Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cardiovasc Diabetol ; 22(1): 276, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833717

RESUMO

BACKGROUND: O-GlcNAcylation is the enzymatic addition of a sugar, O-linked ß-N-Acetylglucosamine, to the serine and threonine residues of proteins, and is abundant in diabetic conditions. We have previously shown that O-GlcNAcylation can trigger arrhythmias by indirectly increasing pathological Ca2+ leak through the cardiac ryanodine receptor (RyR2) via Ca2+/calmodulin-dependent kinase II (CaMKII). However, RyR2 is well known to be directly regulated by other forms of serine and threonine modification, therefore, this study aimed to determine whether RyR2 is directly modified by O-GlcNAcylation and if this also alters the function of RyR2 and Ca2+ leak. METHODS: O-GlcNAcylation of RyR2 in diabetic human and animal hearts was determined using western blotting. O-GlcNAcylation of RyR2 was pharmacologically controlled and the propensity for Ca2+ leak was determined using single cell imaging. The site of O-GlcNAcylation within RyR2 was determined using site-directed mutagenesis of RyR2. RESULTS: We found that RyR2 is modified by O-GlcNAcylation in human, animal and HEK293 cell models. Under hyperglycaemic conditions O-GlcNAcylation was associated with an increase in Ca2+ leak through RyR2 which persisted after CaMKII inhibition. Conversion of serine-2808 to alanine prevented an O-GlcNAcylation induced increase in Ca2+ leak. CONCLUSIONS: These data suggest that the function of RyR2 can be directly regulated by O-GlcNAcylation and requires the presence of serine-2808.


Assuntos
Diabetes Mellitus , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Miócitos Cardíacos/metabolismo , Células HEK293 , Fosforilação/fisiologia , Retículo Sarcoplasmático/metabolismo , Diabetes Mellitus/metabolismo , Serina/metabolismo , Treonina/metabolismo , Cálcio/metabolismo
2.
Bioorg Med Chem ; 29: 115891, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278783

RESUMO

Ryanodine receptors (RyRs) are important ligand-gated Ca2+ channels; their excessive activation leads to Ca2+ leakage in the sarcoplasmic reticulum that may cause neurological diseases. In this study, three series of novel potent RyR1 inhibitors based on dantrolene and bearing semicarbazone and imidazolyl moieties were designed and synthesized, and their biological activity was evaluated. Using a single-cell calcium imaging method, the calcium overload inhibitory activities of 26 target compounds were tested in the R614C cell line, using dantrolene as a positive control. The preliminary investigation showed that compound 12a suppressed Ca2+ release as evidenced by store overload-induced Ca2+release (SOICR) (31.5 ± 0.1%, 77.2 ± 0.1%, 93.7 ± 0.2%) at 0.1 µM, 3 µM and 10 µM, respectively. Docking simulation results showed that compound 12a could bind at the active site of the RyR1 protein. The Morris water-maze test showed that compound 12a significantly improved the cognitive behavior of AD-model mice. Further studies on the structural optimization of this series of derivatives are currently underway in our laboratory.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/síntese química , Fármacos Neuroprotetores/síntese química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Semicarbazonas/síntese química , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio , Dantroleno/química , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Imidazóis/química , Masculino , Camundongos , Simulação de Acoplamento Molecular , Teste do Labirinto Aquático de Morris , Fármacos Neuroprotetores/farmacologia , Ligação Proteica , Conformação Proteica , Semicarbazonas/farmacologia , Análise de Célula Única , Relação Estrutura-Atividade
3.
J Mol Cell Cardiol ; 74: 22-31, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24805197

RESUMO

The Ser96Ala (S96A) mutation within the histidine rich Ca(2+) binding protein (HRC) has recently been linked to cardiac arrhythmias in idiopathic dilated cardiomyopathy patients, potentially attributable to an increase in spontaneous Ca(2+) release events. However, the molecular mechanism connecting the S96A mutation of HRC to increased Ca(2+) release events remains unclear. Previous findings by our group indicate that these spontaneous Ca(2+) release events may be linked to store overload induced Ca(2+) release (SOICR) via the cardiac ryanodine receptor (RyR2). Therefore, in the present study we sought to determine whether HRC wild type (HRC WT) and S96A mutant (HRC S96A) expression has a direct effect on SOICR. Using both cytosolic and intra-Ca(2+) store measurements in human embryonic kidney cells expressing RyR2, we found that HRC WT significantly inhibited the propensity for SOICR by buffering store free Ca(2+) and inhibiting store Ca(2+) uptake. In contrast, HRC S96A exhibited a markedly suppressed inhibitory effect on SOICR, which was attributed to an impaired ability to buffer store Ca(2+) and reduce store Ca(2+) uptake. In addition to impairing the ability of HRC to regulate bulk store Ca(2+), a proximity ligation assay demonstrated that the S96A mutation also disrupts the Ca(2+) microdomain around the RyR2, as it alters the Ca(2+) dependent association of RyR2 and HRC. Importantly, in contrast to previous reports, the absence of triadin in our experimental model illustrates that the S96A mutation in HRC can alter the propensity for SOICR without any interaction with triadin. Collectively, our results demonstrate that the human HRC mutation S96A leads to an increase in spontaneous Ca(2+) release and ultimately arrhythmias by disrupting the regulation of intra-store free Ca(2+). This is primarily due to an impaired ability to act as an effective bulk and local microdomain store Ca(2+) buffer.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Mutação Puntual , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Transporte de Íons , Camundongos , Miócitos Cardíacos/citologia , Cultura Primária de Células , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Transgenes
4.
Heart Rhythm ; 12(7): 1636-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25814417

RESUMO

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a difficult-to-diagnose cause of sudden cardiac death (SCD). We identified a family of 1400 individuals with multiple cases of CPVT, including 36 SCDs during youth. OBJECTIVES: We sought to identify the genetic cause of CPVT in this family, to preventively treat and clinically characterize the mutation-positive individuals, and to functionally characterize the pathogenic mechanisms of the mutation. METHODS: Genetic testing was performed for 1404 relatives. Mutation-positive individuals were preventively treated with ß-blockers and clinically characterized with a serial exercise treadmill test (ETT) and Holter monitoring. In vitro functional studies included caffeine sensitivity and store overload-induced calcium release activity of the mutant channel in HEK293 cells. RESULTS: We identified the p.G357S_RyR2 mutation, in the cardiac ryanodine receptor, in 179 family members and in 6 SCD cases. No SCD was observed among treated mutation-positive individuals over a median follow-up of 37 months; however, 3 relatives who had refused genetic testing (confirmed mutation-positive individuals) experienced SCD. Holter monitoring did not provide relevant information for CPVT diagnosis. One single ETT was unable to detect complex cardiac arrhythmias in 72% of mutation-positive individuals, though the serial ETT improved the accuracy. Functional studies showed that the G357S mutation increased caffeine sensitivity and store overload-induced calcium release activity under conditions that mimic catecholaminergic stress. CONCLUSION: Our study supports the use of genetic testing to identify individuals at risk of SCD to undertake prophylactic interventions. We also show that the pathogenic mechanisms of p.G357S_RyR2 appear to depend on ß-adrenergic stimulation.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Morte Súbita Cardíaca , Desfibriladores Implantáveis , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular , Adolescente , Adulto , Criança , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Eletrocardiografia Ambulatorial/métodos , Teste de Esforço/métodos , Feminino , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Medição de Risco , Espanha , Taquicardia Ventricular/complicações , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética , Taquicardia Ventricular/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa