RESUMO
The structural organization of chromosomes is a crucial feature that defines the functional state of genes and genomes. The extent of structural changes experienced by genomes of eukaryotic cells can be dramatic and spans several orders of magnitude. At the core of these changes lies a unique group of ATPases-the SMC proteins-that act as major effectors of chromosome behavior in cells. The Smc5/6 proteins play essential roles in the maintenance of genome stability, yet their mode of action is not fully understood. Here we show that the human Smc5/6 complex recognizes unusual DNA configurations and uses the energy of ATP hydrolysis to promote their compaction. Structural analyses reveal subunit interfaces responsible for the functionality of the Smc5/6 complex and how mutations in these regions may lead to chromosome breakage syndromes in humans. Collectively, our results suggest that the Smc5/6 complex promotes genome stability as a DNA micro-compaction machine.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Instabilidade Genômica/genética , Complexos Multiproteicos/ultraestrutura , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/genética , Quebra Cromossômica , Humanos , Complexos Multiproteicos/genética , Mutação/genética , Conformação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
DNA-protein crosslinks (DPCs) are highly toxic DNA lesions represented by proteins covalently bound to the DNA. Persisting DPCs interfere with fundamental genetic processes such as DNA replication and transcription. Cytidine analog zebularine (ZEB) has been shown to crosslink DNA METHYLTRANSFERASE1 (MET1). Recently, we uncovered a critical role of the SMC5/6-mediated SUMOylation in the repair of DPCs. In an ongoing genetic screen, we identified two additional candidates, HYPERSENSITIVE TO ZEBULARINE 2 and 3, that were mapped to REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) and polymerase TEBICHI (TEB), respectively. By monitoring the growth of hze2 and hze3 plants in response to zebularine, we show the importance of homologous recombination (HR) factor RTEL1 and microhomology-mediated end-joining (MMEJ) polymerase TEB in the repair of MET1-DPCs. Moreover, genetic interaction and sensitivity assays showed the interdependency of SMC5/6 complex, HR, and MMEJ in the homology-directed repair of MET1-DPCs in Arabidopsis. Altogether, we provide evidence that MET1-DPC repair in plants is more complex than originally expected.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citidina , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citidina/análogos & derivados , Citidina/metabolismo , Citidina/farmacologia , Reparo de DNA por Recombinação , Reparo do DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , Dano ao DNARESUMO
Structural maintenance of chromosome (SMC) complexes play roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of SMC proteins with a unique structure consisting of an ATPase head, long arm, and hinge. SMC complexes form long rod-like structures, which can change to ring-like and elbow-bent conformations upon binding ATP, DNA, and other regulatory factors. These SMC dynamic conformational changes are involved in their loading, translocation, and DNA loop extrusion. Here, we examined the binding and role of the PpNSE5 regulatory factor of Physcomitrium patens PpSMC5/6 complex. We found that the PpNSE5 C-terminal half (aa230-505) is required for binding to its PpNSE6 partner, while the N-terminal half (aa1-230) binds PpSMC subunits. Specifically, the first 71 amino acids of PpNSE5 were required for binding to PpSMC6. Interestingly, the PpNSE5 binding required the PpSMC6 head-proximal joint region and PpSMC5 hinge-proximal arm, suggesting a long distance between binding sites on PpSMC5 and PpSMC6 arms. Therefore, we hypothesize that PpNSE5 either links two antiparallel SMC5/6 complexes or binds one SMC5/6 in elbow-bent conformation, the later model being consistent with the role of NSE5/NSE6 dimer as SMC5/6 loading factor to DNA lesions. In addition, we generated the P. patens Ppnse5KO1 mutant line with an N-terminally truncated version of PpNSE5, which exhibited DNA repair defects while keeping a normal number of rDNA repeats. As the first 71 amino acids of PpNSE5 are required for PpSMC6 binding, our results suggest the role of PpNSE5-PpSMC6 interaction in SMC5/6 loading to DNA lesions.
Assuntos
Bryopsida , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bryopsida/genética , Bryopsida/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromossomos de Plantas/genética , Ligação ProteicaRESUMO
Rad18 interacts with the SMC5/6 localization factor 1 (SLF1) to recruit the SMC5/6 complex to DNA damage sites for repair. The mechanism of the specific Rad18 recognition by SLF1 is unclear. Here, we present the crystal structure of the tandem BRCT repeat (tBRCT) in SLF1 (SLF1tBRCT) bound with the interacting Rad18 peptide. Our structure and biochemical studies demonstrate that SLF1tBRCT interacts with two phosphoserines and adjacent residues in Rad18 for high-affinity and specificity Rad18 recognition. We found that SLF1tBRCT utilizes mechanisms common among tBRCTs as well as unique ones for Rad18 binding, the latter include interactions with an α-helical structure in Rad18 that has not been observed in other tBRCT-bound ligand proteins. Our work provides structural insights into Rad18 targeting by SLF1 and expands the understanding of BRCT-mediated complex assembly.
Assuntos
Dano ao DNA , Ubiquitina-Proteína Ligases , Ligação Proteica , Domínios Proteicos , Peptídeos , Reparo do DNARESUMO
Structural maintenance of chromosomes (SMC) complexes are molecular machines ensuring chromatin organization at higher levels. They play direct roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of long-armed SMC, kleisin, and kleisin-associated subunits. Additional factors, like NSE6 within SMC5/6, bind to SMC core complexes and regulate their activities. In the human HsNSE6/SLF2, we recently identified a new CANIN domain. Here we tracked down its sequence homology to lower plants, selected the bryophyte Physcomitrium patens, and analyzed PpNSE6 protein-protein interactions to explore its conservation in detail. We identified a previously unrecognized core sequence motif conserved from yeasts to humans within the NSE6 CANIN domain. This motif mediates the interaction between NSE6 and its NSE5 partner in yeasts and plants. In addition, the CANIN domain and its preceding PpNSE6 sequences bind both PpSMC5 and PpSMC6 arms. Interestingly, we mapped the PpNSE6-binding site at the PpSMC5 arm right next to the PpNSE2-binding surface. The position of NSE6 at SMC arms suggests its role in the regulation of SMC5/6 dynamics. Consistent with the regulatory role of NSE6 subunits, Ppnse6 mutant lines were viable and sensitive to the DNA-damaging drug bleomycin and lost a large portion of rDNA copies. These moss mutants also exhibited reduced growth and developmental aberrations. Altogether, our data showed the conserved function of the NSE6 subunit and architecture of the SMC5/6 complex across species.
Assuntos
Proteínas Cromossômicas não Histona , Reparo do DNA , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos , Domínios Proteicos , Proteínas de Ciclo Celular/metabolismoRESUMO
Hepatitis B virus (HBV) chronically infects approximately 300 million people worldwide, and permanently repressing transcription of covalently closed circular DNA (cccDNA), the episomal viral DNA reservoir, is an attractive approach toward curing HBV. However, the mechanism underlying cccDNA transcription is only partially understood. In this study, by illuminating cccDNA of wild-type HBV (HBV-WT) and transcriptionally inactive HBV that bears a deficient HBV X gene (HBV-ΔX), we found that the HBV-ΔX cccDNA more frequently colocalizes with promyelocytic leukemia (PML) bodies than that of HBV-WT cccDNA. A small interfering RNA (siRNA) screen targeting 91 PML body-related proteins identified SMC5-SMC6 localization factor 2 (SLF2) as a host restriction factor of cccDNA transcription, and subsequent studies showed that SLF2 mediates HBV cccDNA entrapment in PML bodies by interacting with the SMC5/6 complex. We further showed that the region of SLF2 comprising residues 590 to 710 interacts with and recruits the SMC5/6 complex to PML bodies, and the C-terminal domain of SLF2 containing this region is necessary for repression of cccDNA transcription. Our findings shed new light on cellular mechanisms that inhibit HBV infection and lend further support for targeting the HBx pathway to repress HBV activity. IMPORTANCE Chronic HBV infection remains a major public health problem worldwide. Current antiviral treatments rarely cure the infection, as they cannot clear the viral reservoir, cccDNA, in the nucleus. Therefore, permanently silencing HBV cccDNA transcription represents a promising approach for a cure of HBV infection. Our study provides new insights into the cellular mechanisms that restrict HBV infection, revealing the role of SLF2 in directing HBV cccDNA to PML bodies for transcriptional repression. These findings have important implications for the development of antiviral therapies against HBV.
Assuntos
Hepatite B , Leucemia , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , DNA Circular/genética , DNA Circular/metabolismo , Antivirais/farmacologia , DNA Viral/genética , DNA Viral/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Replicação Viral/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/metabolismoRESUMO
Structural maintenance of chromosomes (SMC) complexes are critical chromatin modulators. In eukaryotes, the cohesin and condensin SMC complexes organize chromatin, while the Smc5/6 complex directly regulates DNA replication and repair. The molecular basis for the distinct functions of Smc5/6 is poorly understood. Here, we report an integrative structural study of the budding yeast Smc5/6 holo-complex using electron microscopy, cross-linking mass spectrometry, and computational modeling. We show that the Smc5/6 complex possesses several unique features, while sharing some architectural characteristics with other SMC complexes. In contrast to arm-folded structures of cohesin and condensin, Smc5 and Smc6 arm regions do not fold back on themselves. Instead, these long filamentous regions interact with subunits uniquely acquired by the Smc5/6 complex, namely the Nse2 SUMO ligase and the Nse5/Nse6 subcomplex, with the latter also serving as a linchpin connecting distal parts of the complex. Our 3.0-Å resolution cryoelectron microscopy structure of the Nse5/Nse6 core further reveals a clasped-hand topology and a dimeric interface important for cell growth. Finally, we provide evidence that Nse5/Nse6 uses its SUMO-binding motifs to contribute to Nse2-mediated sumoylation. Collectively, our integrative study identifies distinct structural features of the Smc5/6 complex and functional cooperation among its coevolved unique subunits.
Assuntos
Proteínas de Ciclo Celular/química , Complexos Multiproteicos/química , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Microscopia Crioeletrônica/métodos , Espectrometria de Massas/métodos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , SumoilaçãoRESUMO
KEY MESSAGE: SMC5/6 complex subunit OsMMS21 is involved in cell cycle and hormone signaling and required for stem cell proliferation during shoot and root development in rice. The structural maintenance of chromosome (SMC)5/6 complex is required for nucleolar integrity and DNA metabolism. Moreover, METHYL METHANESULFONATE SENSITIVITY GENE 21 (MMS21), a SUMO E3 ligase that is part of the SMC5/6 complex, is essential for the root stem cell niche and cell cycle transition in Arabidopsis. However, its specific role in rice remains unclear. Here, OsSMC5 and OsSMC6 single heterozygous mutants were generated using CRISPR/Cas9 technology to elucidate the function of SMC5/6 subunits, including OsSMC5, OsSMC6, and OsMMS21, in cell proliferation in rice. ossmc5/ + and ossmc6/ + heterozygous single mutants did not yield homozygous mutants in their progeny, indicating that OsSMC5 and OsSMC6 both play necessary roles during embryo formation. Loss of OsMMS21 caused severe defects in both the shoot and roots in rice. Transcriptome analysis showed a significant decrease in the expression of genes involved in auxin signaling in the roots of osmms21 mutants. Moreover, the expression levels of the cycB2-1 and MCM genes, which are involved the cell cycle, were significantly lower in the shoots of the mutants, indicating that OsMMS21 was involved in both hormone signaling pathways and the cell cycle. Overall, these findings indicate that the SUMO E3 ligase OsMMS21 is required for both shoot and root stem cell niches, improving the understanding of the function of the SMC5/6 complex in rice.
Assuntos
Oryza , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteína SUMO-1/química , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Ubiquitina-Proteína Ligases/genética , Divisão Celular , HormôniosRESUMO
Modification of chromosomal proteins by conjugation to SUMO is a key step to cope with DNA damage and to maintain the integrity of the genome. The recruitment of SUMO E3 ligases to chromatin may represent one layer of control on protein sumoylation. However, we currently do not understand how cells upregulate the activity of E3 ligases on chromatin. Here we show that the Nse2 SUMO E3 in the Smc5/6 complex, a critical player during recombinational DNA repair, is directly stimulated by binding to DNA Activation of sumoylation requires the electrostatic interaction between DNA and a positively charged patch in the ARM domain of Smc5, which acts as a DNA sensor that subsequently promotes a stimulatory activation of the E3 activity in Nse2. Specific disruption of the interaction between the ARM of Smc5 and DNA sensitizes cells to DNA damage, indicating that this mechanism contributes to DNA repair. These results reveal a mechanism to enhance a SUMO E3 ligase activity by direct DNA binding and to restrict sumoylation in the vicinity of those Smc5/6-Nse2 molecules engaged on DNA.
Assuntos
Proteínas de Ciclo Celular/química , DNA Fúngico/química , Complexos Multiproteicos/química , Proteína SUMO-1/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligases/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Ativação Enzimática , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Chromatin-based processes are essential for cellular functions. Structural maintenance of chromosomes (SMCs) are evolutionarily conserved molecular machines that organize chromosomes throughout the cell cycle, mediate chromosome compaction, promote DNA repair, or control sister chromatid attachment. The SMC5/6 complex is known for its pivotal role during the maintenance of genome stability. However, a dozen recent plant studies expanded the repertoire of SMC5/6 complex functions to the entire plant sexual reproductive phase. The SMC5/6 complex is essential in meiosis, where its activity must be precisely regulated to allow for normal meiocyte development. Initially, it is attenuated by the recombinase RAD51 to allow for efficient strand invasion by the meiosis-specific recombinase DMC1. At later stages, it is essential for the normal ratio of interfering and non-interfering crossovers, detoxifying aberrant joint molecules, preventing chromosome fragmentation, and ensuring normal chromosome/sister chromatid segregation. The latter meiotic defects lead to the production of diploid male gametes in Arabidopsis SMC5/6 complex mutants, increased seed abortion, and production of triploid offspring. The SMC5/6 complex is directly involved in controlling normal embryo and endosperm cell divisions, and pioneer studies show that the SMC5/6 complex is also important for seed development and normal plant growth in cereals.
Assuntos
Arabidopsis , Proteínas de Ciclo Celular , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Reparo do DNA , Meiose , Recombinases/genética , Reprodução/genéticaRESUMO
The Structural Maintenance of Chromosomes (SMC) complex plays an important role in maintaining chromosome integrity, in which the SMC5/6 complex occupies a central position by facilitating mitotic and meiotic processes as well as DNA repair. NSE-4 Kleisin is critical for both the organization and function of the SMC5/6 complex, bridging NSE1 and NSE3 (MAGE related) with the head domains of the SMC5 and SMC6 proteins. Despite the conservation in protein sequence, no functional relevance of the NSE-4 homologous protein (NSE-4) in Caenorhabditis elegans has been reported. Here, we demonstrated the essential role of C. elegans NSE-4 in genome maintenance and DNA repair. Our results showed that NSE-4 is essential for the maintenance of chromosomal structure and repair of a range of chemically induced DNA damage. Furthermore, NSE-4 is involved in inter-sister repair during meiosis. NSE-4 localizes on the chromosome and is indispensable for the localization of NSE-1. Collectively, our data from this study provide further insight into the evolutionary conservation and diversification of NSE-4 function in the SMC-5/6 complex.
Assuntos
Caenorhabditis elegans , Proteínas de Ciclo Celular , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Instabilidade Genômica , MeioseRESUMO
KEY MESSAGE: Kleisin NSE4 and circular form of SMC5/6 is indispensable for DSB repair and necessary for gene targeting but is not enough for recovery of cells from DNA damage in Physcomitrella. Structural maintenance of chromosomes (SMC) complexes are involved in cohesion, condensation and maintenance of genome stability. Based on the sensitivity of mutants to genotoxic stress the SMC5/6 complex is thought to play a prominent role in DNA stabilization during repair by tethering DNA at the site of lesion by a heteroduplex of SMC5 and SMC6 encircled with non-SMC components NSE1, NSE3 and kleisin NSE4. In this study, we tested how formation of the SMC5/6 circular structure affects mutant sensitivity to DNA damage, kinetics of DSB repair and gene targeting. In the moss Physcomitrella (Physcomitrium patens), SMC6 and NSE4 are essential single copy genes and this is why we used blocking of transcription to reveal their mutated phenotype. Even slight reduction of transcript levels by dCas9 binding was enough to obtain stable lines with severe DSB repair defects and specific bleomycin sensitivity. We show that survival after bleomycin or MMS treatment fully depends on active SMC6, whereas attenuation of NSE4 has little or negligible effect. We conclude that circularization of SMC5/6 provided by the kleisin NSE4 is indispensable for the DSB repair, nevertheless there are other functions associated with the SMC5/6 complex, which are critical to survive DNA damage.
Assuntos
Bryopsida/genética , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Complexos Multiproteicos/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Bryopsida/metabolismo , Proteínas de Ciclo Celular/classificação , Proteínas de Ciclo Celular/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Complexos Multiproteicos/metabolismo , Mutação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de AminoácidosRESUMO
The host structural maintenance of chromosomes 5/6 complex (Smc5/6) suppresses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing the X protein (HBx), which redirects the cellular DNA damage-binding protein 1 (DDB1)-containing E3 ubiquitin ligase to target Smc5/6 for degradation. However, the details of how HBx modulates the interaction between DDB1 and Smc5/6 remain to be determined. In this study, we performed biophysical analyses of recombinant HBx and functional analysis of HBx mutants in HBV-infected primary human hepatocytes (PHH) to identify key regions and residues that are required for HBx function. We determined that recombinant HBx is soluble and exhibits stoichiometric zinc binding when expressed in the presence of DDB1. Mass spectrometry-based hydrogen-deuterium exchange and cysteine-specific chemical footprinting of the HBx:DDB1 complex identified several HBx cysteine residues (located between amino acids 61 and 137) that are likely involved in zinc binding. These cysteine residues did not form disulfide bonds in HBx expressed in human cells. In line with the biophysical data, functional analysis demonstrated that HBx amino acids 45 to 140 are required for Smc6 degradation and HBV transcription in PHH. Furthermore, site-directed mutagenesis determined that C61, C69, C137, and H139 are necessary for HBx function, although they are likely not essential for DDB1 binding. This CCCH motif is highly conserved in HBV as well as in the X proteins from various mammalian hepadnaviruses. Collectively, our data indicate that the essential HBx cysteine and histidine residues form a zinc-binding motif that is required for HBx function.IMPORTANCE The structural maintenance of chromosomes 5/6 complex (Smc5/6) is a host restriction factor that suppresses HBV transcription. HBV counters this restriction by expressing HBV X protein (HBx), which redirects a host ubiquitin ligase to target Smc5/6 for degradation. Despite this recent advance in understanding HBx function, the key regions and residues of HBx required for Smc5/6 degradation have not been determined. In the present study, we performed biochemical, biophysical, and cell-based analyses of HBx. By doing so, we mapped the minimal functional region of HBx and identified a highly conserved CCCH motif in HBx that is likely responsible for coordinating zinc and is essential for HBx function. We also developed a method to produce soluble recombinant HBx protein that likely adopts a physiologically relevant conformation. Collectively, this study provides new insights into the HBx structure-function relationship and suggests a new approach for structural studies of this enigmatic viral regulatory protein.
Assuntos
Vírus da Hepatite B/fisiologia , Hepatite B/metabolismo , Hepatite B/virologia , Transativadores/metabolismo , Zinco/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Proteínas Recombinantes de Fusão , Transativadores/química , Proteínas Virais Reguladoras e AcessóriasRESUMO
The structural maintenance of chromosomes 5/6 complex (Smc5/6) is a host restriction factor that suppresses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing the X protein (HBx), which redirects the host DNA damage-binding protein 1 (DDB1) E3 ubiquitin ligase to target Smc5/6 for degradation. HBx is an attractive therapeutic target for the treatment of chronic hepatitis B (CHB), but it is challenging to study this important viral protein in the context of natural infection due to the lack of a highly specific and sensitive HBx antibody. In this study, we developed a novel monoclonal antibody that enables detection of HBx protein in HBV-infected primary human hepatocytes (PHH) by Western blotting and immunofluorescence. Confocal imaging studies with this antibody demonstrated that HBx is predominantly located in the nucleus of HBV-infected PHH, where it exhibits a diffuse staining pattern. In contrast, a DDB1-binding-deficient HBx mutant was detected in both the cytoplasm and nucleus, suggesting that the DDB1 interaction plays an important role in the nuclear localization of HBx. Our study also revealed that HBx is expressed early after infection and has a short half-life (â¼3 h) in HBV-infected PHH. In addition, we found that treatment with small interfering RNAs (siRNAs) that target DDB1 or HBx mRNA decreased HBx protein levels and led to the reappearance of Smc6 in the nuclei of HBV-infected PHH. Collectively, these studies provide the first spatiotemporal analysis of HBx in a natural infection system and also suggest that HBV transcriptional silencing by Smc5/6 can be restored by therapeutic targeting of HBx.IMPORTANCE Hepatitis B virus X protein (HBx) is a promising drug target since it promotes the degradation of the host structural maintenance of chromosomes 5/6 complex (Smc5/6) that inhibits HBV transcription. To date, it has not been possible to study HBx in physiologically relevant cell culture systems due to the lack of a highly specific and selective HBx antibody. In this study, we developed a novel monoclonal HBx antibody and performed a spatiotemporal analysis of HBx in a natural infection system. This revealed that HBx localizes to the nucleus of infected cells, is expressed shortly after infection, and has a short half-life. In addition, we demonstrated that inhibiting HBx expression or function promotes the reappearance of Smc6 in the nucleus of infected cells. These data provide new insights into HBx and underscore its potential as a novel target for the treatment of chronic HBV infection.
Assuntos
Vírus da Hepatite B/fisiologia , Hepatite B/virologia , Hepatócitos/virologia , Transativadores/metabolismo , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Proteínas de Ligação a DNA/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Expressão Gênica , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Transporte Proteico , Transativadores/química , Transativadores/genética , Transativadores/imunologia , Proteínas Virais Reguladoras e AcessóriasRESUMO
Viral and episomal DNAs, as signs of infections and dangers, induce a series of immune responses in the host, and cells must sense foreign DNAs to eliminate the invaders. The cell nucleus is not "immune privileged" and exerts intrinsic mechanisms to control nuclear-replicating DNA viruses. Thus, it is important to understand the action of viral DNA sensing in the cell nucleus. Here, we reveal a mechanism of restriction of DNA viruses and episomal plasmids mediated by PJA1, a RING-H2 E3 ubiquitin ligase. PJA1 restricts the DNA viruses hepatitis B virus (HBV) and herpes simplex virus 1 (HSV-1) but not the RNA viruses enterovirus 71 (EV71) and vesicular stomatitis virus (VSV). Similarly, PJA1 inhibits episomal plasmids but not chromosome-integrated reporters or endogenous genes. In addition, PJA1 has no effect on endogenous type I and II interferons (IFNs) and interferon-stimulated genes (ISGs), suggesting that PJA1 silences DNA viruses independent of the IFN pathways. Interestingly, PJA1 interacts with the SMC5/6 complex (a complex essential for chromosome maintenance and HBV restriction) to facilitate the binding of the complex to viral and episomal DNAs in the cell nucleus. Moreover, treatment with inhibitors of DNA topoisomerases (Tops) and knockdown of Tops release PJA1-mediated silencing of viral and extrachromosomal DNAs. Taken together, results of this work demonstrate that PJA1 interacts with SMC5/6 and facilitates the complex to bind and eliminate viral and episomal DNAs through DNA Tops and thus reveal a distinct mechanism underlying restriction of DNA viruses and foreign genes in the cell nucleus.IMPORTANCE DNA viruses, including hepatitis B virus and herpes simplex virus, induce a series of immune responses in the host and lead to human public health concerns worldwide. In addition to cytokines in the cytoplasm, restriction of viral DNA in the nucleus is an important approach of host immunity. However, the mechanism of foreign DNA recognition and restriction in the cell nucleus is largely unknown. This work demonstrates that an important cellular factor (PJA1) suppresses DNA viruses and transfected plasmids independent of type I and II interferon (IFN) pathways. Instead, PJA1 interacts with the chromosome maintenance complex (SMC5/6), facilitates the complex to recognize and bind viral and episomal DNAs, and recruits DNA topoisomerases to restrict the foreign molecules. These results reveal a distinct mechanism underlying the silencing of viral and episomal invaders in the cell nuclei and suggest that PJA1 acts as a potential agent to prevent infectious and inflammatory diseases.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Infecções por Vírus de DNA/genética , Vírus de DNA/genética , Plasmídeos/genética , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral , Antivirais/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Infecções por Vírus de DNA/tratamento farmacológico , Infecções por Vírus de DNA/virologia , Vírus de DNA/efeitos dos fármacos , DNA Viral/genética , Células Hep G2 , Interações Hospedeiro-Patógeno , Humanos , Interferons/farmacologia , Ubiquitina-Proteína Ligases/genéticaRESUMO
Chronic infection with hepatitis B virus (HBV) is a major cause of liver disease and cancer in humans. HBVs (family Hepadnaviridae) have been associated with mammals for millions of years. Recently, the Smc5/6 complex, known for its essential housekeeping functions in genome maintenance, was identified as an antiviral restriction factor of human HBV. The virus has, however, evolved to counteract this defense mechanism by degrading the complex via its regulatory HBx protein. Whether the antiviral activity of the Smc5/6 complex against hepadnaviruses is an important and evolutionarily conserved function is unknown. In this study, we used an evolutionary and functional approach to address this question. We first performed phylogenetic and positive selection analyses of the Smc5/6 complex subunits and found that they have been conserved in primates and mammals. Yet, Smc6 showed marks of adaptive evolution, potentially reminiscent of a virus-host "arms race." We then functionally tested the HBx proteins from six divergent hepadnaviruses naturally infecting primates, rodents, and bats. We demonstrate that despite little sequence homology, these HBx proteins efficiently degraded mammalian Smc5/6 complexes, independently of the host species and of the sites under positive selection. Importantly, all HBx proteins also rescued the replication of an HBx-deficient HBV in primary human hepatocytes. These findings point to an evolutionarily conserved requirement for Smc5/6 inactivation by HBx, showing that Smc5/6 antiviral activity has been an important defense mechanism against hepadnaviruses in mammals. It will be interesting to investigate whether Smc5/6 may further be a restriction factor of other, yet-unidentified viruses that may have driven some of its adaptation.IMPORTANCE Infection with hepatitis B virus (HBV) led to 887,000 human deaths in 2015. HBV has been coevolving with mammals for millions of years. Recently, the Smc5/6 complex, which has essential housekeeping functions, was identified as a restriction factor of human HBV antagonized by the regulatory HBx protein. Here we address whether the antiviral activity of Smc5/6 is an important evolutionarily conserved function. We found that all six subunits of Smc5/6 have been conserved in primates, with only Smc6 showing signatures of an "evolutionary arms race." Using evolution-guided functional analyses that included infections of primary human hepatocytes, we demonstrated that HBx proteins from very divergent mammalian HBVs could all efficiently antagonize Smc5/6, independently of the host species and sites under positive selection. These findings show that Smc5/6 antiviral activity against HBV is an important function in mammals. They also raise the intriguing possibility that Smc5/6 may restrict other, yet-unidentified viruses.
Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Vírus da Hepatite B/imunologia , Interações Hospedeiro-Patógeno , Transativadores/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Evolução Molecular , Variação Genética , Vírus da Hepatite B/fisiologia , Mamíferos , Filogenia , Proteólise , Proteínas Virais Reguladoras e AcessóriasRESUMO
The family of RecQ helicases is evolutionary conserved from bacteria to humans and play key roles in genome stability. The budding yeast RecQ helicase Sgs1 has been implicated in several key processes during the repair of DNA damage by homologous recombination as part of the STR complex (Sgs1-Top3-Rmi1). Limited information on how is Sgs1 recruited and regulated at sites of damage is available. Recently, we and others have uncover a direct link between the Smc5/6 complex and Sgs1. Most roles of Sgs1 during recombination, including DNA end resection, Holiday junction dissolution, and crossover suppression, are regulated through Mms21-dependent SUMOylation. Smc5/6 first acts as a recruiting platform for STR and then SUMOylates STR components to regulate their function. Importantly, the assembly of STR is totally independent of Smc5/6. Here, we provide a brief overview of STR regulation by Smc5/6.
Assuntos
Recombinação Homóloga/genética , RecQ Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Complexos Multiproteicos/genética , Proteína SUMO-1/genética , Sumoilação/genéticaRESUMO
Replication of linear chromosomes is facilitated by firing of multiple replication origins that ensures timely duplication of the entire chromosome. The Smc5/6 complex is thought to play an important role in replication by its involvement in the restart of collapsed replication forks. Here, we present genetic evidence for functional interaction between replication origin distribution and two subunits of the Smc5/6 complex, Smc6 and Mms21, as well as Top1. An artificial chromosome that has a long arm having low origin density (5ori∆YAC) is relatively unstable compared to the YAC having normal origin distribution in wild-type cells, but is partially stabilized in smc6-56 and top1∆ mutants. While a SUMO-ligase-deficient mutant of Mms21 does not affect stability of the 5ori∆YAC by itself, in combination with top1∆, the 5ori∆YAC is destabilized as evidenced by increased chromosome loss frequency in the mms21∆sl top1∆ double mutant. Likewise, the smc6-56 top1∆ double mutant also exhibits enhanced destabilization of the 5ori∆YAC compared to either single mutant. Such an increase in chromosome loss is not observed for a similar YAC that retains the original replication origins and normal origin distribution on the long arm, in either double mutant having the mms21∆sl or smc6-56 mutations in combination with top1∆. Our findings reveal a requirement for the Smc5/6 complex, including Mms21/Nse2 mediated sumoylation, and topoisomerase-1 (Top1), for maintaining stability of a chromosome having low origin density and suggest a functional cooperation between the Smc5/6 complex and Top1 in maintenance of topologically challenged chromosomes prone to replication fork collapse or accumulation of torsional stress.
Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , DNA Topoisomerases Tipo I/genética , Proteína SUMO-1/genética , Proteínas de Saccharomyces cerevisiae/genética , Instabilidade Cromossômica/genética , Cromossomos Fúngicos/genética , Reparo do DNA/genética , Complexos Multiproteicos/genética , Mutação , Recombinação Genética , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Sumoilação/genética , Torção MecânicaRESUMO
The SMC5/6 complex is evolutionarily conserved across all eukaryotes and plays a pivotal role in preserving genomic stability. Mutations in genes encoding SMC5/6 complex subunits have been associated with human lung disease, immunodeficiency, and chromosome breakage syndrome. Despite its critical importance, much about the SMC5/6 complex remains to be elucidated. Various evidences have suggested possible role of a subunit of the SMC5/6 complex, NSE1, in chromosome segregation and DNA repair. Current knowledge regarding the role of NSE1 is primarily derived from single-cell-based analyses in yeasts, Arabidopsis thaliana, and human cell lines. However, our understanding of its function is still limited and requires further investigation. This study delves into the role of nse-1 in Caenorhabditis elegans, revealing its involvement in meiotic recombination and DNA repair. nse-1 mutants display reduced fertility, increased male incidence, and increased sensitivity to genotoxic chemicals due to defects in meiotic chromosome segregation and DNA repair. These defects manifest as increased accumulation of RAD-51 foci, increased chromosome fragmentation, and susceptibility to MMS, cisplatin, and HU. Furthermore, nse-1 mutation exacerbates germ cell death by upregulating ced-13 and egl-1 genes involved in the CEP-1/p53-mediated apoptotic pathway. NSE-1 is essential for the proper localization of NSE-4 and MAGE-1 on the chromosomes. Collectively, these findings firmly establish nse-1 as a crucial factor in maintaining genomic stability.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Masculino , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Meiose , Instabilidade Genômica , Proteínas de Caenorhabditis elegans/genéticaRESUMO
Melanoma antigen (MAGE) genes encode for a family of proteins that share a common MAGE homology domain. These genes are conserved in eukaryotes and have been linked to a variety of cellular and developmental processes including ubiquitination and oncogenesis in cancer. Current knowledge on the MAGE family of proteins mainly comes from the analysis of yeast and human cell lines, and their functions have not been reported at an organismal level in animals. Caenorhabditis elegans only encodes 1 known MAGE gene member, mage-1 (NSE3 in yeast), forming part of the SMC-5/6 complex. Here, we characterize the role of mage-1/nse-3 in mitosis and meiosis in C. elegans. mage-1/nse-3 has a role in inter-sister recombination repair during meiotic recombination and for preserving chromosomal integrity upon treatment with a variety of DNA-damaging agents. MAGE-1 directly interacts with NSE-1 and NSE-4. In contrast to smc-5, smc-6, and nse-4 mutants which cause the loss of NSE-1 nuclear localization and strong cytoplasmic accumulation, mage-1/nse-3 mutants have a reduced level of NSE-1::GFP, remnant NSE-1::GFP being partially nuclear but largely cytoplasmic. Our data suggest that MAGE-1 is essential for NSE-1 stability and the proper functioning of the SMC-5/6 complex.