Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JHEP Rep ; 5(4): 100683, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36950091

RESUMO

Background & Aims: Although extensive experimental evidence on the process of liver regeneration exists, in humans, validation is largely missing. However, liver regeneration is critically affected by underlying liver disease. Within this project, we aimed to systematically assess early transcriptional changes during liver regeneration in humans and further assess how these processes differ in people with dysfunctional liver regeneration. Methods: Blood samples of 154 patients and intraoperative tissue samples of 46 patients undergoing liver resection were collected and classified with regard to dysfunctional postoperative liver regeneration. Of those, a matched cohort of 21 patients were used for RNA sequencing. Samples were assessed for circulating cytokines, gene expression dynamics, intrahepatic neutrophil accumulation, and spatial transcriptomics. Results: Individuals with dysfunctional liver regeneration demonstrated an aggravated transcriptional inflammatory response with higher intracellular adhesion molecule-1 induction. Increased induction of this critical leukocyte adhesion molecule was associated with increased intrahepatic neutrophil accumulation and activation upon induction of liver regeneration in individuals with dysfunctional liver regeneration. Comparing baseline gene expression profiles in individuals with and without dysfunctional liver regeneration, we found that dual-specificity phosphatase 4 (DUSP4) expression, a known critical regulator of intracellular adhesion molecule-1 expression in endothelial cells, was markedly reduced in patients with dysfunctional liver regeneration. Mimicking clinical risk factors for dysfunctional liver regeneration, we found liver sinusoidal endothelial cells of two liver disease models to have significantly reduced baseline levels of DUSP4. Conclusions: Exploring the landscape of early transcriptional changes of human liver regeneration, we observed that people with dysfunctional regeneration experience overwhelming intrahepatic inflammation. Subclinical liver disease might account for DUSP4 reduction in liver sinusoidal endothelial cells, which ultimately primes the liver for an aggravated inflammatory response. Impact and implications: Using a unique human biorepository, focused on liver regeneration (LR), we explored the landscape of circulating and tissue-level alterations associated with both functional and dysfunctional LR. In contrast to experimental animal models, people with dysfunctional LR demonstrated an aggravated transcriptional inflammatory response, higher intracellular adhesion molecule-1 (ICAM-1) induction, intrahepatic neutrophil accumulation and activation upon induction of LR. Although inflammatory responses appear rapidly after liver resection, people with dysfunctional LR have exaggerated inflammatory responses that appear to be related to decreased levels of LSEC DUSP4, challenging existing concepts of post-resectional LR.

2.
Saudi J Biol Sci ; 29(7): 103318, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35677896

RESUMO

Breast cancer accounts for nearly half of all cancer-related deaths in women worldwide. However, the molecular mechanisms that lead to tumour development and progression remain poorly understood and there is a need to identify candidate genes associated with primary and metastatic breast cancer progression and prognosis. In this study, candidate genes associated with prognosis of primary and metastatic breast cancer were explored through a novel bioinformatics approach. Primary and metastatic breast cancer tissues and adjacent normal breast tissues were evaluated to identify biomarkers characteristic of primary and metastatic breast cancer. The Cancer Genome Atlas-breast invasive carcinoma (TCGA-BRCA) dataset (ID: HS-01619) was downloaded using the mRNASeq platform. Genevestigator 8.3.2 was used to analyse TCGA-BRCA gene expression profiles between the sample groups and identify the differentially-expressed genes (DEGs) in each group. For each group, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to determine the function of DEGs. Networks of protein-protein interactions were constructed to identify the top hub genes with the highest degree of interaction. Additionally, the top hub genes were validated based on overall survival and immunohistochemistry using The Human Protein Atlas. Of the top 20 hub genes identified, four (KRT14, KIT, RAD51, and TTK) were considered as prognostic risk factors based on overall survival. KRT14 and KIT expression levels were upregulated while those of RAD51 and TTK were downregulated in patients with breast cancer. The four proposed candidate hub genes might aid in further understanding the molecular changes that distinguish primary breast tumours from metastatic tumours as well as help in developing novel therapeutics. Furthermore, they may serve as effective prognostic risk markers based on the strong correlation between their expression and patient overall survival.

3.
Comput Struct Biotechnol J ; 18: 381-392, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32128068

RESUMO

Pulmonary atresia (PA) is a rare congenital heart defect (CHD) with complex manifestations and a high mortality rate. Since the genetic determinants in the pathogenesis of PA remain elusive, a thorough identification of the genetic factors through whole exome sequencing (WES) will provide novel insights into underlying mechanisms of PA. We performed WES data from PA/VSD (n = 60), PA/IVS (n = 20), TOF/PA (n = 20) and 100 healthy controls. Rare variants and novel genes were identified using variant-based association and gene-based burden analysis. Then we explored the expression pattern of our candidate genes in endothelium cell lines, pulmonary artery tissues, and embryonic hearts. 56 rare damage variants of 7 novel candidate genes (DNAH10, DST, FAT1, HMCN1, HNRNPC, TEP1, and TYK2) were certified to have function in PA pathogenesis for the first time. In our research, the genetic pattern among PA/VSD, PA/IVS and TOF/PA were different to some degree. Taken together, our findings contribute new insights into the molecular basis of this rare congenital birth defect.

4.
Genom Data ; 14: 132-140, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29159069

RESUMO

Human clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignant adult kidney tumors. We constructed a weighted gene co-expression network to identify gene modules associated with clinical features of ccRCC (n = 97). Six hub genes (CCNB2, CDC20, CEP55, KIF20A, TOP2A and UBE2C) were identified in both co-expression and protein-protein interaction (PPI) networks, which were highly correlated with pathologic stage. The significance of expression of the hub genes in ccRCC was ranked top 4 among all cancers and correlated with poor prognosis. Functional analysis revealed that the hub genes were significantly enriched in cell cycle regulation and cell division. Gene set enrichment analysis suggested that the samples with highly expressed hub gene were correlated with cell cycle and p53 signaling pathway. Taken together, six hub genes were identified to be associated with progression and prognosis of ccRCC, and they might lead to poor prognosis by regulating p53 signaling pathway.

5.
Mol Metab ; 5(4): 283-295, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27069868

RESUMO

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. METHODS: To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mt(FVB/N) mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). RESULTS: At baseline conditions, C57BL/6J-mt(FVB/N) mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mt(FVB/N) mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. CONCLUSIONS: We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a second hit, such as dietary stress, was required to cause hepatic steatosis and inflammation. This study suggests a causative role of hepatic mitochondrial dysfunction in the development of experimental NASH.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa