Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892284

RESUMO

SMYD4 is a member of the SMYD family that has lysine methyltransferase function. Little is known about the roles of SMYD4 in cancer. The aim of this study is to investigate genetic alterations in the SMYD4 gene across the most prevalent solid tumors and determine its potential as a biomarker. We performed an integrative multi-platform analysis of the most common mutations, copy number alterations (CNAs), and mRNA expression levels of the SMYD family genes using cohorts available at the Cancer Genome Atlas (TCGA), cBioPortal, and the Catalogue of Somatic Mutations in Cancer (COSMIC). SMYD genes displayed a lower frequency of mutations across the studied tumors, with none of the SMYD4 mutations detected demonstrating sufficient discriminatory power to serve as a biomarker. In terms of CNAs, SMYD4 consistently exhibited heterozygous loss and downregulation across all tumors evaluated. Moreover, SMYD4 showed low expression in tumor samples compared to normal samples, except for stomach adenocarcinoma. SMYD4 demonstrated a frequent negative correlation with other members of the SMYD family and a positive correlation between CNAs and mRNA expression. Additionally, patients with low SMYD4 expression in STAD and LUAD tumors exhibited significantly poorer overall survival. SMYD4 demonstrated its role as a tumor suppressor in the majority of tumors evaluated. The consistent downregulation of SMYD4, coupled with its association with cancer progression, underscores its potential usefulness as a biomarker.


Assuntos
Mutação , Neoplasias , Humanos , Neoplasias/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Variações do Número de Cópias de DNA , Histona-Lisina N-Metiltransferase/genética
2.
J Cancer ; 10(2): 441-448, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719138

RESUMO

Recent studies show that dysregulated miRNAs play an important role in breast cancer initiation and progression. Here, we identified upregulated expression of miR-1307-3p in breast cancer tissues and that increased level of miR-1307-3p was closely correlated with lower survival rate in breast cancer patients. Consistent with clinical data, our in vitro data show that expression level of miR-1307-3p was significantly increased in breast cancer cell lines compared to human mammary epithelial cell line MCF10A. Overexpression of miR-1307-3p in MCF10A stimulated cell proliferation and caused their growth in soft agar and tumor formation in nude mice. In contrast, inhibition of miR-1307-3p suppressed breast cancer cell proliferation and their growth in soft agar and inhibited tumor formation in nude mice. Further, we identified that miR-1307-3p plays its oncogenic role through targeting SET and MYND domain-containing 4 (SMYD4) expression in breast cancer. Taken together, our findings suggest that miR-1307-3p is a oncogenic miRNA that significantly contributes to breast cancer development and progression, and inhibition of miR-1307-3p may be a novel strategy for inhibits breast cancer initiation and progression.

3.
Curr Opin Physiol ; 1: 140-152, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29435515

RESUMO

Protein methylation plays a pivotal role in the regulation of various cellular processes including chromatin remodeling and gene expression. SET and MYND domain-containing proteins (Smyd) are a special class of lysine methyltransferases whose catalytic SET domain is split by an MYND domain. The hallmark feature of this family was thought to be the methylation of histone H3 (on lysine 4). However, several studies suggest that the role of the Smyd family is dynamic, targeting unique histone residues associated with both transcriptional activation and repression. Smyd proteins also methylate several non-histone proteins to regulate various cellular processes. Although we are only beginning to understand their specific molecular functions and role in chromatin remodeling, recent studies have advanced our understanding of this relatively uncharacterized family, highlighting their involvement in development, cell growth and differentiation and during disease in various animal models. This review summarizes our current knowledge of the structure, function and methylation targets of the Smyd family and provides a compilation of data emphasizing their prominent role in cardiac and skeletal muscle physiology and pathology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa