Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Drug Resist Updat ; 73: 101038, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181587

RESUMO

AIMS: Although cefiderocol (FDC) is not prescribed in China, FDC-resistant pandrug-resistant hypervirulent Klebsiella pneumoniae (PDR-hvKp) is emerging. In this study, we performed FDC susceptibility testing of clinical Kp isolates to explore the prevalence of FDC-resistant isolates and the mechanism of FDC-resistance. METHODS: We retrospectively selected 151 carbapenem-resistant Kp isolates to assess FDC susceptibility. Seven isolates harboring blaSHV-12 from two patients were enrolled for whole-genome sequencing. The antimicrobial resistance, virulence, blaSHV-12 expression, and fitness costs in different media were examined. The amplification of blaSHV-12 was further investigated by qPCR and long-read sequencing. RESULTS: The 151 isolates showed a low MIC50/MIC90 (1/4 mg/L) of FDC. The seven isolates were ST11 PDR-hvKp, and two represented FDC-resistance (MIC=32 mg/L). The IncR/IncFII plasmids of two FDC-resistant isolates harbored 6 and 15 copies of blaSHV-12, whereas four FDC-susceptible isolates carried one copy and one harbored three copies. These blaSHV-12 genes concatenated together and were located within the same 7.3 kb fragment flanked by IS26, which contributed to the increased expression and FDC resistance without fitness costs. The amplification of blaSHV-12 and FDC resistance could be induced by FDC in vitro and reversed during continuous passage. CONCLUSIONS: The amplification of blaSHV-12 and the consequent dynamic within-host heteroresistance are important concerns for the rational application of antibiotics. Long-read sequencing might be a superior way to detect resistance gene amplification rapidly and accurately.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Cefiderocol , Estudos Retrospectivos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
2.
Drug Resist Updat ; 74: 101083, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593500

RESUMO

AIMS: Carbapenem-resistant Klebsiella pneumonia (CRKP) is a global threat that varies by region. The global distribution, evolution, and clinical implications of the ST11 CRKP clone remain obscure. METHODS: We conducted a multicenter molecular epidemiological survey using isolates obtained from 28 provinces and municipalities across China between 2011 and 2021. We integrated sequences from public databases and performed genetic epidemiology analysis of ST11 CRKP. RESULTS: Among ST11 CRKP, KL64 serotypes exhibited considerable expansion, increasing from 1.54% to 46.08% between 2011 and 2021. Combining our data with public databases, the phylogenetic and phylogeography analyses indicated that ST11 CRKP appeared in the Americas in 1996 and spread worldwide, with key clones progressing from China's southeastern coast to the inland by 2010. Global phylogenetic analysis showed that ST11 KL64 CRKP has evolved to a virulent, resistant clade with notable regional spread. Single-nucleotide polymorphism (SNP) analysis identified BMPPS (bmr3, mltC, pyrB, ppsC, and sdaC) as a key marker for this clade. The BMPPS SNP clade is associated with high mortality and has strong anti-phagocytic and competitive traits in vitro. CONCLUSIONS: The high-risk ST11 KL64 CRKP subclone showed strong expansion potential and survival advantages, probably owing to genetic factors.


Assuntos
Antibacterianos , Infecções por Klebsiella , Klebsiella pneumoniae , Filogenia , Humanos , China/epidemiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/transmissão , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Polimorfismo de Nucleotídeo Único , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Epidemiologia Molecular , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Filogeografia , Sorogrupo , Genômica/métodos
3.
Eur J Clin Microbiol Infect Dis ; 43(2): 269-278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38036711

RESUMO

OBJECTIVES: The aim of this study was to investigate the clinical and molecular characteristics of Klebsiella pneumoniae infection from a tertiary general hospital in Wuhan, China. METHODS: From December 2019 to August 2022, 311 non-duplicate isolates of K. pneumoniae were collected from a tertiary hospital in Wuhan. These comprised 140 carbapenem-resistant K. pneumoniae (CRKP) isolates and 171 carbapenem-susceptible K. pneumoniae (CSKP) isolates. The clinical characteristics of patients with K. pneumoniae infection were retrospectively collected. Polymerase chain reaction (PCR) assays were used to identify the main carbapenem resistance genes, virulence genes and multi-locus sequence typing (MLST) profiles of the isolates, and the Galleria mellonella infection model was used to determine their virulence phenotypes. RESULTS: Independent risk factors for CRKP infection were hypertension, neurological disorders, being admitted to the intensive care unit (ICU) and prior use of antibiotics. Patient with CRKP infection had higher mortality than those with CSKP infection (23.6% vs 14.0%, P < 0.05). One hundred and two sequence types (STs) were identified among the K. pneumoniae isolates, and the most prevalent ST type was ST11 (112/311, 36.0%). All of the ST11 isolates were CRKP. Among the 112 ST11 isolates, 105 (93.8%) harboured the carbapenem resistance gene blaKPC-2 (ST11-KPC-2), and of these isolates, 78 (74.3%, 78/105) contained all of the four virulence genes, namely rmpA, rmpA2, iroN and iucA, suggesting that these genes were widespread among the isolates responsible for K. pneumoniae infections. CONCLUSION: In this study, ST11-KPC-2 was responsible for most of the K. pneumoniae infection cases. Carbapenem resistance rather than the co-occurrence of the virulence genes rmpA, rmpA2, iroN and iucA was associated with K. pneumoniae infection-related mortality during hospitalisation. Furthermore, a high proportion of ST11-KPC-2 isolates carried all of the four virulence genes.


Assuntos
Infecções por Klebsiella , beta-Lactamases , Humanos , Tipagem de Sequências Multilocus , beta-Lactamases/genética , Klebsiella pneumoniae , Centros de Atenção Terciária , Hospitais Gerais , Estudos Retrospectivos , Infecções por Klebsiella/microbiologia , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , China/epidemiologia , Ferro
4.
Artigo em Inglês | MEDLINE | ID: mdl-39073671

RESUMO

Carbapenem-resistant organisms (CRO) represent a significant threat because of their widespread in hospital settings, difficult-to-treat, and association with high morbidity and mortality rates. Data on the efficacy of ceftazidime/avibactam (CAZ-AVI) among patients infected with CRO in Iran are lacking. Herein, we report a case of a 91-year-old man with infection caused by extensively drug-resistant ST11 co-harbouring blaNDM and blaOXA-48-like strain from seven isolates. During ICU hospitalization, 10 different antibiotics were prescribed to the patient, and CAZ-AVI was experimentally prescribed in combination with tobramycin and tigecycline to the patient for the first time in the teaching hospitals of Isfahan City. The patient died on the 56th day of hospitalization. The present study revealed that the use of CAZ-AVI should be limited to targeted therapy after susceptibility results and minimum inhibitory concentration values are available to the treating clinicians and not be used for empirical therapy of patients with an infection caused by CRO, underscoring the urgent need for stringent policies for antibiotic stewardship to preserve the activity of novel ß-lactam/ß-lactamase inhibitors.

5.
Ann Clin Microbiol Antimicrob ; 23(1): 27, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553771

RESUMO

BACKGROUND: Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) co-producing blaKPC and blaNDM poses a serious threat to public health. This study aimed to investigate the mechanisms underlying the resistance and virulence of CR-hvKP isolates collected from a Chinese hospital, with a focus on blaKPC and blaNDM dual-positive hvKP strains. METHODS: Five CR-hvKP strains were isolated from a teaching hospital in China. Antimicrobial susceptibility and plasmid stability testing, plasmid conjugation, pulsed-field gel electrophoresis, and whole-genome sequencing (WGS) were performed to examine the mechanisms of resistance and virulence. The virulence of CR-hvKP was evaluated through serum-killing assay and Galleria mellonella lethality experiments. Phylogenetic analysis based on 16 highly homologous carbapenem-resistant K. pneumoniae (CRKP) producing KPC-2 isolates from the same hospital was conducted to elucidate the potential evolutionary pathway of CRKP co-producing NDM and KPC. RESULTS: WGS revealed that five isolates individually carried three unique plasmids: an IncFIB/IncHI1B-type virulence plasmid, IncFII/IncR-type plasmid harboring KPC-2 and IncC-type plasmid harboring NDM-1. The conjugation test results indicated that the transference of KPC-2 harboring IncFII/IncR-type plasmid was unsuccessful on their own, but could be transferred by forming a hybrid plasmid with the IncC plasmid harboring NDM. Further genetic analysis confirmed that the pJNKPN26-KPC plasmid was entirely integrated into the IncC-type plasmid via the copy-in route, which was mediated by TnAs1 and IS26. CONCLUSION: KPC-NDM-CR-hvKP likely evolved from a KPC-2-CRKP ancestor and later acquired a highly transferable blaNDM-1 plasmid. ST11-KL64 CRKP exhibited enhanced plasticity. The identification of KPC-2-NDM-1-CR-hvKP highlights the urgent need for effective preventive strategies against aggravated accumulation of resistance genes.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Filogenia , Saúde Pública , Genômica , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Hospitais de Ensino , Plasmídeos/genética , Antibacterianos/farmacologia
6.
Drug Resist Updat ; 66: 100891, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427451

RESUMO

AIMS: To investigate the in vivo evolution of the mucoid-phenotype of ST11-KL64 carbapenem-resistant Klebsiella pneumoniae (CRKP) isolated from the same patients and gain insights into diverse evolution and biology of these strains. METHODS: Whole genome sequencing and bioinformatic analysis were used to determine the mutation involved in the mucoid phenotype of ST11-KL64 CRKP. Gene knockout, bacterial morphology and capsular polysaccharides (CPS) extraction were used to verify the role of wzc and wcaJ in the mucoid phenotypes. Antimicrobial susceptibility, growth assay, biofilm formation, host cell adhesion and virulence assay were used to investigate the pleiotropic role of CPS changes in ST11-KL64 CRKP strains. RESULTS: Mutation of wzc S682N led to hypermucoid phenotype, which had negative impact on bacterial fitness and resulted in reduced biofilm formation and epithelial cell adhesion; while enhanced resistance to macrophage phagocytosis and virulence. Mutations of wcaJ gene led to non-mucoid phenotype with increased biofilm formation and epithelial cell adhesion, but reduced resistance of macrophage phagocytosis and virulence. Using virulence gene knockout, we demonstrated that CPS, rather than the pLVPK-like virulence plasmid, has a greater effect on mucoid phenotypic changes. CPS could be used as a surrogate marker of virulence in ST11-KL64 CRKP strains. CONCLUSIONS: ST11-KL64 CRKP strains sacrifice certain advantages to develop pathogenicity by changing CPS with two opposite in vivo evolution strategies.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Mutação , Virulência/genética
7.
Microbiology (Reading) ; 169(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37074150

RESUMO

Escherichia coli is a facultative anaerobe found in a wide range of environments. Commonly described as the laboratory workhorse, E. coli is one of the best characterized bacterial species to date, however much of our understanding comes from studies involving the laboratory strain E. coli K-12. Resistance-nodulation-division efflux pumps are found in Gram-negative bacteria and can export a diverse range of substrates, including antibiotics. E. coli K-12 has six RND pumps; AcrB, AcrD, AcrF, CusA, MdtBC and MdtF, and it is frequently reported that all E. coli strains possess these six pumps. However, this is not true of E. coli ST11, a lineage of E. coli, which is primarily composed of the highly virulent important human pathogen, E. coli O157:H7. Here we show that acrF is absent from the pangenome of ST11 and that this lineage of E. coli has a highly conserved insertion within the acrF gene, which when translated encodes 13 amino acids and two stop codons. This insertion was found to be present in 97.59 % of 1787 ST11 genome assemblies. Non-function of AcrF in ST11 was confirmed in the laboratory as complementation with acrF from ST11 was unable to restore AcrF function in E. coli K-12 substr. MG1655 ΔacrB ΔacrF. This shows that the complement of RND efflux pumps present in laboratory bacterial strains may not reflect the situation in virulent strains of bacterial pathogens.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Membrana/metabolismo
8.
BMC Microbiol ; 23(1): 64, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882683

RESUMO

BACKGROUND: The prevalence of multidrug-resistant hypervirulent K. pneumoniae (MDR-hvKP) has gradually increased. It poses a severe threat to human health. However, polymyxin-resistant hvKP is rare. Here, we collected eight polymyxin B-resistant K. pneumoniae isolates from a Chinese teaching hospital as a suspected outbreak. RESULTS: The minimum inhibitory concentrations (MICs) were determined by the broth microdilution method. HvKP was identified by detecting virulence-related genes and using a Galleria mellonella infection model. Their resistance to serum, growth, biofilm formation, and plasmid conjugation were analyzed in this study. Molecular characteristics were analyzed using whole-genome sequencing (WGS) and mutations of chromosome-mediated two-component systems pmrAB and phoPQ, and the negative phoPQ regulator mgrB to cause polymyxin B (PB) resistance were screened. All isolates were resistant to polymyxin B and sensitive to tigecycline; four were resistant to ceftazidime/avibactam. Except for KP16 (a newly discovered ST5254), all were of the K64 capsular serotype and belonged to ST11. Four strains co-harbored blaKPC-2, blaNDM-1, and the virulence-related genes prmpA, prmpA2, iucA, and peg344, and were confirmed to be hypervirulent by the G. mellonella infection model. According to WGS analysis, three hvKP strains showed evidence of clonal transmission (8-20 single nucleotide polymorphisms) and had a highly transferable pKOX_NDM1-like plasmid. KP25 had multiple plasmids carrying blaKPC-2, blaNDM-1, blaSHV-12, blaLAP-2, tet(A), fosA5, and a pLVPK-like virulence plasmid. Tn1722 and multiple additional insert sequence-mediated transpositions were observed. Mutations in chromosomal genes phoQ and pmrB, and insertion mutations in mgrB were major causes of PB resistance. CONCLUSIONS: Polymyxin-resistant hvKP has become an essential new superbug prevalent in China, posing a serious challenge to public health. Its epidemic transmission characteristics and mechanisms of resistance and virulence deserve attention.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella , Klebsiella pneumoniae , Polimixina B , Humanos , China/epidemiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Polimixina B/farmacologia , Centros de Atenção Terciária , Surtos de Doenças , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/transmissão
9.
Int Microbiol ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857932

RESUMO

OBJECTIVES: To investigate the clinical characteristics and molecular epidemiology of CRKP infection in neonatal patients in a children's hospital in China from 2017 to 2021. METHODS: Species identification and antibiotic susceptibilities were tested with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and VITEK 2 systems. The clinical data were collected from medical records. Carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates were investigated by antimicrobial susceptibility testing, carbapenemase genes and multilocus sequence typing. RESULTS: Six kinds of resistant genes and 23 STs were detected. BlaNDM-1 (n=83, 55.3%) was the predominant carbapenemase gene, followed by blaKPC-2 (n=45, 30.0%), blaNDM-5 (n=7, 4.7%), blaIMP-38 (n=6, 4.0%). BlaNDM-1 was predominant in 2017 and 2018, whereas blaKPC-2 increased in 2019 and became the predominant gene from 2020 to 2021. ST11 accounted for most infections (n=35, 23.3%), followed by ST278 (n=23, 15.3%), ST17 (n=17, 11. 3%) and ST2735 (n=16, 10.7%). ST278 and ST17 were predominant in 2017 and 2018, whereas ST11 increased in 2019 and became the predominant sequence type from 2020 to 2021. Compared with blaNDM-1, the CRKP strains producing blaKPC-2 were characterized by high resistance to gentamicin, amikacin and levofloxacin and the change trend of drug resistance rate before and after COVID-19 was consistent with that of blaNDM-1 and blaKPC-2. CONCLUSIONS: The main sequence type of CRKP infection changed dynamically from ST278-NDM-1 to ST11-KPC-2 during the years 2017-2021 in the newborns. Antibiotic exposure and the prevalence of COVID-19 since 2020 may have led to changes in hospital population and lead to the changes.

10.
Eur J Clin Microbiol Infect Dis ; 42(1): 23-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36322255

RESUMO

Carbapenem-resistant Klebsiella pneumoniae are distributed worldwide. This study aimed to characterize a hypervirulent tigecycline-resistant and carbapenem-resistant Klebsiella pneumoniae strain, XJ-K2, collected from a patient's blood. We tested antimicrobial susceptibility, virulence, and whole-genome sequencing (WGS) on strain XJ-K2. WGS data were used to identify virulence and resistance genes and to perform multilocus sequence typing (MLST) and phylogenetic analysis. Three novel plasmids, including a pLVPK-like virulence plasmid (pXJ-K2-p1) and two multiple resistance plasmids (pXJ-K2-KPC-2 and pXJ-K2-p3), were discovered in strain XJ-K2. The IncFII(pCRY) plasmid pXJ-K2-p3 carried the dfrA14, sul2, qnrS1, blaLAP-2, and tet(A) resistance genes. The IncFII(pHN7A8)/IncR plasmid pXJ-K2-KPC-2 also carried a range of resistance elements, containing rmtB, blaKPC-2, blaTEM-1, blaCTX-M-65, and fosA3. MLST analysis revealed that strain XJ-K2 belonged to sequence type 11 (ST11). Seven complete phage sequences and many virulence genes were found in strain XJ-K2. Meanwhile, antimicrobial susceptibility tests and G. mellonella larval infection models confirmed the extensively drug resistance (XDR) and hypervirulence of KJ-K2. To our knowledge, this is the first observation and description of the ST11 hypervirulent tigecycline- and carbapenem-resistant K. pneumoniae strain co-carrying blaKPC-2 and the tet(A) in a patient's blood in China. Further investigation is needed to understand the resistance and virulence mechanisms of this significant hypervirulent tigecycline- and carbapenem-resistant strain.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Tigeciclina/farmacologia , Klebsiella pneumoniae , Antibacterianos/farmacologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Tipagem de Sequências Multilocus , Filogenia , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Plasmídeos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética
11.
Infection ; 51(6): 1835-1840, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37277691

RESUMO

PURPOSE: To demonstrate the feasibility of continuous infusion of meropenem-vaborbactam to optimize the treatment of carbapenem-resistant Enterobacterales. METHODS: Report of a case of a Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae bloodstream infection comfirmed by whole genome sequencing and therapeutic drug monitoring (TDM) of meropenem. RESULTS: A patient with augmented renal clearance (ARC) went into septic shock caused by an ST11 KPC-3-producing K. pneumoniae bloodstream infection that was successfully treated with a continuous infusion of meropenem-vaborbactam at a dosage of 1 g/1 g q4h as a 4-h infusion. TDM confirmed sustained concentrations of meropenem ranging from 8 to 16 mg/L throughout the dosing interval. CONCLUSION: Continuous infusion of meropenem-vaborbactam was feasible. It could be appropriate for optimizing the management of critically ill patients with ARC, as it resulted in antibiotic concentrations above the minimum inhibitory concentration for susceptible carbapenem-resistant Enterobacterales (up to 8 mg/L) throughout the dosing interval.


Assuntos
Klebsiella pneumoniae , Sepse , Humanos , Meropeném/uso terapêutico , Estado Terminal , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , Proteínas de Bactérias/genética , Combinação de Medicamentos , Testes de Sensibilidade Microbiana
12.
BMC Infect Dis ; 23(1): 182, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991368

RESUMO

OBJECTIVE: To analyze the distribution of blaOXA among global Klebsiella pneumoniae and the characteristics of blaOXA-carrying K. pneumoniae. MATERIALS AND METHODS: The genomes of global K. pneumoniae were downloaded from NCBI by Aspera software. After quality check, the distribution of blaOXA among the qualified genomes was investigated by annotation with the resistant determinant database. The phylogenetic tree was constructed for the blaOXA variants based on the single nucleotide polymorphism (SNP) to explore the evolutionary relationship between these variants. The MLST (multi-locus sequence type) website and blastn tools were utilized to determine the sequence types (STs) of these blaOXA-carrying strains. and sample resource, isolation country, date and host were extracted by perl program for analyzing the characteristics of these strains. RESULTS: A total of 12,356 K. pneumoniae genomes were downloaded and 11,429 ones were qualified. Among them, 4386 strains were found to carry 5610 blaOXA variants which belonged to 27 varieties of blaOXAs, blaOXA-1 (n = 2891, 51.5%) and blaOXA-9 (n = 969, 17.3%) were the most prevalent blaOXA variants, followed by blaOXA-48 (n = 800, 14.3%) and blaOXA-232 (n = 480, 8.6%). The phylogenetic tree displayed 8 clades, three of them were composed of carbapenem-hydrolyzing oxacillinase (CHO). Totally, 300 distinct STs were identified among 4386 strains with ST11 (n = 477, 10.9%) being the most predominant one followed by ST258 (n = 410, 9.4%). Homo sapiens (2696/4386, 61.5%) was the main host for blaOXA-carrying K. pneumoniae isolates. The blaOXA-9-carrying K. pneumoniae strains were mostly found in the United States and blaOXA-48-carrying K. pneumoniae strains were mainly distributed in Europe and Asia. CONCLUSION: Among the global K. pneumoniae, numerous blaOXA variants were identified with blaOXA-1, blaOXA-9, blaOXA-48 and blaOXA-232 being the most prevalent ones, indicating that blaOXA rapidly evolved under the selective pressure of antimicrobial agents. ST11 and ST258 were the main clones for blaOXA-carrying K. pneumoniae.


Assuntos
Carbapenêmicos , Klebsiella pneumoniae , Humanos , Estados Unidos , Tipagem de Sequências Multilocus , Filogenia , Europa (Continente)
13.
BMC Biol ; 20(1): 146, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710371

RESUMO

BACKGROUND: Escherichia coli (E. coli) has been one of the most studied model organisms in the history of life sciences. Initially thought just to be commensal bacteria, E. coli has shown wide phenotypic diversity including pathogenic isolates with great relevance to public health. Though pangenome analysis has been attempted several times, there is no systematic functional characterization of the E. coli subgroups according to the gene profile. RESULTS: Systematically scanning for optimal parametrization, we have built the E. coli pangenome from 1324 complete genomes. The pangenome size is estimated to be ~25,000 gene families (GFs). Whereas the core genome diminishes as more genomes are added, the softcore genome (≥95% of strains) is stable with ~3000 GFs regardless of the total number of genomes. Apparently, the softcore genome (with a 92% or 95% generation threshold) can define the genome of a bacterial species listing the critically relevant, evolutionarily most conserved or important classes of GFs. Unsupervised clustering of common E. coli sequence types using the presence/absence GF matrix reveals distinct characteristics of E. coli phylogroups B1, B2, and E. We highlight the bi-lineage nature of B1, the variation of the secretion and of the iron acquisition systems in ST11 (E), and the incorporation of a highly conserved prophage into the genome of ST131 (B2). The tail structure of the prophage is evolutionarily related to R2-pyocin (a tailocin) from Pseudomonas aeruginosa PAO1. We hypothesize that this molecular machinery is highly likely to play an important role in protecting its own colonies; thus, contributing towards the rapid rise of pandemic E. coli ST131. CONCLUSIONS: This study has explored the optimized pangenome development in E. coli. We provide complete GF lists and the pangenome matrix as supplementary data for further studies. We identified biological characteristics of different E. coli subtypes, specifically for phylogroups B1, B2, and E. We found an operon-like genome region coding for a tailocin specific for ST131 strains. The latter is a potential killer weapon providing pandemic E. coli ST131 with an advantage in inter-bacterial competition and, suggestively, explains their dominance as human pathogen among E. coli strains.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Humanos , Pandemias , Filogenia , Prófagos
14.
BMC Genomics ; 23(1): 693, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207674

RESUMO

OBJECTIVES: ST11 KPC-producing Klebsiella pneumoniae (Kp) is highly prevalent in China. We investigated the inter- and intra- host transmission and evolution characteristics of ST11 KPC-producing Kp. METHODS: A retrospective study was conducted in a hospital. The clinical data and antimicrobial resistance (AMR) phenotypes were collected. Whole genome sequencing was performed. The transmission route was reconstructed by combining single nucleotide polymorphisms (SNPs) with the clinical information. Hypervirulent Kp (HvKp) was defined as the presence of some combination of peg-344, iroB, iucA, rmpA, or rmpA2. RESULTS: Fifty-eight Kp strains isolated from thirty-five patients were enrolled. The information of one isolate was missing. The mean age of the patients was 74.3 ± 18.0 years, and 18 (50.0%) were female. Fifteen patients (41.7%, 15/36) presented with poor prognosis. All the strains were identified as ST11, and 57 strains harbored blaKPC-2. Two distinguished clades were identified based on the 1,325 high quality SNPs. In clade 1, carbapenem-resistant (CR)-hvKp accounted for 48.3% of the strains (28/58), which mostly presented as KL64 subclones, whereas CR-classical Klebsiella pneumoniae (cKp) commonly possessing KL47 were clustered in Clade 2. One CR-hvKp strain might have originated from the CR-cKp strain from within-host evolution. Even worse, a prolonged transmission of CR-hvKp has led to its spread into healthcare institutes. CONCLUSION: Two endemic subclones of ST11 KPC-producing Kp, KL64-CR-hvKp and KL47-CR-cKp, were transmitted in parallel within the hospital and/or the healthcare institute, suggesting that the ongoing genomic surveillance should be enhanced.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos , Feminino , Hospitais de Ensino , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Masculino , Estudos Retrospectivos , Sorogrupo , Virulência/genética
15.
BMC Microbiol ; 22(1): 81, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35350977

RESUMO

BACKGROUND: The increasing number of carbapenemase-producing Enterobacterales (CPE) has become a serious problem globally. This study aimed to elucidate their geographically epidemiological characteristics. METHODS: Resistance genes were identified by polymerase chain reaction (PCR) and sequencing. Bacterial genotyping was studied using multilocus sequence typing (MLST) and wzi typing. The transferability of carbapenemase genes was determined by a broth mating method. The relationships between the rates of antimicrobial consumption and the prevalence of CRE were performed by Pearson's or Spearman's correlation analyses. RESULTS: A total of 930 phenotypically confirmed carbapenem-resistant Enterobacterales (CRE) isolates collected from 19 hospitals were genotypically characterized. K. pneumoniae (KP) and E. coli isolates were 785 (85.14%) and 96 (10.41%) among 922 CPE isolates. Two major carbapenemase genes blaKPC-2 and blaNDM in CPE isolates accounted for 84.6% (n = 780) and 13.77% (n = 127). ST11 comprised 86.83% (633/729) of KPC-2 KP isolates. Different combinations of extended spectrum-ß-lactamase (ESBL) genes of blaSHV, blaCTX, and blaTEM were found in KPC-2 producing KP isolates, and blaCTM-M-14/15, blaSHV-11/12 and blaTEM-1 were common ESBL genotypes. The wzi typing method could further subdivide ST11 KP group into at least five subgroups, among which wzi209 (69.83%, 442/633) was the most frequently isolated, followed by wzi141 (25.28%, 160/633). Conjugation assays showed that high conjugation rates were observed in CPE (15.24%, 32/210) for NDM plasmids, but relatively low (8.1%, 17/210) for KPC-2 plasmids. Different STs, different wzis and temperature could influence plasmid conjugation efficiency. No associations between the rates of antibiotics consumption and CPE prevalence were observed. The number of intra-hospital and inter-hospital transfers of CPE patients increased gradually from 18 (17.82%, 101) and 12 (11.88%, 101) in 2015 to 63 (30.73%, 205) and 51 (24.88%, 205) in 2018 (p = 0.016 and p = 0.008), respectively. Evidence-based measures could effectively reduce the prevalence of ST11-wzi209 clone but failed to control the dissemination of ST11-wzi141 KP clone. CONCLUSIONS: Clonal spread of CPE, especially KPC-2 ST11 KP was the key factor contributing to the CPE increase in the region. Continued vigilance for the importations should be maintained. Coordinated regional interventions are urgently needed to reduce CPE threat.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Proteínas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus
16.
BMC Microbiol ; 21(1): 164, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078263

RESUMO

BACKGROUND: The rate of fluoroquinolone (FQ) resistance among carbapenem-resistant Klebsiella pneumoniae (CRKP) is high. The present study aimed to investigate the distribution of fluoroquinolone resistance determinants in clinical CRKP isolates associated with bloodstream infections (BSIs). RESULTS: A total of 149 BSI-associated clinical CRKP isolates collected from 11 Chinese teaching hospitals from 2015 to 2018 were investigated for the prevalence of fluoroquinolone resistance determinants, including plasmid-mediated quinolone resistance (PMQR) genes and spontaneous mutations in the quinolone resistance-determining regions (QRDRs) of the gyrA and parC genes. Among these 149 clinical CRKP isolates, 117 (78.5%) exhibited resistance to ciprofloxacin. The GyrA substitutions (Ser83 → IIe/Phe) and (Asp87 → Gly/Ala) were found among 112 (75.2%) of 149 isolates, while the substitution (Ser80 → IIe) of ParC was found in 111 (74.5%) of the 149 isolates. In total, 70.5% (105/149) of the CRKP isolates had at least two mutations within gyrA as well as a third mutation in parC. No mutations in the QRDRs were found in 31 ciprofloxacin susceptible CRKP isolates. Eighty-nine (56.9%) of 149 were found to carry PMQR genes including qnrS1 (43.0%), aac(6')-Ib-cr (16.1%), qnrB4 (6.0%), qnrB2 (2.7%), and qnrB1 (1.3%). Nine isolates contained two or more PMQR genes, with one carrying four [aac(6')-Ib-cr, qnr-S1, qnrB2, and qnrB4]. The co-existence rate of PMQR determinants and mutations in the QRDRs of gyrA and parC reached 68.5% (61/89). Seventy-four (83.1%, 74/89) PMQR-positive isolates harbored extended-spectrum beta-lactamase (ESBL)-encoding genes. Multilocus sequence typing (MLST) analysis demonstrated that the ST11 was the most prevalent STs in our study. CONCLUSIONS: Mutations in the QRDRs of gyrA and parC were the key factors leading to the high prevalence of fluoroquinolone resistance among BSI-associated CRKP. The co-existence of PMQR genes and mutations in the QRDRs can increase the resistance level of CRKP to fluoroquinolones in clinical settings. ST11 CRKP isolates with identical QRDR substitution patterns were found throughout hospitals in China.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Sepse/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , China , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/metabolismo , Tipagem de Sequências Multilocus , Plasmídeos/genética , Plasmídeos/metabolismo
17.
Emerg Infect Dis ; 26(2): 289-297, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961299

RESUMO

We aimed to clarify the epidemiologic and clinical importance of evolutionary events that occurred in carbapenem-resistant Klebsiella pneumoniae (CRKP). We collected 203 CRKP causing bloodstream infections in a tertiary hospital in China during 2013-2017. We detected a subclonal shift in the dominant clone sequence type (ST) 11 CRKP in which the previously prevalent capsular loci (KL) 47 had been replaced by KL64 since 2016. Patients infected with ST11-KL64 CRKP had a significantly higher 30-day mortality rate than other CRKP-infected patients. Enhanced virulence was further evidenced by phenotypic tests. Phylogenetic reconstruction demonstrated that ST11-KL64 is derived from an ST11-KL47-like ancestor through recombination. We identified a pLVPK-like virulence plasmid carrying rmpA and peg-344 in ST11-KL64 exclusively from 2016 onward. The pLVPK-like-positive ST11-KL64 isolates exhibited enhanced environmental survival. Retrospective screening of a national collection identified ST11-KL64 in multiple regions. Targeted surveillance of this high-risk CRKP clone is urgently needed.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , China/epidemiologia , Farmacorresistência Bacteriana Múltipla , Feminino , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/mortalidade , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Masculino , Prontuários Médicos , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Análise de Sobrevida , Adulto Jovem
18.
Microb Pathog ; 149: 104507, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950637

RESUMO

Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) has been increasingly reported and is now recognized as a public health concern. The aim of this study was to investigate the molecular epidemiology of CR-hvKp strains that were isolated from an Iranian hospital. A total of 74 non-duplicated carbapenem-resistant K. pneumoniae (CR-Kp) were collected from patients' clinical or surveillance cultures. Resistance/virulence genes were identified by PCR and sequencing. String test, capsular genotyping, conjugation assays, PCR-based replicon typing, pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and were performed. All 74 CR-Kp isolates were carbapenemase producers, which co-carried multiple resistance genes such as blaCTX-M-15, blaTEM-1, blaSHV-type, qnrB1, and qnrS1. The most common carbapenemase gene was blaOXA-48 (67/74 90.5%), followed by blaNDM-1 (18/74 24.3%), and blaNDM-7 (3/74 4%). The blaOXA-48 and blaNDM-1 were found on IncL/M and IncFII conjugative plasmids, respectively. Of 74 CR-Kp isolates, 49 were positive for string test. Capsular genotyping revealed that 34 and 10 CR-Kp strains belonged to the K1 and K2 serotypes, respectively. rmpA was the most prevalent virulence gene detected in 64.8% of the isolates. Fifty two strains were identified as CR-hvKp. PFGE typing showed 5 different clusters with two major clusters B (39 isolates, 52.7%) associated with sequence type 11 (ST11), and A (21 isolates, 28.4%) associated with ST893. Furthermore, ST147, ST392, and ST15 carbapenemase producers have also been sporadically identified. One isolate belonging to ST11 was resistant to colistin and were negative for mcr-1-2-3 genes. Insertional inactivation of mgrB due to IS elements was observed in the colistin-resistant isolate. Our findings suggest that ST11 CR-hvKP strain has a clonal distribution in our hospital. Therefore, immediate implementation of infection-control measures may be the best way to prevent the spread of these clones.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias , Carbapenêmicos/farmacologia , Humanos , Irã (Geográfico)/epidemiologia , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos , Sorogrupo , beta-Lactamases/genética
19.
Rev Argent Microbiol ; 52(3): 211-216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31874719

RESUMO

Antimicrobial resistance due to carbapenemase production in Enterobacteriaceae clinical isolates is a global threat. Klebsiellapneumoniae harboring the blaKPC gene is one of the major concerns in hospital settings in Latin America. The aim of this study was to characterize the antibiotic resistance mechanisms and to typify four carbapenem-resistant K. pneumoniae clinical isolates from the city of Manizales, Colombia. We identified blaKPC-3 in all four isolates by polymerase chain reaction and subsequent sequencing. The plasmid-mediated quinolone resistance genes qnrB19-like and aac(6')Ib-cr; fosfomycin resistance gene fosA and an insertion sequence IS5-like in mgrB (colistin resistance) were also detected. Sequence types ST11 with capsular type wzi75, and ST258 with wzi154, were characterized. The blaKPC-3 gene was mobilized in a 100-kb IncFIB conjugative plasmid with vagCD toxin-antitoxin system. This work reports multiple resistance genes in blaKPC-producing K. pneumoniae and the first occurrence of ST11 clinical isolates harboring blaKPC-3 in Latin America.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , América Latina/epidemiologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
20.
Emerg Infect Dis ; 25(1): 175-176, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561300
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa