneos/patologia , Células Endoteliais , Endotélio Vascular/patologia , Humanos , Aneurisma Intracraniano/patologia
2.
Neurosurg Focus ; 47(1): E11, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31261115

RESUMO

The pathogenesis of intracranial aneurysms remains complex and multifactorial. While vascular, genetic, and epidemiological factors play a role, nascent aneurysm formation is believed to be induced by hemodynamic forces. Hemodynamic stresses and vascular insults lead to additional aneurysm and vessel remodeling. Advanced imaging techniques allow us to better define the roles of aneurysm and vessel morphology and hemodynamic parameters, such as wall shear stress, oscillatory shear index, and patterns of flow on aneurysm formation, growth, and rupture. While a complete understanding of the interplay between these hemodynamic variables remains elusive, the authors review the efforts that have been made over the past several decades in an attempt to elucidate the physical and biological interactions that govern aneurysm pathophysiology. Furthermore, the current clinical utility of hemodynamics in predicting aneurysm rupture is discussed.


Assuntos
Aneurisma Roto/fisiopatologia , Biofísica , Hemodinâmica , Aneurisma Intracraniano/fisiopatologia , Animais , Progressão da Doença , Humanos , Estresse Fisiológico
3.
Neurosurg Focus ; 47(1): E21, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31261126

RESUMO

OBJECTIVE: Unruptured intracranial aneurysms (UIAs) are relatively common lesions that may cause devastating intracranial hemorrhage, thus producing considerable suffering and anxiety in those affected by the disease or an increased likelihood of developing it. Advances in the knowledge of the pathobiology behind intracranial aneurysm (IA) formation, progression, and rupture have led to preclinical testing of drug therapies that would prevent IA formation or progression. In parallel, novel biologically based diagnostic tools to estimate rupture risk are approaching clinical use. Arterial wall remodeling, triggered by flow and intramural stresses and mediated by inflammation, is relevant to both. METHODS: This review discusses the basis of flow-driven vessel remodeling and translates that knowledge to the observations made on the mechanisms of IA initiation and progression on studies using animal models of induced IA formation, study of human IA tissue samples, and study of patient-derived computational fluid dynamics models. RESULTS: Blood flow conditions leading to high wall shear stress (WSS) activate proinflammatory signaling in endothelial cells that recruits macrophages to the site exposed to high WSS, especially through macrophage chemoattractant protein 1 (MCP1). This macrophage infiltration leads to protease expression, which disrupts the internal elastic lamina and collagen matrix, leading to focal outward bulging of the wall and IA initiation. For the IA to grow, collagen remodeling and smooth muscle cell (SMC) proliferation are essential, because the fact that collagen does not distend much prevents the passive dilation of a focal weakness to a sizable IA. Chronic macrophage infiltration of the IA wall promotes this SMC-mediated growth and is a potential target for drug therapy. Once the IA wall grows, it is subjected to changes in wall tension and flow conditions as a result of the change in geometry and has to remodel accordingly to avoid rupture. Flow affects this remodeling process. CONCLUSIONS: Flow triggers an inflammatory reaction that predisposes the arterial wall to IA initiation and growth and affects the associated remodeling of the UIA wall. This chronic inflammation is a putative target for drug therapy that would stabilize UIAs or prevent UIA formation. Moreover, once this coupling between IA wall remodeling and flow is understood, data from patient-specific flow models can be gathered as part of the diagnostic workup and utilized to improve risk assessment for UIA initiation, progression, and eventual rupture.


Assuntos
Artérias Cerebrais/patologia , Circulação Cerebrovascular , Inflamação/patologia , Aneurisma Intracraniano/patologia , Humanos , Hidrodinâmica , Inflamação/complicações , Aneurisma Intracraniano/etiologia , Modelos Biológicos , Estresse Fisiológico
4.
J Neurosurg ; : 1-14, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881533

RESUMO

OBJECTIVE: Intracranial aneurysms (IAs) are more often diagnosed in women. Hormones and vessel geometry, which influences wall shear stress, may affect pathophysiological processes of the arterial wall. Here, the authors investigated sex-related differences in the remodeling of the aneurysm wall and in intraluminal thrombus resolution. METHODS: A well-characterized surgical side-wall aneurysm model was used in female, male, and ovariectomized rats. Decellularized grafts were used to model highly degenerated and decellularized IA walls and native grafts to model healthy IA walls. Aneurysm growth and thrombus composition were analyzed at 1, 7, 14, and 28 days. Sex-related differences in vessel wall remodeling were compared with human IA dome samples of men and pre- and postmenopausal women. RESULTS: At 28 days, more aneurysm growth was observed in ovariectomized rats than in males or non-ovariectomized female rats. The parent artery size was larger in male rats than in female or ovariectomized rats, as expected. Wall inflammation increased over time in all groups and was most severe in the decellularized female and ovariectomized groups at 28 days compared with the male group. Likewise, in these groups the most elastin fragmentation was seen at 28 days. In female rats, on days 1, 7, and 14, the intraluminal thrombus was mainly composed of red blood cells and fibrin. On days 14 and 28, macrophage and smooth muscle cell invasion inside the thrombus was shown, leading to the removal of red blood cells and deposition of collagen and elastin. On days 14 and 28, similar profiles of thrombus reorganization were observed in male and ovariectomized female rats. However, collagen content in thrombi and vessel wall macrophage content were higher in aneurysms of male rats at 28 days than in those of female rats. On day 28, thrombus coverage by endothelial cells was lower in ovariectomized than in female or male rats. Finally, analysis of human IA domes showed that endothelial cell coverage was lower in men and postmenopausal women than in younger women. CONCLUSIONS: Aneurysm growth and intraluminal thrombus resolution show sex-dependent differences. While certain processes (endothelial cell coverage and collagen deposition) point to a strong hormonal dependence, others (wall inflammation and aneurysm growth) seem to be influenced by both hormones and parent artery size.

5.
J Neurosurg ; 127(5): 1055-1062, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28009235

RESUMO

OBJECTIVE The pathogenesis of cerebral aneurysms (CAs) remains largely unknown. Long noncoding RNAs (lncRNAs) were reported recently to play crucial roles in many physiological and biological processes. Here, the authors compared the gene-expression profiles of CAs and their control arteries to investigate the potential functions of lncRNAs in the formation of CAs. METHODS A prospective case-control study was designed to identify the changes in expression of lncRNAs and mRNAs between 12 saccular CA samples (case group) and 12 paired superficial temporal artery samples (control group). Microarray analysis was performed to investigate the expression of lncRNAs and messenger RNAs (mRNAs), and reverse-transcription quantitative polymerase chain reaction was used to validate the microarray analysis findings. Then, an lncRNA target-prediction program and gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were applied to explore potential lncRNA functions. RESULTS A comparison between the case and control groups revealed that 1518 lncRNAs and 2545 mRNAs were expressed differentially. By using target-prediction program analysis, the authors constructed a complex network consisting of 2786 matched lncRNA-mRNA pairs, in which ine1 mRNA was potentially targeted by one to tens of lncRNAs, and vice versa. The results of further gene ontology and KEGG pathway analyses indicated that lncRNAs were involved mainly in regulating immune/inflammatory processes/pathways and vascular smooth muscle contraction, both of which are known to have crucial pathobiological relevance in terms of CA formation. CONCLUSIONS By comparing CAs with their control arteries, the authors created an expression profile of lncRNAs in CAs and propose here their possible roles in the pathogenesis of CAs. The results of this study provide novel insight into the mechanisms of CA pathogenesis and shed light on developing new therapeutic intervention for CAs in the future.


Assuntos
Perfilação da Expressão Gênica , Aneurisma Intracraniano/metabolismo , RNA Longo não Codificante/metabolismo , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Aneurisma Intracraniano/genética , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Estudos Prospectivos , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa